Implications of Device Diversity for Organic Localization

Jun-geun Park¹, Dorothy Curtis¹, Seth Teller¹, Jonathan Ledlie²

Computer Science and Artificial Intelligence Laboratory, MIT¹
Nokia Research Center Cambridge²

IEEE INFOCOM 2011
Motivation: Location Determination for Mobile Applications

Teller et al., “Organic Indoor Location Discovery”, 2008
Wi-Fi Localization

- **Objective:** Learn a map $f : S \to P$ from signal space S to physical space P
 - Signal features: signal strength (RSSI)/detection/... for each wireless access point (WAP)
 - Physical location: (x,y) coordinates/location labels
- **Employ a learning algorithm with training (calibration) examples** $\{(s_i, p_i)\}$ “fingerprint”
- **Limiting assumptions**
 - Need training data for each location
 - Localization samples are drawn from the same distribution as the training samples
Organic Localization*

• Pros
 – Mitigates the need for training data by crowdsourcing
 – The system facilitates sharing fingerprints among users

• Challenge
 – Device diversity due to multiple producers/consumers
 – Different antennas, chipsets, drivers, OS’s

* Teller et al, Organic Indoor Location Discovery, MIT-CSAIL-TR, 2008
* Park et al, Growing an Organic Indoor Location System, MobiSys, 2010
Overview

We present an experimental analysis and design considerations for organic localization with heterogeneous devices

• Heterogeneous WiFi Signal Strength Characteristics
• Feature Design of Localization Algorithms for Heterogeneous Devices
Data Collection

- 6 different devices including 5 distinct models
- Data collected at 18 locations in a building
- Data available at http://rvsn.csail.mit.edu/location

<table>
<thead>
<tr>
<th>Device</th>
<th>WiFi Chipset</th>
<th>OS</th>
<th>Kernel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clevo D901C laptop</td>
<td>Intel 5300AGN (802.11a/b/g/n)</td>
<td>Linux Ubuntu 10.04</td>
<td>Linux 2.6.32</td>
</tr>
<tr>
<td>Asus EEE900A netbook</td>
<td>Atheros AR5001 (802.11b/g)</td>
<td>Linux Ubuntu 10.04</td>
<td>Linux 2.6.32</td>
</tr>
<tr>
<td>Lenovo Thinkpad X61 laptop</td>
<td>Intel 4965AGN (802.11a/b/g/n)</td>
<td>Linux Ubuntu 10.04</td>
<td>Linux 2.6.32</td>
</tr>
<tr>
<td>Nokia N810 tablet (x2)</td>
<td>Conexant CX3110X (802.11b/g)</td>
<td>Maemo OS2008</td>
<td>Linux 2.6.21</td>
</tr>
<tr>
<td>Nokia N95 cellphone</td>
<td>TI OMAP2420 (802.11b/g)</td>
<td>Symbian S60 FP1</td>
<td>EKA2</td>
</tr>
</tbody>
</table>
Algorithm (Signal-Strength-Based)

• Bayes classifier

\[
p_{L|O}(l|o) = \frac{p_{O|L}(o|l) p_{L}(l)}{p_{O}(o)}
\]

\[
\hat{l} = l_{MAP} = \arg\max_{l \in L} [p_{O|L}(o|l)]
\]

• Signal-strength feature, independence between APs

\[
\hat{l} = \arg\max_{l \in L} \left[\prod_{i \in M} p_{S_i|L}(s_i|l) \right]
\]

• Training: learning \(p_{S_i|L} \) for each \(WAP \ i \), Location \(l \)

\(L \) : Location

\(O \) : Signal observation

\(S_i \) : Signal strength from AP \(i \)
Cross-Device Positioning with Signal Strength Features

• Training data from device A
 – $p_{S_i|L}$ was estimated with data from device A

• Localization on device B
 – $p_{S_i|L}$ is different for data from device B
 – Prediction performance degrades
Linear Transformation for Calibration?

• Scatterplot matrix of signal strengths from different devices
• High linear correlations exist
• Previous work* suggested linear transformation would be sufficient

* Haeberlen et al., *Practical Robust Localization over Large-Scale 802.11 Wireless Networks*, MobiCom, 2004,
 Tsui et al., *Unsupervised Learning for Solving RSS Hardware Variance Problem in WiFi Localization*, Mobile Networks and Applications, 2009
Linear Transformation for Calibration?

- Linear transformation alone does not solve the problem
- When N810(2) is used for training:
Linear Transformation for Calibration?

(a) Histograms before linear transformation
(b) After linear transformation
(c) Gaussian fitting after linear transformation
“Smoothing” by Kernel Density Estimation

- We need to take into account the variation in individual samples from different devices
- Kernel density estimator

\[\hat{p}_X^k(x) = \frac{1}{nh} \sum_{i=1}^{n} K \left(\frac{x - x_i}{h} \right) \]

- M-estimator on kernel density estimate

\[p_X(x) = \frac{N \hat{p}_X(x) + \Phi \hat{p}_X(x)}{N + \Phi} \]

\(K(x, x_i) \): kernel function
\(h \): kernel width
Kernel Density Estimator Improves Cross-Device Localization
Overview

We present an experimental analysis and design considerations for organic localization with heterogeneous devices

- Heterogeneous WiFi Signal Strength Characteristics
- Feature Design of Localization Algorithms for Heterogeneous Devices
To Use or Not To Use AP Detection Feature?

- \(J_i = \begin{cases} 1 & \text{if } \text{AP}_i \text{ detected} \\ 0 & \text{otherwise} \end{cases} \)
- Multivariate Bernoulli model \((J_i, 1 \leq i \leq k, k \text{ WAPs})\)

\[
\hat{l} = \arg\max_{l \in L} \left[\prod_{1 \leq i \leq k} \left\{ p_{J_i|L}(1|l) \right\}^{J_i} \left\{ 1 - p_{J_i|L}(1|l) \right\}^{1-J_i} \right]
\]

- Combine with signal strength (hybrid)
Detection Frequency Varies Across Devices
Localization Performance with Different Sets of Features

- Detection feature does not help cross-device localization
Empirical Characterization

• Quantified difference in AP detection by Kullback-Leibler divergence of detection rate probabilities J_i between different devices
Discussion

• Detection frequency feature does not give much extra information
• Detection frequency feature is largely incompatible across devices
• Signal-strength-only construction does not explicitly model detection process

• Other non-Bayesian algorithms (k-NN, SVM, ...) are also affected because missing entries need to be filled in
Concluding Remarks

• Localization algorithms for cross-device positioning need to account for different dispersions in signal strengths
 – Smoothing by kernel density estimation is an easy way to improve cross-device localization

• Localization algorithms should use only “transferrable” information across different devices
 – AP detection frequency feature may be harmful because it varies widely across different 802.11 devices.
Concluding Remarks

• Localization algorithms for cross-device positioning need to account for different dispersions in signal strengths
 – Smoothing by kernel density estimation is an easy way to improve cross-device localization
• Localization algorithms should use only “transferrable” information across different devices
 – AP detection frequency feature may be harmful because it varies widely across different 802.11 devices.

• Organic indoor localization
 – Park et al., *Growing an Organic Indoor Location System*, MobiSys 2010

 – http://rvsn.csail.mit.edu/location
Detection Frequency Varies Across Devices