Moving Baseline Localization

Jun-geun Park Erik Demaine Seth Teller

Computer Science and Artificial Intelligence Laboratory

A localization method for mobile networks without an external coordinate reference

(Picture from Cricket location system)

Description of the Moving-Baseline Localization method

Results and discussion

Localization enables situational awareness

Determine, for each node, the relative positions and velocities of all other nodes moving within a GPS-denied environment without previously deployed infrastructure

Moving-Baseline Localization (MBL) problem

(Picture from Robotic Swarm project)

Many mobile nodes

No external coordinate reference

Ranging and communication only between nearby nodes

Related work

	Anchor-based	Anchor-free
Static network	Bulusu et al., <i>GPS-Less Low-Cost Outdoor</i> Localization for Very Small Devices, 2000	Capkun et al. <i>GPS-Free Positioning in Mobile Ad Hoc</i> <i>Networks</i> , 2002
	Savarese et al., <i>Robust Positioning Algorithms for Distributed Ad-Hoc Wireless Sensor Networks</i> ,	Priyantha et al., <i>Anchor-Free Distributed Localization in Sensor Networks</i> , 2002
	2002 Niculescu and Nath, <i>DV Based Positioning in Ad</i> <i>Hoc Networks</i> , 2003 He et al., <i>Range-Free Localization Schemes for</i> <i>Large Scale Sensor Networks</i> , 2003 Savvides et al., <i>The n-Hop Multilateration Primitive</i> <i>for Node Localization Problems</i> , 2003 Goldenberg et al., <i>Localization in Sparse Networks</i> <i>using Sweeps</i> , 2006 Biswas et al., <i>Semidefinite Programming</i> <i>Approaches for Sensor Network Localization with</i> <i>Noisy Distance Measurements</i> , 2006	 Shang et al., Localization from Mere Connectivity, 2003 Shang et al., Improved MDS-Based Localization, 2004 Moore et al., Robust Distributed Network Localization with Noisy Range Measurements, 2004 Ahmed et al., SHARP: A New Approach to Relative Localization in Wireless Sensor Networks, 2005 Giorgetti et al., Wireless Localization Using Self- Organizing Maps, 2007 Ash and Potter, Robust System Multiangulation Using Subspace Methods, 2007
Mobile network	Hu and Evans, Localization for Mobile Sensor Networks, 2004 Datta et al., Distributed Localization in Static and Mobile Sensor Networks, 2006 Baggio and Langendoen, Monte-Carlo Localization for Mobile Wireless Sensor Networks, 2006 Dil et al., Range-Based Localization in Mobile Sensor Networks, 2006	Akcan et al., GPS-Free Localization in Mobile Wireless Sensor Networks, 2006 Xu et al., Mobile Anchor-Free Localization for Wireless Sensor Networks, 2007

CSAIL

Problem statement

Input is a set of time series of range measurements acquired at each node Solution consists, for each node, of a motion estimate for all *other* nodes in that node's local coordinate system

Massachusetts Institute of Technology

6

Assume planar motion Model trajectories as piecewise-linear

Outline

Motivation and statement of the problem

Description of the Moving-Baseline Localization method

Results and discussion

Why recover trajectories, not positions?

- Recovers fewer parameters
 - N nodes, M measurements
 - M >> N
 - 2NM parameters (position) model M instants of time
 - 4N parameters (trajectory) model entire motion
- Used for prediction and highlevel reasoning
 - Saves computation
 - Saves communication
 - Improves user's situational awareness

MBL (step 1): From the hyperbola parameters, we can recover pairwise geometry

MBL (step 2): Three node pairs make a triangle with velocity vectors

MBL (step 3): Each node computes motion estimates of one-hop neighbors using triangles

- Iterative trilateration, starting from an arbitrary triangle
- A local cluster consisting of a node and its one-hop neighbors is localized in the node's body frame
- The localized cluster is then broadcast to the network

MBL (step 4): Aligning local clusters constructs a global view of the network *from one node*

Node-centered view New local cluster

MBL (step 4): Aligning local clusters constructs a global view of the network *from one node*

Node-centered view New local cluster Common nodes are aligned

(Linear time-complexity in the number of common nodes, Horn et. al., "Closed form solution of absolute orientation using orthonormal matrices")

MBL (maintenance): Each node updates its own local cluster when needed

If error between predicted and observed distance goes beyond predefined threshold, a node triggers relocalization

Outline

Motivation and statement of the problem

Description of the Moving-Baseline Localization method

Results and discussion

- 40 UWB nodes, moving at about 1m/s for 100 seconds
- Random motion on 100 x 100 m grid, 10 m spacing

- 40 UWB nodes, moving at about 1m/s for 100 seconds
- Random motion on 100 x 100 m grid, 10 m spacing

- 40 UWB nodes, moving at about 1m/s for 100 seconds
- Random motion on 100 x 100 m grid, 10 m spacing

- 40 UWB nodes, moving at about 1m/s for 100 seconds
- Random motion on 100 x 100 m grid, 10 m spacing

Discussion

- Our method estimates position and velocity of nodes together, thus localizes persistent node trajectories
- Performance of the method

 Recovered trajectories are used for prediction, reducing computation 6x (compared to repeated network solving)

Discussion: Failure modes

Failure of hyperbola fitting

Flip configuration

Future work

Evaluate the method using actual UWB devices

More complex motion paths & velocity profiles

Integration of additional sensors such as MEMS inertial sensors, compasses, and cameras

Feedback for QoS, guidance to movers

Establish quantitative relationship among fundamental parameters: e.g. ranging rate, ranging radius, density, velocity, etc.

Questions?

