
Draft

A Circus-Ready Hoop-Jumping Rooster
or, A Case Study in Engineering a Category Theory Library in Coq

Jason Gross
MIT

jgross@mit.edu

Adam Chlipala
MIT CSAIL

adamc@csail.mit.edu

David Spivak
MIT

dspivak@math.mit.edu

Abstract
We present a circus-ready rooster jumping through hoops, and
the lessons we learned in training our rooster. We share what we
learned about the design of circus hoops (in our case, the design of
a category theory library), about jumping through hoops (the design
of proof assistants in general), and about the training of roosters to
jump through hoops (the suitability of Coq for formalizing category
theory, and workarounds we found). We conclude by presenting
one particularly shiny hoop our rooster can jump through (proof by
duality can be encoded as proof by unification), which the authors
did not see mention of in any other circus ad (published paper).

1. Introduction
Note: I haven’t touched the old intro much yet. (I think it’s still
pretty good.)

Category theory [] is a popular all-encompassing mathematical
formalism that casts familiar mathematical ideas from many do-
mains in terms of a few unifying concepts. A category is an undi-
rected graph plus algebraic laws stating equivalences between paths
through the graph. Because of this spartan philosophical grounding,
category theory is sometimes referred to in good humor as “formal
abstract nonsense.” Certainly the popular perception of category
theory is quite far from pragmatic issues of implementation. This
paper is an experience report on an implementation of category the-
ory that has run squarely into issues of design and efficient imple-
mentation of programming languages, specifically statically typed
functional languages.

It would be reasonable to ask, what would it even mean to im-
plement “formal abstract nonsense,” and what could the answer
have to do with optimized execution engines for richly typed func-
tional programming languages? We mean to cover the whole scope
of category theory, which includes many concepts that are not man-
ifestly computational, so it does not suffice merely to employ the
well-known folklore semantic connection between categories and
typed functional programming []. Instead, a more appropriate set-
ting is a computer proof assistant, which acts as a kind of IDE for
stating and proving rigorous theorems. We chose to implement a
library for Coq [], a popular system based on constructive type the-
ory.

[Copyright notice will appear here once ’preprint’ option is removed.]

One might presume that it is a routine exercise to transliterate
categorical concepts from the whiteboard to Coq. Probably most
categoricists would be surprised to learn that standard constructions
“run too slowly,” but in our experience that is exactly the result of
experimenting with naı̈ve first Coq implementations of categorical
constructs. It is important to tune the library design to minimize the
cost of manipulating terms and proving interesting theorems.

This design experience is also useful for what it reveals about
the consequences of design decisions for type theories themselves.
Though type theories are generally simpler than widely used
general-purpose programming languages, there is still surprising
subtlety behind the few choices that must be made. Higher-order
type theory [] is a popular subject of study today, where there is
intense interest in designing a type theory that makes proofs about
topology particularly natural, via altered treatment of equality. In
this setting and others, there remain many open questions about
the consequences of type theoretical features for different sorts of
formalization.

2. Circus Hoops
We begin by describing various choices that came up in designing
our category theory library, explaining the benefits and drawbacks
of each option, and attempt to justify the choice we made.

2.1 Dependently Typed Morphisms
In standard mathematical practice, a 0-truncated 1-category C is
typically defined1 to consist of:

• a class ObC of objects
• for each pair of objects a, b ∈ ObC , a 0-truncated class

HomC(a, b) of morphisms from a to b
• for each object x ∈ ObC , an identity morphism 1x ∈ HomC(x, x)

• for each triple of objects a, b, c ∈ ObC , a composition function
◦ : HomC(b, c)× HomC(a, b)→ HomC(a, c)

satisfying the following axioms:

• associativity: for all composable morphisms f , g, and h, we
have f ◦ (g ◦ h) = (f ◦ g) ◦ h.
• identity: for any morphism f ∈ HomC(a, b), we have 1b ◦ f =
f = f ◦ 1a

Following [](HoTT BOOK), we require our morphisms to be
0-truncated (to have unique identity proofs).

We could just as well have replaced the classes HomC(a, b)
with a single 0-truncated class of morphisms HomC , together with
functions defining the source and target of each morphism. The two
formulations are mathematically equivalent.

1 See, for example []

1 2014/1/7

mailto:jgross@mit.edu
mailto:adamc@csail.mit.edu
mailto:dspivak@math.mit.edu


However, the latter formulation is significantly less convenient
for formalization in Coq. If we use the formulation involving
HomC(a, b), then we can syntactically ensure that composition is
only defined for morphisms which line up appropriately; attempt-
ing to compose morphisms that don’t line up will simply fail to
type-check. If we use the formulation with a single class HomC ,
then we have to manually manage the checking of whether or not
two morphisms are composable; this is significantly more verbose.

2.2 Positioning your bells, whistles, and flames: Arguments
vs. Fields

Once you settle what goes into making a category, you need to de-
cide how to position the arguments. At one extreme, everything can
be made a field; you have a type Category whose inhabitants are
categories. At the other extreme, everything can be made an argu-
ment to a function IsCategory. Authors such as [] have chosen
the intermediate option of making all of the computationally rele-
vant parts (the types of objects, morphisms, composition, and the
identity morphism) to be arguments, and the irrelevant proofs (as-
sociativity and left and right identity) to be fields. We present to
pros and cons of each of these three options.

TODO(jgross): Decide whether or not to include code exam-
ples of each of these strategies, for explanatory purposes.

Everything on the outside
We have not found any significant benefits to making everything
into an argument.

Relevant things on the outside
One of the main benefits to making all of the relevant components
arguments, and requiring all of the fields to satisfy proof irrele-
vance, is that it allows the use of type-class resolution without hav-
ing to worry about overlapping instances. Although others have
found this approach useful,[] we have not found ourselves wish-
ing we had typeclass resolution when formalizing constructions.

There is a pragmatic advantage in currently released versions of
Coq to making the type of objects a parameter rather than a field,
which has to do with universe polymorphism. Talking about the
(large) category of all (small) categories requires having at least
two universes. If the definition of a category is not polymorphic
over the universe level of its objects, then every definition and con-
struction must be duplicated. The benefit of making the type of ob-
jects a parameter comes from the way currently released versions
of Coq handle universe polymorphism: only parameters to induc-
tive definitions (such as Records) are considered for universe poly-
morphism. However, Matthieu Sozeau is currently working on full
universe polymorphism via typical ambiguity, largely following [].
In the version of Coq used for homotopy type theory2, removing
the need to duplicate code when the type of objects is a field.

Everything on the inside
Once we moved to using the homotopy type theorists’ Coq, we
decided to use fields for all of the components of a category. This
resulted in a factor of three speed-up in compilation time over the
version where the types of objects and morphisms were parameters.
The reason is that, at least in Coq, the performance of proof tree
manipulations depends critically on their size. By contrast, the size
of the normal form of the term doesn’t seem to matter much in
most constructions; see section 5 for an explanation and the one
exception that we found. By using fields rather than parameters for
the types of objects and morphisms, the type of functors goes from

Functor : ∀ (obC : Type) (obD : Type)

2 Currently available at https://github.com/HoTT/coq

(morC : obC → obC → Type)
(morD : obD → obD → Type),

Category obC morC → Category obC morC → Type

to

Functor : Category → Category → Type

The corresponding reduction for the type of natural transformations
is even more remarkable, and when you have a construction that
uses natural transformations multiple times, the term size blows up
very quickly.

2.3 When two circus hoops are the same: Equality
Equality has recently become a very hot topic in type theory.[](HoTT
book) Although the question of what it means for objects or mor-
phisms to be equal does not come up much in classical category
theory, it is more important when formalizing category theory in a
proof assistant. We consider three possibilities of notions of equal-
ity.

Propositional Equality
Intensional type theories, such as that of Coq, have a built-in notion
of equality often called definitional equality or judgmental equality,
and denoted as x ≡ y. This notion of equality, which is generally
internal to a type theory and therefore cannot be explicitly reasoned
about inside of the type theory, is the equality that holds between
βδιζη-convertible terms. It is called judgmental equality because
the only terms which are judgmentally equal are the ones which
the type-checker can automatically judge to be equal.3

Coq’s standard library defines what’s called propositional
equality on top of judgmental equality, denoted x = y. One is
allowed to introduce a propositional equality between judgmen-
tally equal terms.4

Choosing to use propositional equality, rather than the setoids
discussed below, is convenient because there is already significant
machinery made for reasoning about propositional equalities. How-
ever, we ran into significant trouble when attempting to prove that
the category of sets has all colimits, because quotient types can’t be
encoded without assuming a number of other axioms.

Setoids
The traditional fix for the problem of quotient types is to replace
types with setoids, which are types equipped with an equivalence
relation, and each function carry around a proof that it respects the
equivalence relation of its domain and codomain.5 Although this
allows us to define quotient types very easily, there is significant
overhead associated with using setoids everywhere. Every type that
we talk about needs to come with a relation, and a proof that this
relation is an equivalence relation. Every function that we use needs
to come with a proof that it sends equivalent elements to equivalent
elements. Even worse, if we need an equivalence relation on the
universe of “types with equivalence relations”, we need to provide
a transport function between equivalent types which respects the
equivalence relations of those types.

3 For example, as of Coq 8.4, we have (λ x, f x) ≡ f ; this is the
restricted version of the η rule that Coq implements. We also have that
(λ x, f x) y ≡ f y; this is the β rule.
4 Defined in Coq as
Inductive eq (T : Type) (x : T) : T →Prop:= eq refl :
eq T x x.
5 See [](PAPERS FORMALIZING CATEGORY THEORY WITH SE-
TOIDS)

2 2014/1/7

https://github.com/HoTT/coq


Higher Inductive Types
A third option has recently emerged, which seems to allow the best
of both worlds. The idea of higher inductive types is to allow induc-
tive types to be equipped with extra proofs of equality between con-
structors. A very simple example is the interval type, from which
functional extensionality can be proven.[] The interval type con-
sists of two inhabitants zero : Interval and one : Interval,
and a proof seg : zero = one. In a type theory with higher in-
ductive types, the type-checker does the work of carrying around
an equivalence relation on each type for us, and forbids users from
constructing functions which don’t respect the equivalence relation.
The key insight is that most types don’t need any special equiva-
lence relation, and, moreover, if we’re not explicitly dealing with
a type with a special equivalence relation, then it’s impossible (by
parametricity) to fail to respect the equivalence relation.

Univalence
When considering higher inductive types, the question “when are
two types equivalent?” arises naturally. The standard answer in the
past has been “when they are syntactically equal”. The result of
this is that two inductive types which are defined in the same way,
but with different names, will not be equal. Voevodsky’s univalence
principle gives a different answer: two types are equal when they
are isomorphic.

Although it is natural to extend this idea to categories, and
declare that two objects should be equal when they are isomorphic,
we have found that basic category theory constructions work fine
without univalence and without making assumptions about what
it means for two objects to be equal. However, it is likely that
more advanced or exploratory category theory will benefit from
this univalence requirement on categories; for example, it makes
it impossible to do anything evil.6 See [](HoTT Book, Ch 9) for
more details.

2.4 Hoop Organization: Abstraction Barriers
In many projects, picking the right abstraction barriers is essential
to reducing mistakes, improving maintainability and readability of
code, and cutting down on time wasted by programmers trying
to hold too many things in their heads at once. This project was
no exception; the first author developed an allergic reaction to
constructions with more than five or so arguments after making one
too many mistakes in defining limits and colimits.

Perhaps less typical of programming experience, we found that
picking the right abstraction barriers could drastically cut down on
compile time. In one instance, we got a factor of ten speed-up by
plugging holes in a leaky abstraction barrier!7 In type theory (and
other purely functional languages), breaking an abstraction barrier
is unfolding the function that defines the interface. Because the
time it takes to manipulate a term depends on the size of the term,
needless unfolding of large functions incurs a harsh penalty. A good
abstraction barrier is one that hides as much complexity as possible
(maximally reducing term size) and never needs to be broken by
unfolding (thereby eliminating the penalty).

Finally, we found that picking the right abstraction barrier sim-
plified proofs by forcing us to ignore useless details. A great exam-
ple of this was our experience with (co)limits. After defining limits
as terminal objects of the appropriate comma category, we set out
to formalize the well-known theorem that if a category C has allD-

6 A construction in category theory is evil if it is not invariant under iso-
morphisms. By widening the notion of equality to be the same as the notion
of isomorphism, we get for free that every construction we do is invariant
under isomorphism.
7 See https://github.com/HoTT/HoTT/commit/
eb0099005171e642d467047933660980ddc66280 for the exact change.

shaped (co)limits, then these (co)limits fit together into a (co)limit
functor CD → C, which is furthermore adjoint the the constant di-
agram functor ∆ : C → CD . After some hard work, we managed
to prove both of these theorems.

Some months later, the first author discovered the universal mor-
phism definition of adjoint functors.[](Wikipedia) We found that it
was very straightforward to take the proofs that (co)limits assem-
bled into functors, and turn it into a proof that universal morphisms
assemble into adjoint functors, and vice-versa. Furthermore, we
found some ways to simplify the proofs, which became obvious
once we were forced to abstract away the functor we were con-
structing an adjoint to, and that one of the categories involved was
a functor category.

2.5 More Hoops or More String: Identities vs. Equalities;
Associators

There are a number of constructions that are provably equal, but
which we found more convenient to construct transformations be-
tween instead. For example, when constructing the category of ele-
ments of a functor to the category of categories, we found it easier
to first generalize the construction from functors to pseudofunc-
tors. This corresponds to replacing various equalities with isomor-
phisms. This replacement helped because there are fewer opera-
tions on isomorphisms (namely, just composition and inverting),
and more operations on proofs of equality (pattern matching, or
anything definable via induction); when we were forced to perform
all of the operations in the same way, syntactically, it was easier to
pick out the operations and reason about them.

We also chose to a natural transformation between the functors
F ◦ (G ◦ H) and (F ◦ G) ◦ H , rather than a proof of equality,
when defining the unit and counit of a composition of adjunctions;
the benefit of using natural transformations rather than equalities is
that the proof of equality does not reduce, even when we only care
about a portion of it that reduces. For example, since functors act on
objects and morphisms, if we have that two functors are equal, then
we have that their action on objects are equal. Even though we can
prove that this proof of equality (between the action on objects), de-
rived from the proof that functor composition is associativity, is just
reflexivity, it is not judgementally so, and thus the pattern matching
does not reduce. Using natural transformations, by contract, results
in immediate reductions, simplifying the proofs significantly.

3. Hoop-Jumping
In addition to providing useful guiding principles of category the-
ory library design, our case study also gave rise to suggestions for
new useful features of proof assistants.

3.1 Moving Hoops: Computation Rules for Pattern Matching
In subsection 2.5, we saw some of the pain of manipulating pat-
tern matching on equality. Homotopy type theory provides a frame-
work that systematizes reasoning about proofs of equality, turning
a seemingly impossible task into a manageable one. However, there
is still a significant burden associated with reasoning about equali-
ties, because so few of the rules are judgmental.

We also discovered another flavor of judgmental pattern match-
ing computations rules that we wanted to have, when working on
duality. Duality is the idea that, sometimes, its productive to flip
the direction of all the arrows. For example, if you prove some-
thing about least upper bounds, chances are you’ll be able to prove
the same kind of thing about greatest lower bounds, by replacing
all of your “greater than”s with “less than”s and vice versa. In cat-
egory theory, this is realized by saying that for every category C,
there is an opposite category Cop which has the same objects, but
for every arrow x→ y in C, we get an arrow y → x in Cop. Clearly,

3 2014/1/7

https://github.com/HoTT/HoTT/commit/eb0099005171e642d467047933660980ddc66280
https://github.com/HoTT/HoTT/commit/eb0099005171e642d467047933660980ddc66280


when you perform this operation twice, you get back the category
you started with. However, this is not true judgmentally. For ex-
ample, if you apply symmetry twice to a proof of equality, you get
back a judgmentally distinct proof. While we were able to work
around most of these issues, as explained in subsection 4.2, things
would have been far, far nicer if we had more η rules. The η rule
for records says that if you apply the constructor to the projections,
you get back what you started with; so for products, this says that
x ≡ (x1, x2) (where x1 and x2 are the first and second projec-
tions, respectively). For categories, the η rule says that if you have
a category C and you define a new category whose objects are the
objects of C, whose morphisms are the morphisms of C, . . . , then
your new category is judgmentally equal to C. The η rule for equal-
ity says that the identity function is judgmentally equal to the func-
tion f : ∀x y, x = y → x = y defined by pattern matching on the
first equality. Matthieu Sozeau is currently working on giving Coq
judgmental η for records, though not for equality.

The first author is currently attempting to divine the appropriate
computation rules for pattern matching constructs, in the hopes of
making reasoning with proofs of equality more pleasant.8

3.2 Invisible String: Higher Inductive Types
As explained at the end of subsection 2.3, higher inductive types
provide a way to develop most of category theory using proposi-
tional equality, which tends to be convenient, without sacrificing
the ability to define quotient types.

3.3 Invisible Hoops: Opacity
Coq is slow at dealing with large terms. When I have goals which
are around 150 000 words long, I’ve found that tactics like apply
f equal take around 1–2 seconds to execute. This makes interac-
tive theorem proving very frustrating. Even more frustrating is the
fact that the largest contribution to this size is arguments to irrele-
vant functions, i.e., functions which are provably equal to all other
functions of the same type.

Making the functions opaque helps a little; it prevents the type-
checker from unfolding their definitions. But the type-checker still
has to deal with all of the arguments to the opaque function, and it
is the size of these arguments that slows down term manipulation.

It would be nice if, whenever we had a proof that all of the
inhabitants of a type were equal, we could forget about terms of
that type, so that their size wouldn’t impose any penalties on term
manipulation.

The naı̈ve way to do this is to grant equality reflection for −1-
truncated types; that is, whenever we have a proof that ∀ x y :
T, x = y, the type-checker will reflect the propositional equality
into a judgmental equality, and give us ∀ x y : T, x ≡ y.
However, this would make type-checking undecidable: For any x :
T , the dependent sum

∑
y :T y = x is contractible, because all of

its inhabitants are provably equal to (x; reflx) by induction. Then
we would get that all inhabitants of

∑
y :T y = x are judgmentally

equal, and hence that all proofs of y = x are judgmentally equal
for any x and y. This is called equality reflection, and is known to
make type-checking undecidable.

It’s not clear what is the right way to achieve this goal. It’s
possible that equality reflection would not lead to undecidable type-
checking if it is restricted to equalities between proofs of equality.
Alternatively, there might be some way to ignore the terms when
doing most computation, without changing the underlying theory.

8 See https://coq.inria.fr/bugs/show_bug.cgi?id=3179 and
https://coq.inria.fr/bugs/show_bug.cgi?id=3119.

4. Rooster Training
Most of the deficiencies that we found in the Coq proof assistant
were not fatal. We present here the workarounds that we found
for dealing with most of the problems mentioned in the previous
section, as well as some problems that we believe are quirks of
Coq, rather than indicative problems or desired features with all
current proof assistants.

4.1 Hoop Assembly: Records vs. Nested
∑

Types
In Coq, there are two ways to represent a data structure with one
constructor and many fields: as a single inductive type with one
constructor (records), or as a nested

∑
type. Records are a con-

venient syntactic sugar for defining inductive types with one con-
structor and many fields, and simultaneously defining the projec-
tions at the same time. By way of example, here is the definition of
the computational parts of a category as a record, as the desugared
inductive type, and as the nested

∑
type:

Category as a record
Record Category := {
Ob : Type;
Hom : Ob -> Ob -> Type;
Identity : forall x, Hom x x;
Compose : forall x y z,

Hom y z -> Hom x y -> Hom x z
}.

Category as an inductive type
Inductive Category :=
Build_Category
: forall

(Ob : Type)
(Hom : Ob -> Ob -> Type)
(Identity : forall x, Hom x x)
(Compose : forall x y z,

Hom y z -> Hom x y -> Hom x z),
Category.

Definition Ob C :=
let (Ob, _, _, _) as C’ return Type := C in Ob.
Definition Hom C :=
let (Ob, Hom, _, _) as C’

return Ob C’ -> Ob C’ -> Type
:= C in Hom.
Definition Identity C :=
let (Ob, Hom, Identity, _) as C’

return forall x, Hom C’ x x
:= C in Identity.

Definition Compose C :=
let (Ob, Hom, Identity, Compose) as C’

return forall x y z,
Hom C’ y z -> Hom C’ x y -> Hom C’ x z

:= C in Compose.

Category as an nested
∑

type
Definition Category :=
{ Ob : Type &
{ Hom : Ob -> Ob -> Type &
{ Identity : forall x, Hom x x &
{ Compose : forall x y z,

Hom y z -> Hom x y -> Hom x z &
unit }.

Definition Ob C : Type
:= projT1 C.

4 2014/1/7

https://coq.inria.fr/bugs/show_bug.cgi?id=3179
https://coq.inria.fr/bugs/show_bug.cgi?id=3119


Definition Hom C : Ob C -> Ob C -> Type
:= projT1 (projT2 C).
Definition Identity C : forall x, Hom C x x
:= projT1 (projT2 (projT2 C)).
Definition Compose C

: forall x y z,
Hom C’ y z -> Hom C’ x y -> Hom C’ x z

:= projT1 (projT2 (projT2 (projT2 C))).

The differences
There are two main differences in Coq. The first is that while you
can prove theorems about nested

∑
types in general, you can’t

prove theorems about records in general. This is a pain and leads
to code duplication. The far more pressing problem is that nested∑

types have horrendous performance, and are sometimes a few
orders of magnitude slower. This comes from the fact that the
projections of nested

∑
types, when unfolded (which they must be,

to do computation), each take almost the entirety of the nested
∑

type as a type argument, and so grow in size very quickly. Matthieu
Sozeau is currently working on giving Coq primitive projections for
records, which would eliminate this problem with nested

∑
types

(if
∑

itself were defined as a record) by eliminating the arguments
to the projection functions.

4.2 Spinning Roosters: Tricks for Involutive Duality
Having the dual of a category be judgmentally equal to itself is very
useful; see section 5 for more details. We managed to avoid the
need for judgmental η for records; we only cared about dualizing
categories which were already eta expanded. We found a number
of tricks to get around the need for η for equality.

Removing symmetry
When you take the dual of a category, you need to construct a proof
that f◦(g◦h) = (f◦g)◦h from a proof that (f◦g)◦h = f◦(g◦h).
The standard way of doing this is to apply symmetry, but we’d need
judgmental η for equality for this to work. Instead, we extended the
definition of Category to require both a proof of f ◦ (g ◦ h) =
(f ◦g)◦h and a proof of (f ◦g)◦h = f ◦(g◦h); then our dualizing
operation simply swapped the proofs. We added a convenience
constructor for categories that asked only for one of the proofs, and
applied symmetry to get the other one. Because we formalized 0-
truncated category theory, where the type of morphisms is required
to have unique identity proofs, asking for these other proofs doesn’t
result in and coherence issues.

Dualizing the terminal category
To make everything work out nicely, we needed the terminal cate-
gory (the category with one object and only the identity morphism)
to be the dual of itself. We originally had the terminal category as
a special case of the discrete category on n objects. Given a type
T with uniqueness of identity proofs, the discrete category on T
has as objects inhabitants of T , and has as morphisms from x to y
proofs that x = y. These categories are not judgmentally equal to
their duals, because the type x = y is not judgmentally the same as
the type y = x. We thus had to instead use the indiscrete category,
which instead has unit as its type of morphisms.

Which side does the identity go on?
The last tricky obstacle we encountered was that when defining
a functor out of the terminal category, you have to pick whether
to prove that the functor preserves composition using the right
identity law, or the left identity law; both will prove that the identity
composed with itself is the identity. The problem is that when you
dualize the functor, you will then discover that you picked the
wrong rule, and so the dual of your functor out of the terminal

category will not be judgmentally equal to another instance of
itself. To fix this problem, we further extended the definition of
category to require a proof that the identity composed with itself is
the identity.

Dodging judgmental η
The last problem we ran into was the fact that sometimes, we
really, really wanted judgmental η. For example, we wanted to say
that you could get any functor out of the terminal category as the
opposite of some other functor; namely, if you have F : 1 → C,
then it should be equal to (F op)op : 1 → (Cop)op. To get around
this, we made two variants of dual functors: given F : C → D,
we have F op : Cop → Dop, and given F : Cop → Dop, we
have F op’ : C → D. There are two other flavors of dual functors,
corresponding to the other two pairings of op with domain and
codomain, but thank goodness we didn’t need them. As it was, we
ended up having four variants of dual natural transformation, and
are very glad that we didn’t need sixteen. We look forward to Coq
8.5, when we will hopefully only need one.

4.3 When Roosters find Hoops inside Hoops: Indexing
vs. Subsets

In Coq, as in mathematics, there are approximately two ways to
talk about subsets A ⊆ B.

One way is by giving function P : B → Prop. In this case, we
identify the subsetA with the sigma type

∑
b :B P b, which in Coq

is suggestively denoted {b : B | P b}. Inhabitants of this type are
dependent pairs, an element b ∈ B and a proof of P b. Note that
in classical mathematics, it is standard to identify the subsets of B
with functions B → 2 rather than B → Prop; this corresponds
to assuming that all propositions are decidable, and satisfy proof-
irrelevance. This is most useful when you already have the type B
in hand. We use this method to define subcategories.

The other way is by giving an injection A ↪→ B. This is con-
venient when you don’t already have the type B in hand, and due
to limitations in your proof assistant (such as Coq 8.4), committing
to a particular type B would also be committing to living in a par-
ticular universe. In these cases, you can instead provide a function
U : I → Type and a function f : forallx, U x, allowing you
to use a fresh Type variable every time you talked about such an
indexed category. Before moving to the homotopy type theorists’
Coq, we used this method to define the category of (small) cate-
gories.

4.4 Turning Roosters into Hoops: Reified Simplification
We implemented two simplification procedures for morphisms in
categories, one based on reification using typeclasses, and the other
based on reification using canonical structures, as described in
[]. Currently, the routines remove all compositions with identity
morphisms, or functors applied to identity morphisms.

During preliminary testing, the canonical structure simplifica-
tion routine is about twice as fast as the typeclass simplification
routine that uses reification, which is itself about twice as fast as
the typeclass simplification procedure which does not use reifica-
tion, which is itself about twice as fast as repeated rewriting.

Unfortunately (depending on your perspective), this effect only
becomes noticeable when the goal is already horrendously large, to
the point that interactive theorem proving is unpleasant. In most
cases, naı̈ve rewriting with the handful of lemmas used by the
simplification machinery takes under a second, so we have not
found these simplification routines to be particularly useful.

5. One Shiny Hoop
We discovered that proof by duality can be encoded as proof by
unification, an idea which we were unable to find expressed in the

5 2014/1/7



literature, and which we think merits a short explanation. Proof
by duality is a common idea in higher mathematics. We find it
noteworthy that not only is there an isomorphism between the type
of a theorem and the type of its dual, but that, if definitions are
made carefully, then the types actually unify! Thus, in homotopy
type theory, not only are theorems homotopic to their duals, but
they can be made to be judgmentally equal to their duals.

References
[1] P. Q. Smith, and X. Y. Jones. ...reference text...

6 2014/1/7


	Introduction
	Circus Hoops
	Dependently Typed Morphisms
	Positioning your bells, whistles, and flames: Arguments vs. Fields
	When two circus hoops are the same: Equality
	Hoop Organization: Abstraction Barriers
	More Hoops or More String: Identities vs. Equalities; Associators

	Hoop-Jumping
	Moving Hoops: Computation Rules for Pattern Matching
	Invisible String: Higher Inductive Types
	Invisible Hoops: Opacity

	Rooster Training
	Hoop Assembly: Records vs. Nested Î£ Types
	Spinning Roosters: Tricks for Involutive Duality
	When Roosters find Hoops inside Hoops: Indexing vs. Subsets
	Turning Roosters into Hoops: Reified Simplification

	One Shiny Hoop

