
CATEGORY THEORY
as an extension of

Martin-Lflf Type Theory.

Roy Dyckhoff
Department of Computational Science,

University of St Andrews.

Category theory has tong been widely recognised as being conveniently formalisable In
constructive mathematics. We describe a computer implementation of its basic concepts, as an
extension of the Goteborg implementation of Martin-Lofs theory of types; we discuss some
alternative formulations of the theory (and our reasons for rejecting them) and briefly comment
on the problems of automating the theorem-proving facilities of such an implementation.

Our purposes in implementing such a system are various. First, the ability to prove
theorems of category theory would be useful, in connection with the current [33] growth of
interest in category theory for formalising notions from computer science, such as
implementation of languages, data abstraction, and algorithm development. Second, it is one of the
more interesting theories in mathematics, with many different levels of meaning and application,
allowing a wide variety of different ways of looking at a single problem, and with important
abstract concepts like adjointness. Third, there are links [07], 1411 between category theory and
strong typing systems (such as that of ML, or of Martin-Lot), which the implementation of
categorikal concepts should help us to explore. Fourth, Martin-LOf type theory is now being
investigated by many as an abstract functional programming language, and the implementation of
category theory therein presented an opportunity further to develop the type theory system itself.

Rydeheard and Burstall [06] have implemented a more substantial part of category theory.
Our approach differs from theirs by also covering equations. Put otherwise, 'category' in our
system is a much stronger notion than theirs, just as there Is a difference between types of
Martin-LOfs system and those of ML.

Martin-Lot type theory [25],[26],[27] is a particularly suitable foundation for category
theory, for a number of reasons (apart from the constructive nature of category theory.) We
refer the reader to [27], or to Beeson [02], for a full presentation of the theory, roughly as we
require it. Quite a lot of what we do should make sense to any reader acquainted with any natural
deduction system. For such readers, it should only be necessary to add that to declare a variable of
some type A, it is necessary to have first proved, or to have assumed, that the type expression
denoting A is well-formed. We mention now some of our reasons for choosing Martin-Lofs theory
as a foundation.

First, the identification of propositions with types allows, here as elsewhere, a smooth and
unified treatment of two common pans of an argument: viz, the declaration of a typed variable
(e.g. "let C be a categorywnd the assumption of an equation (e.g. "suppose f-h = g-h", where the
infix operator symbol denotes composition.)

Second, one of its underlying principles, that every term of the theory has a type, (and thus
that quantification is only permissible over a type) fils conveniently with, for example, the
common supposition in category theory

"let f : X -> Y be a morphism of the category C",

R.Dyckhoff
Category Theory as an extension of Martin-Lof type theory, Page 1

reprinted with minor changes 24110188

which translates into the last item of the assumption list

Third, as the above example also shows, it is common for the types in assumptions in category
theory to depend on variables introduced in earlier assumptions; assumption lists are therefore
lists (or at least, partially ordered sets) rather than, as in ordinary predicate calculus, merely
sets. This however is an important feature of Martin-LOPS theory, and comes with obvious
restrictions on the discharge of assumptions without discharging other assumptions dependent
thereon.

Fourth, the partiality of the composition operator can conveniently be managed by
considering it as having the dependent function type

n(A,B,D.E : Ob(C), [Mor(C,A,B) # Mor(C,B,D) -Ã Mor (CAD)])

(in a modification of the GOteborg notation for Martin-LOf type theory.) In fact, we adopt a slightly
different approach, allowing a more convenient notation. Similar observations apply of course to
many of the other operators, such as the construction of a pullback square from a pair of
morphisms with common codomain.

Fifth, its hierarchy of universes UO,Ul,U2, ... is convenient for handling the problems of
constructing "the category of (small) categories", "the 'category' of categories", ... Type theory
has, unless carefully formulated, similar problems, avoided by means of this hierarchy. The rules
for (small) category theory outlined below can easily be adapted for larger categories.

The Goteborg implementation (which we call the GnS, for the GOteborg Type Theory System)
of this theory, designed and programmed by Petersson [31],[321, is written In Franz-Lisp and
Edinburgh ML [17], and runs (in our case, on a VAX 11/750) under the Unix operating system.
ML allows the definition of an abstract data type 'thm' whose elements denote judgments, alias
theorems, of the theory, and whose operations represent the inference rules of the theory. The
abstract nature of this data type officially prohibits invalid constructions of theorems; as
currently implemented, however, the system permits the addition of new type constructors and
new inference rules, without redefinition of the type thm', and this approach has been followed in
the present case.

The NuPRL system [09] at Cornell implements a type theory essentially the same as Martin-
Lafs. Our implementation could instead have been done using NuPRL: the G U S was however more
convenient, in allowing the programming to be done In ML rather than in LISP.

In our extension of the type theory system, we follow the traditional pattern by giving, for
each new type constant or type constructor, a group of rules, divided Into the formation rules, the
introduction rules, the elimination rules, and the computation rules. Most of these come in two
forms, a simple rule and a corresponding 'extensionality' rule: to save space, we have omitted to
detail the extensional versions of the rules, but the reader familiar with such rules can easily
work them out. We have been careful to avoid rules requiring superfluous premisses: official
presentations ([27], [02]) of the theory generally omit to mention many premisses explicitly
except that the reader is invited to guess where and what they should be. In practice, many of these
premisses are unnecessary, and such unnecessary premisses are not required in the G U S . (In one
or two cases, e.g. with the rule SIGMAintr, necessary premisses too are discardedl) We follow this
simplification of the theory: a fuller discussion appears in [14].

Burstall and Rydeheard [06],[37],[38] have implemented a substantial number of concepts
and constructions of category theory in standard ML (originally, in HOPE). Their purpose is to
have a framework in which categorical constructions can be done (with a view to applications to
program development, and algorithm specification); but it does not include the equations satisfied
by category theory, nor, a toftiori, admit of formal verifications that the constructions (e.g. of

R.Dyckhoff
Category Theory as an extension of Martin-LOf type theory. Page 2

reprinted with 'minor changes 24110188

finite products of objects) have the desired properties. Moreover, their representation cannot
fully express the partiality of composition. Provided the structured collections of objects and
morphisms manipulated really are categories, no harm appears to be done. In the long run,
however, the need for such verifications will arise: for example, at the interface with formal
methods in other theories, such as universal algebra.

In the work described in this report, equations and verifications (that certain structures are
categories, functors, ...) are fundamental. This distinction is reflected in the following: 'category'
is defined as a datatype of the meta-language (HOPE, or Standard ML) by Burstall and Rydeheard,
but, in our case, as a type of the object language (type theory, which happens to be manipulated by
the meta-language ML). Martin-Lof type theory has a much richer type structure than that of ML,
hence we are able to manipulate, for example, assumptions of equations by considering the
equations as (logical) formulae and thus as types.

Many others, (notably Barr & Wells [Ol], Benecke & Reichel[03], Burmeister [04],
Cartmell [07], [08], Coquand & Huet [lo], [I l l , Curlen [12], Freyd [16], Hamza [20], Huet
1221, Lambek & Scott [23], Poign6 [35], [36], Scott 1401, Szabo [42], and Watjen &
Struckmann [43]) have represented notions from category theory in various formal languages
(although, with the exception of those of Curien, Coquand & Huet, Watjen & Struckmann, and
Hamza's implementation of Szabo 1421, none of these representations appear to have been
implemented.) Some of these representations have been in a form designed only for equational
reasoning, and although it is arguable that all categorical reasoning is ultimately equational, or at
least that much of it can be so expressed, the equational format Is often fairly unnatural. For
example, existence of pullbacks cannot be expressed (in an equational framework) without
designing the notation so that all pairs of morphisms with a common codomain have a pullback,
which is canonical: a rather severe restriction.

The closest approach to ours appears to be that of Coquand & Huet [Ill, who axiomatise the
notion of category in the language of constructions, (a blend of Martin-LOPS non-extensional type
theory [25] and the second-order theory of Girard); their definition of category is an axiomatic
one, similar to one of those In our chapter 6, and presumably suffering from the same problems.

in presenting the rules (or the type constant CAT and the type operators FUNC, and NAT, we
adopt the terminology of the G6teborg system. Expressions of the object language, i.e. type theory,
usually appear in double quotes. Judgments consist of one of the four sorts of formula

"Atype", "A = Be, "a : A", "a = b : A"

followed, in square brackets, by an assumption list; these mean, respectively, that "A' denotes a
type, that "An and "B" denote equal types, that "a" denotes an element of type denoted by "A", and
that "a" and "b" denote equal elements of the type denoted by "A". Formulae In an assumption list
are all of the form "x : A", where "x" is a variable. We use the two levels U (= UO) and U1 of the
hierarchy of universes: U is the type of small types, and U1 the next level up this hierarchy. Thus
"A : U" formalises the judgment that "A is a small type".

We also use Martin-Uf's notation (introduced in his Munich lectures in 1980) for abstract
expressions: a useful explanation is to be found in the book [02] by Beeson. This neatly avoids the
use of notation such as B[a/x] to denote "B with a substituted for x", and allows, for example, us to
write "II(A,B)" instead of "II(x:A, B(x))" or "II(A, (x)B(x))". The rules for introduction (of
categories, for example) become much clearer when this notation is used.

Note also that the G6teborg system uses "#" as the constructor for the product of two types
(i.e. conjunction of two propositions).

to the

R.Dyckhoff
Category Theory as an extension of MarBn-Lof type theory, Page 3

reprinted with minor changes 24f10188

The basic rules for categories, functors, and natural transformations have been implemented,
and are described below in sections 5.1 - 5.3. In fact, the extensional versions of these rules have
also been implemented, as noted above. In section 5.0, we illustrate some of the rules for CAT, by
giving the 'tree' form of a derivation of the judgment that the relationship of being isomorphic is a
reflexive relationship, then an ML program formalising this, and finally a script recording a
session with the modified type theory system. In section 5.4, we give an example showing how to
define the property of being monomorphic In the language of type theory, and exhibit a proof
object for a formula expressing that monomorphisms are closed under composition. In section 5.5,
we show how some of the operations on functors and natural transformations, as required in the
category of categories, can be defined.

SLO An examBlfi-t-tfillfflflXfly of . Iso

We use the definition facility of GTTS to abbreviate, by Iso(C,A,B), the propositional formula

which asserts the existence of an x :A -> Bin C and of a y : B +A in C such that x*y and y-x equal
the Identities on A, B respectively.

R.Dyckhoff
Category Theory as an extension of Martin-LOf type theory. Page 4

reprinted with minor changes 24110188

Thus, we have a proof/element of the propositionltype lso(C,A,A), constructively showing
the truth of this proposition. We give now an ML program representing the above:

let CAT = CATfbnn ;;
lei CATtype = Uelim CAT ;;
let C = VARintr CATtype "C" ;;
let OC = CATelim-Ob C ;;
let OCtype - Uelim OC ;;
let A = VARintr OCtype "A" ;;
let iA = CATelimid A ;;
let cii = CATelimIdL iA ;;
let eE = EQintr cii ;;
let pee = PAIRintr eE eE ;;
let p9 = SIGMAIntr

(~)#(Eq(Mor(C,A,A),comp(id,y). id),
EqtMor(C,A,A),comp(y,id), id))"

iA pee ;;
let p10 = SIGMAintr

"(x)Sigma(Mor(C,A,A),(y)
#(Eq(Mor(C,A,A),comp(x,y),id),

Eq(Mor(C,A,A),comp(y ,x),id)))"
iA p9 ;;

Here now is a script of the interaction between the GTTS and this ML program; pt has been
edited slightly to cope with a bug in the definition facility] :

let CAT - CATforrn ;;
CAT = "CAT : U1" : lhm

let CATtype - Uelim CAT ;;
CATtype = "CAT type" : thm

let C = VARintr CATtype "C" ;;
C=*C :CAT[C :CATp :thin

let OC - CATelimOb C ;;
OC = "OtrfC) : U [C : CATY : thm

let OCtype = Uelim OC ;;
OCtype = *Ob(C) type [C : C A T : thm

let A = VARtntr OCtype 'A' ;;
A - "A : Ob(C) [C : CAT; A : Ob(C)]' : thm

let IA = CATelimId A ;;
IA - "id : Mor(C.AA) [C : CAT; A : Ob(C)Y
: thm

let ell = CATellmIdL iA ;;
cii = "comp(id,id) = id : Mor(C,A,A)
[C : CAT; A : ob(c)r
: thm

let eE = EQintr cii ::
eE = "e : ~q(~or(~,~,~),com~(id, id), id)
[C : CAT; A : Ob(C)]"

R.Dyckhoff
Category Theory as an extension of Martin-Lof tvoe theory. Paae 5

reprinted with minor changes 24/10/88
- -

: thm

let pee = PAIRIntr eE eE ;;
pee = "pair(e,e)
: #(Eq(Mor(C,A,A),comp(id,id),id),
Eq(Mor(C,A,A),comp(id,id),id))

[C : CAT; A : Ob(C)]"
: thm

let p9 = SiGMAintr '(y)#(Eq(Mor(C,A,A),comp(id.y). id),
Eq(Mor(C,A,A),compfy,id), id))"

w e ;;
p9 = "pair(id,pair(e,e))
: Sigma(Mor(C,A,A), (y)

[#(Eq(Mor(C,A,A),comp(id,y),id),
Eq(Mor(C,A,A),comp(y,id),id))l)

[C : CAT; A : Ob(C)]"
: thm

let pi0 = SIGMAIntr "(x)Sigma(Mor(C,A,A),(y)
#(Eq(Mor(C,A.A),comp(x,~),id).

Eq(Mor(C, A, A),comp(y,x),Id))r
IA p9 ;;

p10 = "pair(id,pair(id,pair(e,e)))
: lso(C,A,A) [C : CAT; A : Ob(C)]" : thin

Goodbye - 17 seconds of CPU time used

The following constants are added to the language:

"CAT", "Cat", "Ob". "Mor", "id", "comp".

They are used as follows : "CAT" denotes the type of small categories,
having canonical elements of the form "Cat(O,M,i,c)", where

i) 0 is a small type (consisting of 'objects'), and

i) (given objects X,Y 1, M(X,Y) is the (small) type of 'morphisms' from X to Y, and

iii) (given an object X), i is the 'identity morphism' on X, and

iv) (given composable morphisms f,g), c(f,g) is the 'composite' of the pair (f,g), and

v) the associativity and identity axioms are satisfied.

Non-canonical elements are [when C is a (small) category] the expressions

1) Ob(C) denoting the type of objects of C ;

ii) Mor(C,X,Y) denoting the type of morphisms of C from the object X to the object Y ;

iii) id denoting the identity morphism on any object ;

iv) comp(f,g) denoting the composite of two composable morphisms f,g .

Note that "in, "id" are polymorphic: the suffix, denoting an object, traditionally affixed to the
symbol 1 to indicate dependence on the object, is unnecessary when the equations we handle are

R.Dyckhoff
Category Theory as an extension of Martin-Lot type theory, Page 6

reprinted with minor changes 24110188

between elements of a specified type [such as Mor(C,X,X)l. This polymorphism is traditional for
the constant denoting composition, and may be extended to "id* without difficulty. As justification,
note that the lambda-expression for the identity function makes no reference to the type on which
the function acts.

We therefore now add the following rules :

CA Tintr
0:u

c(f, c(g.h)) = c(c(f,g),h) : M(W,Z) [W : 0, X : 0, Y : 0, Z : 0,
f:M(W,X), g:M(X,Y). h:M(Y,Z)]

- * - - - * - - * - * - - - - - - . - - - - - - -

Cat(O,M,i,c) : CAT

CA T e l i m 06

FLDyckhoff
Category Theory as an extension of Martin-Lof type theory, Page 7

reprinted with minor changes 24110188

Cat(O,M,i,c) : CAT A : 0
.
id = i : M(A,A)

.
C = Cat(Ob(C),Mor(C),id,comp) : CAT

This concludes our presentation of the formation, introduction, elimination and computation
rules for the type "CAT* of (small) categories. Note that the computation rules (CATeaOb,
CATqMor, CATqld, CATqcomp) are essential for relating the information wrapped up by the
rule CATintr to that extracted from the category expression so introduced by the associated
elimination rule.

The following constants are added to the language :

"FUNC" is a type constructor: when C, D are categories, we have the type "FUNC(C,D)" of functors
from C to D. It has canonical elements of the form "Func(Fl,F2)"; such an expression denotes the
functor with object part F1, morphism part F2 [F1(X) being an Ob(C)-indexed family of objects
of D, and F2(f) being a rnorphism: Fl(X) -Ã FI(Y) (when f is a morphism: X -Ã Y), with F2
preserving identities and co~nposites]. We note that FUNC(C,D) is, generally, a large type.

R.Dyckhoff
Category Theory as an extension of Martin-Uf type theory, Page 8

reprinted with minor changes 24/10/88

Moreover, when F is a functor from C to D, it has as objectpart the Ob(C)-indexed family
obj(F.A) of objects of D, and asmorphism part the Mor(C.A.6)-indexed family mor(F,f) of
morphisms of D from obj(F,A) to obj(F,B).

We thus have the following rules :

C :CAT
F1 (X) : Ob(D) [X : Ob(C)]
F2(f) : Mor(D,Fl(X),FI(Y)) [X,Y : Ob(C), f : Mor(C,X,Y)l
F2(id) = id : Mor(D, Fl(X), Fl(X)) [x :Ob(c) l
F2(comp(f,g)) = comp(F2(f),F2(g)) : Mor(D,Fl(X),Fl(Z))

[X,Y,Z : Ob(C) , f : Mor(C,X,Y), g : Mor(C,Y,Z) 1 - - - - - - - - - - . - - - - - - - - - . -
Func(F1 ,F2) : FUNC(C,D)

R.Dyckhoff
Category Theory as an extension of Marlin-Uf type theory, Page 9

reprinted with minor changes 24110188

This concludes our set of rules for the notion of functor.

The following constants are added to the language :

"NAT", war, "at' .
"NAT(C,D,F,G)" denotes the type of natural transformations from F to G, with canonical elements
of the form "Nat(n)", where 'n(X)" is an expression denoting an Ob(C)-indexed family of
morphisms from obj(F,X) to obj(G,X), satisfying a well-known equation. Moreover, if "ntw
denotes a natural transformation from F to G, Its component at an object A (of the domain category
of F) is denoted by "at(nt,A)" .

Here now are the rules formalising these notions :

NA Tin tr

R.Dyckhoff
Category Theory as an extension of Martin-LOf type theory. Page 10

reprinted with minor changes 24/10/88

This concludes our system of rules for the notion of natural transformation.

As an example of the expressive power of the language, consider the notion of
'monomorphism'. We use of course the constructive definition "... if g 4 = hwf then g = h ...
rather than the non-constructive ". .. if g # h then g4* h-f ...". We add the definition

to the language, to be read 'f is a monomorphism of C from X to Y, when for every object A of C, and
every morphism g of C from A to X, and every morphism h of C from A to X, g'f = h-f implies g =
h.' This then allows us to construct a proof of the formula expressing the proposition that
monomorphisms are closed under composition. Stripped of universal quantifiers, and thus
assuming that C is a category, X,Y,Z are objects of C, f a morphism of C from X to Y, and Y a
morphism of C from Y to Z, such a formula (preceded by a suitable proof-object) Is as follows :

Construction of this proof is routine, but tedious. The associativity axiom is used at one point, but
Its use Is no longer visible, having been absorbed into the unique canonical proof object "e'of the
formula "Eq(Mor(C,A,X),g,h))'. Similar definitions and proofs for other baste notions, such as
epimorphisms, can clearly be given.

Functors are composable, as in [24] p14: the (polymorphic) identity functor "Id" may be
defined as 'Func((X)X, (f)f); and routinely shown to be of type 'FUNC(C,C)' when C is a
category , and the composite "FFcomp(F,G)' of two functors F : FUNC(C,D), G : FUNC(D.E)
defined to be

R.Dyckhoff
Category Theory as an extension of Martin-LOf type theory, Page 11

reprinted with minor changes 24110188

Likewise, the vertical composite ([24], p.40) of two natural transformations in : F +G, n : G +H
can be defined as

NN_vert(m,n) -= Nat((X)comp(at(m,X). at(n,X)))

and for this composition there is the (polymorphic) identity natural transformation "ld-nat"
defined as 'Nat((x)id)". There Is also the composite of a functor F with a natural transformation n
by

FNcomp(F,n) == Nat((X)at(n,obj(F,X)))

and, similarly, the composition NF_comp(n.F). But, the horizontal composition is more difficult:
there are two ways to define it, for m : NAT(C,D,S,S), n : NAT(D,E,T,T); these are provably
equivalent ([24], p43):

Here, we pay the price for not having an operation 'Dom' so that "Dom(n)" is the domain of the
natural transformation n. and thus we have to abstract over the names of at least two of the
functors involved. (We do it in both cases over all four, to be consistent). Moreover, forcing the
GTTS to be clever enough to recognise these two definitions as the same is a major problem,
symptomatic of other, similar, difficulties.

Two rather different approaches are possible to the representation of a special type, such as
CAT, in the type theory system. One is that adopted above, where we add new constants to the
language, and new rules to manipulate these constants. The other is not to extend the language (save
perhaps with some inessential definitions to make life more convenient), but to derive a Judgment
that such and such an expression denotes a type. For example, here is one possible representation
of the abstract type "CAT, which has been shown, by manual interaction with the type theory
system, to denote a type.

.. -.. . -...
palr(appl~(ldenl.ol).l));

mum.

This follows the approach advocated in NordstrOm & Petersson 1291 for representing abstract
data types, such as stacks. Several serious problems were found with this approach. The first

R-Dyckhoff
Category Theory as an extension of Martin-Uf type theory. Page 12

reprinted with minor changes 24110188

problem encountered arose from the lack. in the GTTS, of primitive rules for extracting from an
expression of a Sigma-type the two components. This omission Is logically acceptable, but
inconvenient: in order to extract such components, one has to use the primitive rule SIGMAelim,
and in order to do that, one has to know the types of the components. Appropriate new primitive
rules, such as SIGMAelim-kt, have in fact been added [14] to the version of the system which we
are now using. The second difficulty is even more awkward: one only has the notation "fst(C)" for
the type of objects of the category C, "fst(snd(C)>" for the type of its morphisms, ... Any attempt
to coerce the GTTS into saying "Ob(C)", "Mor(C)", etc. will have undesirable consequences
elsewhere. Third, the notation is clumsy: note the many uses of "apply" in the above type-
expression. We are indebted to Lincoln Wallen for encouraging the abandonment of this approach,
and the adoption of ideas advocated in [39].

Such disdain for use of primitive concepts, however, forces the construction of more
theorem-proving software, for handling the new constants. Since the nature of such software is
dictated in part by the methods used by category theorists for proving their theorems, rather than
by the general methods used elsewhere. Oils may yet turn out to be an advantage.

The NuPRL system [09] encourages the representation of categories in axiomatic form: the
corresponding NuPRL type expression is as follows:

Category ==
o :u1
M : (O # O) - > U 1
id : (o : 0 -> M(o,o))
#comp:(ol :O->02 :0 ->03 :0 ->

(M(01,02) # M(02.03) -> M(o1,03)))
#idL:AHol :O.All02:0.Allf:M(o1,02).

comp(ol)(ol)(o2)(ld(o1),9 = f in M(o1 ,o2)
#MR :All01 :0 .Al lo2:0.Al l f :M(o1,02).

comp(ol)(o2)(02)(f,id(o2)) - f in M(o1.02)
#Ass:AUoI :O.Allo2:0.AB03:0.Allo4:0.

All f : M(o1.02). All a : Mfo2.031 . All h : M103.041.

which is less clumsy, but suffers from the second (and to some extent, the third) problem
mentioned above.

Representations of the bask concepts of category theory, and of rules adequate in principle
for the derivation of theorems thereof, are but steps towards an automated theorem-proving
system. In developing such a system on top of the present representation, there are many tasks to
be mechanised: for example -

1) implementation of a top-down proof editor;

ii) derivation of routine 'equational' theorems of category theory;

iii) derivation of hypothetical and non-equational theorems of
category theory;

iv) extension of such methods to, for example, the theory of
cartesian closed categories;

iv) derivation of theorems about functors and natural transformations.

R.Dyckhoff
Category Theory as an extension of Martin-LOf type theory, Page 13

reprinted with minor changes 24110188

A proof-editor for the unmodified GTTS has been implemented recently by Hamilton [19], and
we intend to incorporate this into our system. Rewriting techniques developed by Curien [12] are
adequate for the solution of word problems in the theory of categories, the theory of categories
with binary products, and (to some extent) the theory of cartesian-closed categories. Word
problems in the latter theory are also solvable [23] by conversion to lambda-calculus, and (in a
paper [30] not yet available to me) by a decision procedure due to Obtulowicz. There are
substantial problems In using ordinary rewriting techniques for ail but the simplest problems:
termination proofs are difficult, and require techniques from proof theory (as noted by Huet
1221). Ordinary equational reasoning in category theory depends heavily on the associativity of
composition: it would be natural to build this [34] Into the underlying unification algorithm, if
rewriting techniques are to be used. except that minimal complete sets of unifiers may be infinite.
The associative axiom can be expressed as a rewrite rule, but this appears to force the Knufh-
Bendix completion algorithm, as implemented in REVE 2.4 [IS], (when fed, for example, with
equational axioms for cartesian-closed categories) to generate new rules indefinitely. Thus, much
work in this area remains to be done.

[Ol] Barr, M. & Wells, C. : Toposes, triples, and theories; Grundlehren der mathematischen
Wissenschaften 278, Springer-Veriag 1985 .
[02] Beeson, M. : Foundations of Constructive Mathematics: Ergebnisse der Mathematik und
ihrer Grenzgebiete, 3 Folge, Band 6, Springer-Verlag 1985.

1031 Benecke, K. & Reichel, H. : Equational partiality-. Algebra Universalis, 16 (1983), pp 219-
232.

[04] Burmeister, P. : Partial algebras - survey of a unifying approach towards a two-valued
model theory tor partial algebras; Algebra Universalis 15 (1982), pp 306-358 .
[05] Burstall, P.M. : Electronic category theory ; Proc. Math. Found. C. Sea., ed Dembinski,
LNCS 88, Springer-Veriag 1980. pp 22-39.

[06] Burstail, R.M. & Rydeheard, D.E. : ~ornputational category theory; Prentice-Hall, 1988.

[071 Cartmell, J. : Generalised algebraic theories and contextual categories D.Phil thesis.
University of Oxford, (1978) .
[08] Cartmeli, J. : Reduction rules for cartesian closed categories; (typescript, University of
Edinburgh, 1985).

[OS] Constable, R. fit & : Implementing mathematics with the NuPRL pmf development system
: Prentice-Hall, 1986.

1101 Coquand, T. & Huet, G. : A theory of constructions; preprint (Data Types Symposium,
Sophia-Antipolis), (1984).

[I l l Coquand, T. & Huet, G. : Constructions : a higher order proof system for mechanising
mathematics; preprint (EUROCAL 85, Unz), (1985).

[12] Curien, P. - L. : Categorical comblnators, sequential algorithms and functional
programming; (th6se d'6tat) (CNRS - Universitb Paris VII, UTP, No 85-26) (March 1985).

[13] Dyckhoff, R. : Mechanical diagram chasing; (Unlv. Edinburgh M.Sc. thesis, September
1983).

[14] Dyckhoff, R. : Derived and meta-derived rules in Martin-L8f type theory preprint, St
Andrews, June 1985.

R.Dyckhoff
Category Theory as an extension of Martin-Lof type theory, Page 14

reprinted with minor changes 24110188

[15] Forgaard, R. & Guttag, J.V. : REVE: a term rewriting system generator with failure-
resistant Knuth-Bendix, MIT 1984.

[I61 Freyd, P. : Aspects of topoi; Bull. Austral. Math. Soc. 7 (1972),
pp 1-76 and 467-480 .
[I 71 Gordon, M.J., Milner, R. & Wadsworth, C.P. : Edinburgh LCF; Lecture Notes in Computer
Science 78 , Springer-Veriag 1979.

[I 81 Gray, J. : Categorical aspects of parametric data types, (preprint, University of Illinois,
Urbana-Champaign, May 1985).

[19] Hamilton, A. : Program construction in Martin-Lot type theory ; Tech. Rept. 24,
University of Sliding, June 1985.

[20] Hamza, T.T.A. : Normalisation techniques in proof theory and category theory - an
implementation and applications; Ph. D. thesis, St Andrews, 1985.

(211 ~errlich, H. & Strecker, G. : Category Theory ; Sigma Series in Pure Mathematics 1,
Heldermann-Verlag, Berlin 1979.

[2 21 Huet, G. : Equational systems tor category theory and intuitionistic lofffc; talk at Rewriting
Techniques & Applications Conference, Dijon, May 1985.

[231 Lambek, J. & Scott, P. : Introduction to higher order categorical logto; (Cambridge U.P.,
1986)

1241 MacLane, S. : Categories for the working mathematician: Graduate Texts in Mathematics 5,
Springer-Verlag 1971.

[25] Martin-LOf, P. : An intuitionistic theory of types : predicative part, in: Rose &
Shepherdson, Eds., Logic Colloquium 73, (North-Holland, Amsterdam, 1975) pp 73-118.

[26] Martin-LOf, P. : Constructive mathematics and computer programming ; in: Logic,
Methodology and Philosophy of Science IV, (North-Holland, Amsterdam, 1979) pp 153-175.

[27] Martin-LOf, P. : Intuitionistic type theory, Bibllopolls, 1984.

[281 NordstrOm, B. & Petersson, K. : Types and specifications; in : Info. Processing 83, ed.
R.E.A.Mason, North-Holland 1983, pp 915-920.

[29] NordstrOm, B. & Petersson, K. : The semantics of module specifications in Marttn-Lofs
type theory, (draft, GOteborg, Jan 1985).

[30] Obtulowicz, A. : Algebra of Constructions 1. The wont problem for partial algebras,
submitted to Information & Control (1985).

[31] Petersson, K. : A programming system for type theory ; LPM memo 21, Department of
~omputer Science, Chalmers University of Technology, Goteborg (1982, 1984).

[32] Petersson, K. : The subset type former and the type of small types In Martin-LMs theory
of types; LPM memo 33, Department of Computer Science, Chalmers University of Technology,
GOteborg (1984).

[33] Pin, D. (editor) : Category theory and computer pmgramming, Lecture Notes in Computer
Science 240, Springer-Verlag 1986.

1341 Plotkin, G. : Building in equational theories; Machine Intelligence 7 (1972).

R.Dyckhoff
Category Theory as an extension of Martin-LOf type theory, Page 15

reprinted with minor changes 24110188

1351 Poigne, A. : On specifications, theories and models with higher types; preprint, Imperial
College London 1984.

1361 Poign6, A. & Voss, J. : Programs over abstract data types - on the implementation of
abstract data types; (preprint) Dortmund 1984.

1371 Rydeheard, D.E. : Applications of category theory to programming and program
specification; Univ. of Edinburgh Ph.D. thesis, 1981

[38] Rydeheard, D.E. & Burstall, P.M. : The unification of terms, a category- theoretic
algorithm ; (preprint. May 1985).

[39] Schmidt, D. : Natural deduction theorem-proving in set theory, internal report CSR-142-
83, Edinburgh Univ. C.S. Dept, 1983.

[40] Scott, D. : Identty and existence in intuitionlstic logic ; Applications of Sheaves. Lecture
Notes in Mathematics 753, Springer-Verlag 1979, pp 660-696 .

[41] Seely, R.A.G. : Locally Cartesian closed categories and type theory. Math. Proc. Camb. Phil.
SOC. 95 (1984), pp 33-48.

1421 Szabo, M. : Algebra of proofs: North-Holland (1978).

[43] Watjen, D. & Struckrnann, W. : An algorithm lor verifying equations of morphisms in a
category; Information processing letters 14 (1982). pp 104-108.

R.Dyckhoff
Category Theory as an extension of Martin-Mf type theory, Page 16

reprinted with minor changes 24110188

