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Category theory has tong been widely recognised as being conveniently formalisable In 
constructive mathematics. We describe a computer implementation of its basic concepts, as an 
extension of the Goteborg implementation of Martin-Lofs theory of types; we discuss some 
alternative formulations of the theory (and our reasons for rejecting them) and briefly comment 
on the problems of automating the theorem-proving facilities of such an implementation. 

Our purposes in implementing such a system are various. First, the ability to prove 
theorems of category theory would be useful, in connection with the current [33] growth of 
interest in category theory for formalising notions from computer science, such as 
implementation of languages, data abstraction, and algorithm development. Second, it is one of the 
more interesting theories in mathematics, with many different levels of meaning and application, 
allowing a wide variety of different ways of looking at a single problem, and with important 
abstract concepts like adjointness. Third, there are links [07], 1411 between category theory and 
strong typing systems (such as that of ML, or of Martin-Lot), which the implementation of 
categorikal concepts should help us to explore. Fourth, Martin-LOf type theory is now being 
investigated by many as an abstract functional programming language, and the implementation of 
category theory therein presented an opportunity further to develop the type theory system itself. 

Rydeheard and Burstall [06] have implemented a more substantial part of category theory. 
Our approach differs from theirs by also covering equations. Put otherwise, 'category' in our 
system is a much stronger notion than theirs, just as there Is a difference between types of 
Martin-LOfs system and those of ML. 

Martin-Lot type theory [25],[26],[27] is a particularly suitable foundation for category 
theory, for a number of reasons (apart from the constructive nature of category theory.) We 
refer the reader to [27], or to Beeson [02], for a full presentation of the theory, roughly as we 
require it. Quite a lot of what we do should make sense to any reader acquainted with any natural 
deduction system. For such readers, it should only be necessary to add that to declare a variable of 
some type A, it is necessary to have first proved, or to have assumed, that the type expression 
denoting A is well-formed. We mention now some of our reasons for choosing Martin-Lofs theory 
as a foundation. 

First, the identification of propositions with types allows, here as elsewhere, a smooth and 
unified treatment of two common pans of an argument: viz, the declaration of a typed variable 
(e.g. "let C be a categorywnd the assumption of an equation (e.g. "suppose f-h = g-h", where the 
infix operator symbol denotes composition.) 

Second, one of its underlying principles, that every term of the theory has a type, (and thus 
that quantification is only permissible over a type) fils conveniently with, for example, the 
common supposition in category theory 

"let f : X -> Y be a morphism of the category C", 
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which translates into the last item of the assumption list 

Third, as the above example also shows, it is common for the types in assumptions in category 
theory to depend on variables introduced in earlier assumptions; assumption lists are therefore 
lists (or at least, partially ordered sets) rather than, as in ordinary predicate calculus, merely 
sets. This however is an important feature of Martin-LOPS theory, and comes with obvious 
restrictions on the discharge of assumptions without discharging other assumptions dependent 
thereon. 

Fourth, the partiality of the composition operator can conveniently be managed by 
considering it as having the dependent function type 

n(A,B,D.E : Ob(C), [Mor(C,A,B) # Mor(C,B,D) -Ã Mor (CAD)] ) 

(in a modification of the GOteborg notation for Martin-LOf type theory.) In fact, we adopt a slightly 
different approach, allowing a more convenient notation. Similar observations apply of course to 
many of the other operators, such as the construction of a pullback square from a pair of 
morphisms with common codomain. 

Fifth, its hierarchy of universes UO,Ul,U2, ... is convenient for handling the problems of 
constructing "the category of (small) categories", "the 'category' of categories", ... Type theory 
has, unless carefully formulated, similar problems, avoided by means of this hierarchy. The rules 
for (small) category theory outlined below can easily be adapted for larger categories. 

The Goteborg implementation (which we call the GnS, for the GOteborg Type Theory System) 
of this theory, designed and programmed by Petersson [31],[321, is written In Franz-Lisp and 
Edinburgh ML [17], and runs (in our case, on a VAX 11/750) under the Unix operating system. 
ML allows the definition of an abstract data type 'thm' whose elements denote judgments, alias 
theorems, of the theory, and whose operations represent the inference rules of the theory. The 
abstract nature of this data type officially prohibits invalid constructions of theorems; as 
currently implemented, however, the system permits the addition of new type constructors and 
new inference rules, without redefinition of the type thm', and this approach has been followed in 
the present case. 

The NuPRL system [09] at Cornell implements a type theory essentially the same as Martin- 
Lafs. Our implementation could instead have been done using NuPRL: the G U S  was however more 
convenient, in allowing the programming to be done In ML rather than in LISP. 

In our extension of the type theory system, we follow the traditional pattern by giving, for 
each new type constant or type constructor, a group of rules, divided Into the formation rules, the 
introduction rules, the elimination rules, and the computation rules. Most of these come in two 
forms, a simple rule and a corresponding 'extensionality' rule: to save space, we have omitted to 
detail the extensional versions of the rules, but the reader familiar with such rules can easily 
work them out. We have been careful to avoid rules requiring superfluous premisses: official 
presentations ( [27], [02] ) of the theory generally omit to mention many premisses explicitly 
except that the reader is invited to guess where and what they should be. In practice, many of these 
premisses are unnecessary, and such unnecessary premisses are not required in the G U S .  (In one 
or two cases, e.g. with the rule SIGMAintr, necessary premisses too are discardedl) We follow this 
simplification of the theory: a fuller discussion appears in [14]. 

Burstall and Rydeheard [06],[37],[38] have implemented a substantial number of concepts 
and constructions of category theory in standard ML (originally, in HOPE). Their purpose is to 
have a framework in which categorical constructions can be done (with a view to applications to 
program development, and algorithm specification); but it does not include the equations satisfied 
by category theory, nor, a toftiori, admit of formal verifications that the constructions (e.g. of 
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finite products of objects) have the desired properties. Moreover, their representation cannot 
fully express the partiality of composition. Provided the structured collections of objects and 
morphisms manipulated really are categories, no harm appears to be done. In the long run, 
however, the need for such verifications will arise: for example, at the interface with formal 
methods in other theories, such as universal algebra. 

In the work described in this report, equations and verifications (that certain structures are 
categories, functors, ... ) are fundamental. This distinction is reflected in the following: 'category' 
is defined as a datatype of the meta-language (HOPE, or Standard ML) by Burstall and Rydeheard, 
but, in our case, as a type of the object language (type theory, which happens to be manipulated by 
the meta-language ML). Martin-Lof type theory has a much richer type structure than that of ML, 
hence we are able to manipulate, for example, assumptions of equations by considering the 
equations as (logical) formulae and thus as types. 

Many others, (notably Barr & Wells [Ol], Benecke & Reichel[03], Burmeister [04], 
Cartmell [07], [08], Coquand & Huet [lo], [ I l l ,  Curlen [12], Freyd [16], Hamza [20], Huet 
1221, Lambek & Scott [23], Poign6 [35], [36], Scott 1401, Szabo [42], and Watjen & 
Struckmann [43]) have represented notions from category theory in various formal languages 
(although, with the exception of those of Curien, Coquand & Huet, Watjen & Struckmann, and 
Hamza's implementation of Szabo 1421, none of these representations appear to have been 
implemented.) Some of these representations have been in a form designed only for equational 
reasoning, and although it is arguable that all categorical reasoning is ultimately equational, or at 
least that much of it can be so expressed, the equational format Is often fairly unnatural. For 
example, existence of pullbacks cannot be expressed (in an equational framework) without 
designing the notation so that all pairs of morphisms with a common codomain have a pullback, 
which is canonical: a rather severe restriction. 

The closest approach to ours appears to be that of Coquand & Huet [Ill, who axiomatise the 
notion of category in the language of constructions, (a blend of Martin-LOPS non-extensional type 
theory [25] and the second-order theory of Girard); their definition of category is an axiomatic 
one, similar to one of those In our chapter 6, and presumably suffering from the same problems. 

in presenting the rules (or the type constant CAT and the type operators FUNC, and NAT, we 
adopt the terminology of the G6teborg system. Expressions of the object language, i.e. type theory, 
usually appear in double quotes. Judgments consist of one of the four sorts of formula 

"Atype", "A = Be, "a : A", "a = b : A" 

followed, in square brackets, by an assumption list; these mean, respectively, that "A' denotes a 
type, that "An and "B" denote equal types, that "a" denotes an element of type denoted by "A", and 
that "a" and "b" denote equal elements of the type denoted by "A". Formulae In an assumption list 
are all of the form "x : A", where "x" is a variable. We use the two levels U (= UO) and U1 of the 
hierarchy of universes: U is the type of small types, and U1 the next level up this hierarchy. Thus 
"A : U" formalises the judgment that "A is a small type". 

We also use Martin-Uf's notation (introduced in his Munich lectures in 1980) for abstract 
expressions: a useful explanation is to be found in the book [02] by Beeson. This neatly avoids the 
use of notation such as B[a/x] to denote "B with a substituted for x", and allows, for example, us to 
write "II(A,B)" instead of "II(x:A, B(x))" or "II(A, (x)B(x))". The rules for introduction (of 
categories, for example) become much clearer when this notation is used. 

Note also that the G6teborg system uses "#" as the constructor for the product of two types 
(i.e. conjunction of two propositions). 

to the 
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The basic rules for categories, functors, and natural transformations have been implemented, 
and are described below in sections 5.1 - 5.3. In fact, the extensional versions of these rules have 
also been implemented, as noted above. In section 5.0, we illustrate some of the rules for CAT, by 
giving the 'tree' form of a derivation of the judgment that the relationship of being isomorphic is a 
reflexive relationship, then an ML program formalising this, and finally a script recording a 
session with the modified type theory system. In section 5.4, we give an example showing how to 
define the property of being monomorphic In the language of type theory, and exhibit a proof 
object for a formula expressing that monomorphisms are closed under composition. In section 5.5, 
we show how some of the operations on functors and natural transformations, as required in the 
category of categories, can be defined. 

SLO An examBlfi-t-tfillfflflXfly of . Iso 

We use the definition facility of GTTS to abbreviate, by Iso(C,A,B), the propositional formula 

which asserts the existence of an x :A -> Bin C and of a y : B +A in C such that x*y and y-x equal 
the Identities on A, B respectively. 
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Thus, we have a proof/element of the propositionltype lso(C,A,A), constructively showing 
the truth of this proposition. We give now an ML program representing the above: 

let CAT = CATfbnn ;; 
lei CATtype = Uelim CAT ;; 
let C = VARintr CATtype "C" ;; 
let OC = CATelim-Ob C ;; 
let OCtype - Uelim OC ;; 
let A = VARintr OCtype "A" ;; 
let iA = CATelimid A ;; 
let cii = CATelimIdL iA ;; 
let eE = EQintr cii ;; 
let pee = PAIRintr eE eE ;; 
let p9 = SIGMAIntr 

(~)#(Eq(Mor(C,A,A),comp(id,y). id), 
EqtMor(C,A,A),comp(y,id), id))" 

iA pee ;; 
let p10 = SIGMAintr 

"(x)Sigma(Mor(C,A,A),(y) 
#(Eq(Mor(C,A,A),comp(x,y),id), 

Eq(Mor(C,A,A),comp(y ,x),id)))" 
iA p9 ;; 

Here now is a script of the interaction between the GTTS and this ML program; pt has been 
edited slightly to cope with a bug in the definition facility] : 

let CAT - CATforrn ;; 
CAT = "CAT : U1" : lhm 

let CATtype - Uelim CAT ;; 
CATtype = "CAT type" : thm 

let C = VARintr CATtype "C" ;; 
C=*C :CAT[C :CATp :thin 

let OC - CATelimOb C ;; 
OC = "OtrfC) : U [C : CATY : thm 

let OCtype = Uelim OC ;; 
OCtype = *Ob(C) type [C : C A T  : thm 

let A = VARtntr OCtype 'A' ;; 
A - "A : Ob(C) [C : CAT; A : Ob(C)]' : thm 

let IA = CATelimId A ;; 
IA - "id : Mor(C.AA) [C : CAT; A : Ob(C)Y 
: thm 

let ell = CATellmIdL iA ;; 
cii = "comp(id,id) = id : Mor(C,A,A) 
[C : CAT; A : ob(c)r 
: thm 

let eE = EQintr cii :: 
eE = "e : ~q(~or(~,~,~),com~(id, id), id) 
[C : CAT; A : Ob(C)]" 
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: thm 

let pee = PAIRIntr eE eE ;; 
pee = "pair(e,e) 
: #(Eq(Mor(C,A,A),comp(id,id),id), 
Eq(Mor(C,A,A),comp(id,id),id)) 

[C : CAT; A : Ob(C)]" 
: thm 

let p9 = SiGMAintr '(y)#(Eq(Mor(C,A,A),comp(id.y). id), 
Eq(Mor(C,A,A),compfy,id), id))" 

w e  ;; 
p9 = "pair(id,pair(e,e)) 
: Sigma(Mor(C,A,A), (y) 

[#(Eq(Mor(C,A,A),comp(id,y),id), 
Eq(Mor(C,A,A),comp(y,id),id))l) 

[C : CAT; A : Ob(C)]" 
: thm 

let pi0  = SIGMAIntr "(x)Sigma(Mor(C,A,A),(y) 
#(Eq(Mor(C,A.A),comp(x,~),id). 

Eq(Mor(C, A, A),comp(y,x),Id))r 
IA p9 ;; 

p10 = "pair(id,pair(id,pair(e,e))) 
: lso(C,A,A) [C : CAT; A : Ob(C)]" : thin 

Goodbye - 17 seconds of CPU time used 

The following constants are added to the language: 

"CAT", "Cat", "Ob". "Mor", "id", "comp". 

They are used as follows : "CAT" denotes the type of small categories, 
having canonical elements of the form "Cat(O,M,i,c)", where 

i) 0 is a small type (consisting of 'objects'), and 

i ) (given objects X,Y 1, M(X,Y) is the (small) type of 'morphisms' from X to Y, and 

iii) (given an object X), i is the 'identity morphism' on X, and 

iv) (given composable morphisms f,g ), c(f,g) is the 'composite' of the pair (f,g), and 

v) the associativity and identity axioms are satisfied. 

Non-canonical elements are [when C is a (small) category] the expressions 

1) Ob(C) denoting the type of objects of C ; 

ii) Mor(C,X,Y) denoting the type of morphisms of C from the object X to the object Y ; 

iii) id denoting the identity morphism on any object ; 

iv) comp(f,g) denoting the composite of two composable morphisms f,g . 

Note that "in, "id" are polymorphic: the suffix, denoting an object, traditionally affixed to the 
symbol 1 to indicate dependence on the object, is unnecessary when the equations we handle are 
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between elements of a specified type [such as Mor(C,X,X)l. This polymorphism is traditional for 
the constant denoting composition, and may be extended to "id* without difficulty. As justification, 
note that the lambda-expression for the identity function makes no reference to the type on which 
the function acts. 

We therefore now add the following rules : 

CA Tintr 
0:u 

c(f, c(g.h)) = c(c(f,g),h) : M(W,Z) [ W : 0, X : 0, Y : 0, Z : 0, 
f:M(W,X), g:M(X,Y). h:M(Y,Z) ] 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - * - - - * - - * - * - - - - - - . - - - - - - -  

Cat(O,M,i,c) : CAT 

CA T e l i m  06 
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Cat(O,M,i,c) : CAT A : 0 
. . . . . . . . . . . . . . . . . . . . . . . . . . .  
id = i : M(A,A) 

. . . . . . . . . . . . . . . . . . . . . . . . . .  
C = Cat(Ob(C),Mor(C),id,comp) : CAT 

This concludes our presentation of the formation, introduction, elimination and computation 
rules for the type "CAT* of (small) categories. Note that the computation rules (CATeaOb, 
CATqMor, CATqld, CATqcomp) are essential for relating the information wrapped up by the 
rule CATintr to that extracted from the category expression so introduced by the associated 
elimination rule. 

The following constants are added to the language : 

"FUNC" is a type constructor: when C, D are categories, we have the type "FUNC(C,D)" of functors 
from C to D. It has canonical elements of the form "Func(Fl,F2)"; such an expression denotes the 
functor with object part F1, morphism part F2 [ F1(X) being an Ob(C)-indexed family of objects 
of D, and F2(f) being a rnorphism: Fl(X) -Ã FI(Y) (when f is a morphism: X -Ã Y), with F2 
preserving identities and co~nposites]. We note that FUNC(C,D) is, generally, a large type. 
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Moreover, when F is a functor from C to D, it has as objectpart the Ob(C)-indexed family 
obj(F.A) of objects of D, and asmorphism part the Mor(C.A.6)-indexed family mor(F,f) of 
morphisms of D from obj(F,A) to obj(F,B). 

We thus have the following rules : 

C :CAT 
F1 (X) : Ob(D) [ X : Ob(C) ] 
F2(f) : Mor(D,Fl(X),FI(Y)) [ X,Y : Ob(C), f : Mor(C,X,Y)l 
F2(id) = id : Mor(D, Fl(X), Fl(X)) [x :Ob(c) l  
F2(comp(f,g)) = comp(F2(f),F2(g)) : Mor(D,Fl(X),Fl(Z)) 

[ X,Y,Z : Ob(C) , f : Mor(C,X,Y), g : Mor(C,Y,Z) 1 - - - - - - - - - - . - - - - - - - - - . - - - - - - - - - - - - - - - - - - - - - - -  
Func(F1 ,F2) : FUNC(C,D) 
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This concludes our set of rules for the notion of functor. 

The following constants are added to the language : 

"NAT", war, "at' . 
"NAT(C,D,F,G)" denotes the type of natural transformations from F to G, with canonical elements 
of the form "Nat(n)", where 'n(X)" is an expression denoting an Ob(C)-indexed family of 
morphisms from obj(F,X) to obj(G,X), satisfying a well-known equation. Moreover, if "ntw 
denotes a natural transformation from F to G, Its component at an object A (of the domain category 
of F) is denoted by "at(nt,A)" . 

Here now are the rules formalising these notions : 

NA Tin tr 
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This concludes our system of rules for the notion of natural transformation. 

As an example of the expressive power of the language, consider the notion of 
'monomorphism'. We use of course the constructive definition "... if g 4 =  hwf then g = h ... 
rather than the non-constructive ". .. if g # h then g4* h-f ...". We add the definition 

to the language, to be read 'f is a monomorphism of C from X to Y, when for every object A of C, and 
every morphism g of C from A to X, and every morphism h of C from A to X, g'f = h-f implies g = 
h.' This then allows us to construct a proof of the formula expressing the proposition that 
monomorphisms are closed under composition. Stripped of universal quantifiers, and thus 
assuming that C is a category, X,Y,Z are objects of C, f a morphism of C from X to Y, and Y a 
morphism of C from Y to Z, such a formula (preceded by a suitable proof-object) Is as follows : 

Construction of this proof is routine, but tedious. The associativity axiom is used at one point, but 
Its use Is no longer visible, having been absorbed into the unique canonical proof object "e'of the 
formula "Eq(Mor(C,A,X),g,h))'. Similar definitions and proofs for other baste notions, such as 
epimorphisms, can clearly be given. 

Functors are composable, as in [24] p14: the (polymorphic) identity functor "Id" may be 
defined as 'Func((X)X, (f)f); and routinely shown to be of type 'FUNC(C,C)' when C is a 
category , and the composite "FFcomp(F,G)' of two functors F : FUNC(C,D), G : FUNC(D.E) 
defined to be 
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Likewise, the vertical composite ([24], p.40) of two natural transformations in : F +G, n : G +H 
can be defined as 

NN_vert(m,n) -= Nat((X)comp(at(m,X). at(n,X))) 

and for this composition there is the (polymorphic) identity natural transformation "ld-nat" 
defined as 'Nat((x)id)". There Is also the composite of a functor F with a natural transformation n 
by 

FNcomp(F,n) == Nat((X)at(n,obj(F,X))) 

and, similarly, the composition NF_comp(n.F). But, the horizontal composition is more difficult: 
there are two ways to define it, for m : NAT(C,D,S,S), n : NAT(D,E,T,T); these are provably 
equivalent ([24], p43): 

Here, we pay the price for not having an operation 'Dom' so that "Dom(n)" is the domain of the 
natural transformation n. and thus we have to abstract over the names of at least two of the 
functors involved. (We do it in both cases over all four, to be consistent). Moreover, forcing the 
GTTS to be clever enough to recognise these two definitions as the same is a major problem, 
symptomatic of other, similar, difficulties. 

Two rather different approaches are possible to the representation of a special type, such as 
CAT, in the type theory system. One is that adopted above, where we add new constants to the 
language, and new rules to manipulate these constants. The other is not to extend the language (save 
perhaps with some inessential definitions to make life more convenient), but to derive a Judgment 
that such and such an expression denotes a type. For example, here is one possible representation 
of the abstract type "CAT, which has been shown, by manual interaction with the type theory 
system, to denote a type. 

.. -.. .  -... .... .. 
palr(appl~(ldenl.ol).l)); 

mum. 

This follows the approach advocated in NordstrOm & Petersson 1291 for representing abstract 
data types, such as stacks. Several serious problems were found with this approach. The first 

R-Dyckhoff 
Category Theory as an extension of Martin-Uf type theory. Page 12 

reprinted with minor changes 24110188 



problem encountered arose from the lack. in the GTTS, of primitive rules for extracting from an 
expression of a Sigma-type the two components. This omission Is logically acceptable, but 
inconvenient: in order to extract such components, one has to use the primitive rule SIGMAelim, 
and in order to do that, one has to know the types of the components. Appropriate new primitive 
rules, such as SIGMAelim-kt, have in fact been added [14] to the version of the system which we 
are now using. The second difficulty is even more awkward: one only has the notation "fst(C)" for 
the type of objects of the category C, "fst(snd(C)>" for the type of its morphisms, ... Any attempt 
to coerce the GTTS into saying "Ob(C)", "Mor(C)", etc. will have undesirable consequences 
elsewhere. Third, the notation is clumsy: note the many uses of "apply" in the above type- 
expression. We are indebted to Lincoln Wallen for encouraging the abandonment of this approach, 
and the adoption of ideas advocated in [39]. 

Such disdain for use of primitive concepts, however, forces the construction of more 
theorem-proving software, for handling the new constants. Since the nature of such software is 
dictated in part by the methods used by category theorists for proving their theorems, rather than 
by the general methods used elsewhere. Oils may yet turn out to be an advantage. 

The NuPRL system [09] encourages the representation of categories in axiomatic form: the 
corresponding NuPRL type expression is as follows: 

Category == 
o :u1 
# M : ( O # O ) - > U 1  
# id : (o : 0 -> M(o,o)) 
#comp:(ol :O->02 :0 ->03 :0 ->  

( M(01,02) # M(02.03) -> M(o1,03))) 
#idL:AHol :O.All02:0.Allf:M(o1,02). 

comp(ol)(ol )(o2)(ld(o1),9 = f in M(o1 ,o2) 
#MR :All01 :0 .Al lo2:0.Al l f  :M(o1,02). 

comp(ol)(o2)(02)(f,id(o2)) - f in M(o1.02) 
#Ass:AUoI :O.Allo2:0.AB03:0.Allo4:0. 

All f : M(o1.02). All a : Mfo2.031 . All h : M103.041. 

which is less clumsy, but suffers from the second (and to some extent, the third) problem 
mentioned above. 

Representations of the bask concepts of category theory, and of rules adequate in principle 
for the derivation of theorems thereof, are but steps towards an automated theorem-proving 
system. In developing such a system on top of the present representation, there are many tasks to 
be mechanised: for example - 

1) implementation of a top-down proof editor; 

ii) derivation of routine 'equational' theorems of category theory; 

iii) derivation of hypothetical and non-equational theorems of 
category theory; 

iv) extension of such methods to, for example, the theory of 
cartesian closed categories; 

iv) derivation of theorems about functors and natural transformations. 
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A proof-editor for the unmodified GTTS has been implemented recently by Hamilton [19], and 
we intend to incorporate this into our system. Rewriting techniques developed by Curien [12] are 
adequate for the solution of word problems in the theory of categories, the theory of categories 
with binary products, and (to some extent) the theory of cartesian-closed categories. Word 
problems in the latter theory are also solvable [23] by conversion to lambda-calculus, and (in a 
paper [30] not yet available to me) by a decision procedure due to Obtulowicz. There are 
substantial problems In using ordinary rewriting techniques for ail but the simplest problems: 
termination proofs are difficult, and require techniques from proof theory (as noted by Huet 
1221). Ordinary equational reasoning in category theory depends heavily on the associativity of 
composition: it would be natural to build this [34] Into the underlying unification algorithm, if 
rewriting techniques are to be used. except that minimal complete sets of unifiers may be infinite. 
The associative axiom can be expressed as a rewrite rule, but this appears to force the Knufh- 
Bendix completion algorithm, as implemented in REVE 2.4 [IS], (when fed, for example, with 
equational axioms for cartesian-closed categories) to generate new rules indefinitely. Thus, much 
work in this area remains to be done. 
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