Galois: A Theory Development Project”

Peter Aczel
Departments of Computer Science and Mathematics

Manchester University, Manchester M13 9PL, U.K.
June 12, 1995

A report on work in progress, for the Turin meeting on the Representation of Math-
ematics in Logical frameworks, January 20-23, 1993

1 The aims of the project

This is intended to be a large scale, ambitious and perhaps collaborative project to
develop a significant body of machine checked mathematics. The primary aim of the
project is to produce enough algebra to cover Galois Theory and some of its applications,
such as the unsolvability of the general polynomial of any degree greater than four.

In order to develop Galois Theory it will be necessary to define and develop, to some
extent, several algebraic theories and then use combinations of the theories to create
Galois Theory itself. In particular there will need to be chapters on Group Theory,
Linear Algebra, Polynomial Rings, Field Extensions, etc.

One advantage in choosing Galois Theory is that there is a significant amount of
algorithmic work to be done in applications of the theory, and it would be interesting to
explore the possibilities of combining this theory and proof development work with the
use of computer algebra systems.!

A reason to choose an ambitious project is so as to try to confront some of the issues
of large scale: documentation and collaboration. We do not expect to be able to complete
the project in just a few months on our own. Nevertheless I feel that even partial work
on the project is worthwhile.

2 Present Status of the project

This project has only been under way for 2-3 months so that we have only had time to
make a limited amount of progress. Gilles Barthe, an RA working on the Types project
in Manchester since October, has had no previous practical experience with any proof
development system. We decided to use Lego for the present, as this is the system I am
reasonably familiar with. Rather than plunge into Galois Theory right away, Gilles has

*This work is supported by the ESPRIT Basic Research Action on Types and Proofs
TActually, at present I am completely unfamiliar with the use of such systems, so that this idea is
just a vague one.

been working on the key group theoretic result needed to apply the general theory to the
unsolvability of polynomials. This result states that the group of permutations on any
set, with five elements or more, is an unsolvable group. We initially thought that this
would involve about a week’s work for Gilles. In fact the work has taken several weeks.
It is now completed, in some sense, though there is probably plenty of room to improve
the organisation of the proof. This work will be presented in a separate report by Gilles.

I, myself, have had limited time to work on the project. Over Christmas I decided
that in the longer term it was necessary to develop first a general theory of sets and then
go on to develop the notion of a group and a proof that the set of permutations of any
set form a group. This is what I have done. A lego file forms the appendix to this report.
My work is intended, eventually, to form some of the initial parts of the work of Gilles.
But, at present, our two lego developments are independent of each other.

By a set I mean a pair consisting of a type and an equivalence relation on that type.
With this notion of set one can develop the notion of a category (the hom-sets being
sets in this sense) and then show that the sets form a category. Note that a map in this
category is not actually a function of the type theory, but a pair consisting of a function,
together with a proof that the function is extensional with respect to the equivalence
relations on the domain and codomain sets of the map. The work involved in showing
that sets form a category seems to me to be an essential starting point for a chapter on
sets that should be the basis for the treatment of algebra. It needs to be tackled in a
thorough, non-piecemeal way, so as to create a fundamental tool that can be generally
useful to the Lego community and presumably also potentially useful to the users of other
computer sytems within the Types community.

3 A brief review of Galois Theory

My intention here is simply to put in the context of the overall Galois project the work
carried out by Gilles. A version of the main result of Galois Theory may be expressed as
follows:

Theorem 1 Let p be a separable polynomial over a field K and let L O K be a splitting
field of p over K. Let F be the set of all fields Fsuch that L O F 2 K. Let U be the
set of all subgroups of the group Auty (L) of those field automorphisms of L that fix each
element of K. Both the sets F and U are partially ordered by the subset relations on
them. Let 0 : F — U be given by

O(F) = Autp(L) for all F € F.

Then 6 is an isomorphism of the poset F with the dual poset U, whose inverse is given
by

07 (1) ={x e L|Yg el g(x) =}
forall HeE U.

The application of this result to the unsolvability of polynomials uses the following two
results.

Theorem 2 Let p be a separable polynomial over a field K and let L O K be a splitting
field of p over K. The polynomial p is solvable by radicals over K if and only if the group
Autg (L) is a solvable group.

Theorem 3 The group of permutations on any set, with five elements or more, is un-
solvable.

Appendix: The lego file “algebra.l”

This appendix is essentially an edited transcript of a lego file. There are three sections:

1. The Category of sets

2. The types of monoids and groups

3. The group of permutations of a set

In the last section I construct the group of permutations on a set as the group of
inverse pairs of the monoid of endomorphisms of the set.

The file is initialised with the type system XCC (Extended Calculus of Constructions)
and the command Logic inputs the standard Lego file of Logical definitions.

Init XCC; Logic;

1 THE CATEGORY OF SETS

1.1 The type of sets

We define a set to be a triple consisting of a type, an equivalence relation on that type and
a proof that it is indeed an equivalence relation. We define functions el, eq, pr so that
for any set A the three components of the set are A.el, A.eq, A.pr. The proof A.pr
that A.eqis an equivalence relation is split into the three proofs A.pr_refl, A.pr_symm,
A.pr_tran that A.eq is reflexive, symmetric and transitive, respectively.

[Rel[T:Typel = T -> T -> Propl;

[TITypel [R:Rel T1;

[Refl = {x:T} R x x];

[Symm = {x,yIT} Rxy) -> Ry x)];

[Tran = {y,x,zIT} Rxy) -> Ry z) -> R x2z2)];
[Equiv_rel = and3 Refl Symm Tran];

Discharge T;

[Set = <T:Type><R:Rel T> Equiv_rel R];

[el[A:Set] = A.1];

[AlSet];

[eq = A.2.1];

[pr = A.2.2];

[pr_refl = pr.and3_outl];
[pr_symm = pr.and3_out2];
[pr_tran = pr.and3_out3];

Discharge A;

1.2 The set of maps between two sets

Given sets A, B we define the set (Map_set A B) of maps from A to B. Each map has
to preserve the equivalence relations and the equality relation between maps is defined
extensionally. If f: (Map_set A B) .elthenf.ap : A.el -> B.el and f.presis a proof
that f.ap preserves equivalence relations.

[Map_law[A,B|Set][f:A.el -> B.el] =
{x,y:A.el} (x.eqy) -> (f x).eq (f y)I;
[Map[A,B:Set] = <f:A.el -> B.el>Map_law f];

[A,BlSet][f:Map A B];
lap = £.1];

[pres = £.2];
Discharge A;

[Map_eq[A,BlSet] [f,g:Map A B] = {x:A.el} (f.ap x).eq (g.ap x)];

Equality between maps is an equivalence relation

[A,B:Set];
Goal Equiv_rel (Map_eqlA|B);
Refine pair3; Intros; Refine pr_refl;
Intros; Refine pr_symm; Refine H;
Intros; Refine pr_tran;
Refine y.1 x1; Refine H; Refine Hi1;
Save equiv_map_eq;

[Map_set = ((Map A B),(Map_eql|AIB),equiv_map_eq):Set];
Discharge A;

[ap2[A,B,C|Set] = [M=Map_set][f:(M A (M B C)).el][a:A.el] ap (ap f a)l;

1.3 The type of categories

We define a category to be a tuple with five components, a type Ob of objects, a homset
map H:0b -> 0b -> Set, a composition operation o:Comp_Type, an identity operation
i:Id_Type and a proof of the conjunction of the associative law for the composition and
the identity law for the identity with resepect to the composition.

[0b:Typel [H:0b -> Ob -> Set]
$ [M=Map_set]

[Comp_Type = {a,b,c|Ob} (M (Hab) (M (Hb c) (Hac))).ell;
[Id_Type = {alOb}((H a a).el)];

[o:Comp_Type];
$[0[a,b,cl0b] = (olalblc).ap2];

[Assoc_law = {a,b,c,d:0b} {f:(H a b).el} {g:(H Db c).el} {h:(H c d).el}

(f.0 (g.0 h)).eq ((£.0 g).0 h)
1;

[Id_law[i:Id_Typel = {a,b:0b} and ([X= H a b]{f:X.el}((ila).0 f).eq)
([X= H b al{f:X.el}(£.0 (ila)).eq 1)

1;

Discharge 0Ob;

[Category = <0b:Type>
<H:0b -> 0b -> Set>
<o:Comp_Type 0b H>
<i:Id_Type 0b H>
(Assoc_law O0b H o).and (Id_law Ob H o i)
15

1.4 The category of sets

We define the composition operation comp, for the category of sets, implicitly; i.e. we
exploit the refinement proof mechanism of Lego to obtain the definition. This is some-
times a useful technique, but may be dangerous if one does not go on to check that the
object defined is the expected one, rather than some alternative of the same type. In the
present case we ought to prove the goal

{A,B,C|Set}{f:Map_set A B}{g:Map_set B C}

((comp £ g).ap x).eq (f.ap (g.ap x))

But the first line of the proot below, defining comp, should indicate that comp has been
correctly defined.

Having defined comp we go on to prove the associative law for it, define the identity
operation, id for the category of sets and prove the identity law for it. We are then ready
to define the category of sets.

Goal Comp_Type Set Map_set;
Intros; Refine Hi.ap (H.ap H2);
Intros; Refine pres; Refine pres; Immed;
Intros; Refine H1;
Intros; Refine x1.2; Refine H;
Save comp;

Goal Assoc_law Set Map_set comp;
Intros; Refine pr_refl;
Save assoc_law;

[id[AlSet] = (([x:A.ellx) , [x,y:A.el]l[u:eq x ylu) :Map A A];

Goal Id_law Set Map_set comp id;
Intros a b; Refine pair;
Intros; Refine pr_refl;
Intros; Refine pr_refl;

Save id_law;

[SET = (Set,Map_set,comp,id, (pair assoc_law id_law)) :Categoryl;

2 THE TYPES OF MONOIDS AND GROUPS

2.1 The type of monoids

It A:Set then we define Bin_op A to be the type of curried binary operations on A. We
define a monoid to be a four-tuple with the components a set, a binary operation on that
set, an element of the set and a proof of the conjunction of the two monoid laws.

We end with some useful definitions for monoids. In particular cong_1 and cong_r
are useful for equational reasoning with monoids. They express that the binary operation
is a congruence with respect to its left and right arguments.

[Bin_op[A:Set] = Map_set A (Map_set A A)];
[A|Set] [op: (Bin_op A).el];

$[c=[x:A.el] x.(op.ap) .ap]

Associative law

[Monoid_lawl = {x,y,z:A.el} ((x.c y).c z).eq (x.c (y.c 2z))];

Unit law

[Monoid_law2[i:A.el] = {x:A.el} ((x.c i).eq x).and ((i.c x).eq x)];
Discharge A;
[Monoid = <A:Set><op:(Bin_op A).el><i:A.el>

(Monoid_lawl op).and (Monoid_law2 op i)
1;

[set[A:Monoid] = A.1:Set];

[A|Monoid];
$[A’=A.set];
Lop = A.2.1:(Bin_op A’).ell;

[unit = A.2.2.1:A° .el];

[monoid_lawl = A.2.2.2.fst];

[monoid_law2 = A.2.2.2.snd];

[cong_1[x, y, u:A’.el] = [z:x.eq y] (op.pres x y z w)l;
[cong_r[x, y, u:A’.el] = [z:x.eq y] ((op.ap u).pres x y z)];
Discharge A;

2.2 The type of groups

We define a group to be a triple consisting of a monoid, a unary operation inv on the
underlying set and a proof that inv satisfies the inverse law. The auxiliary relation
Inverses_rel will be useful later.

[A|Monoid];

$[c=(oplA).ap2];

$le=unit|A]l;

[Inverses_rella,a’:A.set.el] = (((a.c a’).eq e).and ((a’.c a).eq e))];

[Inverse_law = [B=A.set][inv:Map B B]
{a:B.el} Inverses_rel a a.(inv.ap)];
Discharge A;

[Group = <A:Monoid><inv:Map A.set A.set> Inverse_law inv];

3 THE GROUP OF PERMUTATIONS OF A SET

Given a set X we want to define the group, PermGroup X, of permutations of X. We have
analysed this into two constructions. First, in 3.1, we define the monoid, Endo_monoid X.
This is easy. Then, given a monoid A we define the group, Inverses_group A, of inverse
pairs of A; i.e. pairs of elements of A together with a proof that the two elements are
inverses of each other. Then we define

PermGroup[X:Set] = (Inverses_group (Endo_monoid X))

3.1 The monoid of Endomorphisms on a set

Endo_monoid is defined implicitly, again exploiting the refinement proof mechanism of
Lego. By examining the first three lines of the proof we can see that we have defined the
intended monoid.

[X:Set];
Goal Monoid;

Intros #; Refine (Map_set X X);

Intros # ; Refine comp;

Intros #; Refine (id|X);

Refine pair; Refine assoc_law;

Intros x; Refine pair;

Refine (id_law X X).fst; Refine (id_law X X).snd;
Save Endo_monoid;

Discharge X;

3.2 The monoid of inverse pairs on a monoid

[A:Monoid];
$[t = pr_tranlA.set];

The set, Inverses_set, of inverse pairs on A

[Inverses = <a,a’: A.set.el> Inverses_rel a a’];
[Inverses_eqla,a’:Inverses] = a.l.eq a’.1];

Goal Equiv_rel Inverses_eq;
Refine pair3;
Intros _; Refine pr_refl;
Intros

-_—

; Refine pr_symm;
Intros ___; Refine tly.1;

Save Inverses_equiv;

[Inverses_set = (Inverses,Inverses_eq, Inverses_equiv):Set];

Composition operation on Inverses_set

$[c = (oplA).ap2]$[le = unitlAl;
$[gla,b:Inverses_set.el] = ((a.1.c b.1), (b.2.1.c a.2.1))];
$[f = [x:Inverses] ((x.2.1 , x.1 , (pair x.2.2.snd x.2.2.fst)):Inverses)];
Goal {a,b:Inverses_set.el}[gab = g a b] (gab.l.c gab.2).eq e;
Intros a b;
Refine t|(a.1.c (b.1.c (¢ b.2.1 a.2.1)));
Refine monoid_lawl|A a.1 b.1 (b.2.1.c a.2.1);
Refine t|(a.1.c a.2.1);
Refine cong_r;
Refine t|((b.1.c b.2.1).c a.2.1);

Refine pr_symm;
Refine monoid_lawl|A b.1 b.2.1 a.2.1;
Refine t|(e.c a.2.1);
Refine cong_1;
Refine b.2.2.fst;
Refine (monoid_law2|A a.2.1).snd;
Refine a.2.2.fst;
Save gab_lemma;

Goal (Bin_op Inverses_set).el;
Intros # a # b;
Intros; Refine ((a.1).c b.1);
Intros; Refine ((b.2.1).c a.2.1);
Refine pair;
Refine gab_lemma a b;
Refine gab_lemma (f b) (f a);
Intros x y;
Intros; Refine cong_r; Immed;
Intros; Refine cong_1l; Immed;
Save Inverses_op;

The monoid of inverse pairs

Goal Monoid_lawl|Inverses_set Inverses_op;
Intros; Refine monoid_lawllA;
Save Inverses_mli;

Goal Inverses_rel e e;

Refine pair;

Refine 74;

Refine (monoid_law2|A e).fst;
Save Inverses_unit_3;

[Inverses_unit = (e, e, Inverses_unit_3) :Inverses];
Goal Monoid_law?2|Inverses_set Inverses_op Inverses_unit;

Intros x; Refine monoid_law2l|A;
Save Inverses_ml2;

[Inverses_monoid = (Inverses_set, Inverses_op, Inverses_unit,

(pair Inverses_mll Inverses_ml2))

: Monoid];

3.3 The group of inverse pairs on a monoid

Goal Map_law|Inverses_set|Inverses_set f;
Intros;
Refine t|(y.2.1.c e);
Refine +1 (monoid_law2|A y.2.1).fst;
Refine t|(y.2.1.c (x.1.c x.2.1));
Refine +1 cong_r;
Refine +1 x.2.2.fst;
Refine t|((y.2.1.c x.1).c x.2.1);
Refine +1 monoid_lawllA;
Refine t|((y.2.1.c y.1).c x.2.1);
Refine +1 cong_1;
Refine +1 cong_r;
Refine +1 pr_symm;
Refine +1 H;
Refine t|(e.c x.2.1);
Refine +1 cong_1;
Refine +1 pr_symm;
Refine +1 y.2.2.snd;
Refine pr_symm;
Refine (monoid_law2|A x.2.1).snd;
Save mlf;

[Inverses_inv = (f,mlf):Map Inverses_set Inverses_set];

Goal Inverse_law|Inverses_monoid Inverses_inv;
Intros a; Refine pair;
Refine a.2.2.fst;
Refine a.2.2.snd;

Save inv_proof;

[Inverses_group = (Inverses_monoid , Inverses_inv , inv_proof):Group];
Discharge A;

3.4 The Group of permutations on a set

[PermGroup[X:Set] = (Inverses_group (Endo_monoid X)) :Group];

10

