
Galois: A Theory Development Project�Peter AczelDepartments of Computer Science and MathematicsManchester University, Manchester M13 9PL, U.K.June 12, 1995A report on work in progress, for the Turin meeting on the Representation of Math-ematics in Logical frameworks, January 20-23, 19931 The aims of the projectThis is intended to be a large scale, ambitious and perhaps collaborative project todevelop a signi�cant body of machine checked mathematics. The primary aim of theproject is to produce enough algebra to cover Galois Theory and some of its applications,such as the unsolvability of the general polynomial of any degree greater than four.In order to develop Galois Theory it will be necessary to de�ne and develop, to someextent, several algebraic theories and then use combinations of the theories to createGalois Theory itself. In particular there will need to be chapters on Group Theory,Linear Algebra, Polynomial Rings, Field Extensions, etc.One advantage in choosing Galois Theory is that there is a signi�cant amount ofalgorithmic work to be done in applications of the theory, and it would be interesting toexplore the possibilities of combining this theory and proof development work with theuse of computer algebra systems.1A reason to choose an ambitious project is so as to try to confront some of the issuesof large scale: documentation and collaboration. We do not expect to be able to completethe project in just a few months on our own. Nevertheless I feel that even partial workon the project is worthwhile.2 Present Status of the projectThis project has only been under way for 2-3 months so that we have only had time tomake a limited amount of progress. Gilles Barthe, an RA working on the Types projectin Manchester since October, has had no previous practical experience with any proofdevelopment system. We decided to use Lego for the present, as this is the system I amreasonably familiar with. Rather than plunge into Galois Theory right away, Gilles has�This work is supported by the ESPRIT Basic Research Action on Types and Proofs1Actually, at present I am completely unfamiliar with the use of such systems, so that this idea isjust a vague one. 1

been working on the key group theoretic result needed to apply the general theory to theunsolvability of polynomials. This result states that the group of permutations on anyset, with �ve elements or more, is an unsolvable group. We initially thought that thiswould involve about a week's work for Gilles. In fact the work has taken several weeks.It is now completed, in some sense, though there is probably plenty of room to improvethe organisation of the proof. This work will be presented in a separate report by Gilles.I, myself, have had limited time to work on the project. Over Christmas I decidedthat in the longer term it was necessary to develop �rst a general theory of sets and thengo on to develop the notion of a group and a proof that the set of permutations of anyset form a group. This is what I have done. A lego �le forms the appendix to this report.My work is intended, eventually, to form some of the initial parts of the work of Gilles.But, at present, our two lego developments are independent of each other.By a set I mean a pair consisting of a type and an equivalence relation on that type.With this notion of set one can develop the notion of a category (the hom-sets beingsets in this sense) and then show that the sets form a category. Note that a map in thiscategory is not actually a function of the type theory, but a pair consisting of a function,together with a proof that the function is extensional with respect to the equivalencerelations on the domain and codomain sets of the map. The work involved in showingthat sets form a category seems to me to be an essential starting point for a chapter onsets that should be the basis for the treatment of algebra. It needs to be tackled in athorough, non-piecemeal way, so as to create a fundamental tool that can be generallyuseful to the Lego community and presumably also potentially useful to the users of othercomputer sytems within the Types community.3 A brief review of Galois TheoryMy intention here is simply to put in the context of the overall Galois project the workcarried out by Gilles. A version of the main result of Galois Theory may be expressed asfollows:Theorem 1 Let p be a separable polynomial over a �eld K and let L � K be a splitting�eld of p over K. Let F be the set of all �elds F such that L � F � K. Let U be theset of all subgroups of the group AutK(L) of those �eld automorphisms of L that �x eachelement of K. Both the sets F and U are partially ordered by the subset relations onthem. Let � : F ! U be given by�(F) = AutF (L) for all F 2 F :Then � is an isomorphism of the poset F with the dual poset Uop, whose inverse is givenby ��1(H) = fx 2 L j 8g 2 H g(x) = xgfor all H 2 U .The application of this result to the unsolvability of polynomials uses the following tworesults.Theorem 2 Let p be a separable polynomial over a �eld K and let L � K be a splitting�eld of p over K. The polynomial p is solvable by radicals over K if and only if the groupAutK(L) is a solvable group. 2

Theorem 3 The group of permutations on any set, with �ve elements or more, is un-solvable. Appendix: The lego �le \algebra.l"This appendix is essentially an edited transcript of a lego �le. There are three sections:1. The Category of sets2. The types of monoids and groups3. The group of permutations of a setIn the last section I construct the group of permutations on a set as the group ofinverse pairs of the monoid of endomorphisms of the set.The �le is initialised with the type system XCC (Extended Calculus of Constructions)and the command Logic inputs the standard Lego �le of Logical de�nitions.Init XCC; Logic;1 THE CATEGORY OF SETS1.1 The type of setsWe de�ne a set to be a triple consisting of a type, an equivalence relation on that type anda proof that it is indeed an equivalence relation. We de�ne functions el, eq, pr so thatfor any set A the three components of the set are A.el, A.eq, A.pr. The proof A.prthat A.eq is an equivalence relation is split into the three proofs A.pr_refl, A.pr_symm,A.pr_tran that A.eq is reexive, symmetric and transitive, respectively.[Rel[T:Type] = T -> T -> Prop];[T|Type][R:Rel T];[Refl = {x:T} R x x];[Symm = {x,y|T} (R x y) -> (R y x)];[Tran = {y,x,z|T} (R x y) -> (R y z) -> (R x z)];[Equiv_rel = and3 Refl Symm Tran];Discharge T;[Set = <T:Type><R:Rel T> Equiv_rel R];[el[A:Set] = A.1];[A|Set];[eq = A.2.1];[pr = A.2.2];[pr_refl = pr.and3_out1];[pr_symm = pr.and3_out2];[pr_tran = pr.and3_out3];Discharge A; 3

1.2 The set of maps between two setsGiven sets A, B we de�ne the set (Map_set A B) of maps from A to B. Each map hasto preserve the equivalence relations and the equality relation between maps is de�nedextensionally. If f:(Map_set A B).el then f.ap : A.el -> B.el and f.pres is a proofthat f.ap preserves equivalence relations.[Map_law[A,B|Set][f:A.el -> B.el] ={x,y:A.el} (x.eq y) -> (f x).eq (f y)];[Map[A,B:Set] = <f:A.el -> B.el>Map_law f];[A,B|Set][f:Map A B];[ap = f.1];[pres = f.2];Discharge A;[Map_eq[A,B|Set][f,g:Map A B] = {x:A.el} (f.ap x).eq (g.ap x)];Equality between maps is an equivalence relation[A,B:Set];Goal Equiv_rel (Map_eq|A|B);Refine pair3; Intros; Refine pr_refl;Intros; Refine pr_symm; Refine H;Intros; Refine pr_tran;Refine y.1 x1; Refine H; Refine H1;Save equiv_map_eq;[Map_set = ((Map A B),(Map_eq|A|B),equiv_map_eq):Set];Discharge A;[ap2[A,B,C|Set] = [M=Map_set][f:(M A (M B C)).el][a:A.el] ap (ap f a)];1.3 The type of categoriesWe de�ne a category to be a tuple with �ve components, a type Ob of objects, a homsetmap H:Ob -> Ob -> Set, a composition operation o:Comp_Type, an identity operationi:Id_Type and a proof of the conjunction of the associative law for the composition andthe identity law for the identity with resepect to the composition.[Ob:Type][H:Ob -> Ob -> Set]$[M=Map_set][Comp_Type = {a,b,c|Ob} (M (H a b) (M (H b c) (H a c))).el];[Id_Type = {a|Ob}((H a a).el)]; 4

[o:Comp_Type];$[O[a,b,c|Ob] = (o|a|b|c).ap2];[Assoc_law = {a,b,c,d:Ob} {f:(H a b).el} {g:(H b c).el} {h:(H c d).el}(f.O (g.O h)).eq ((f.O g).O h)];[Id_law[i:Id_Type] = {a,b:Ob} and ([X= H a b]{f:X.el}((i|a).O f).eq f)([X= H b a]{f:X.el}(f.O (i|a)).eq f)];Discharge Ob;[Category = <Ob:Type><H:Ob -> Ob -> Set><o:Comp_Type Ob H><i:Id_Type Ob H>(Assoc_law Ob H o).and (Id_law Ob H o i)];1.4 The category of setsWe de�ne the composition operation comp, for the category of sets, implicitly; i.e. weexploit the re�nement proof mechanism of Lego to obtain the de�nition. This is some-times a useful technique, but may be dangerous if one does not go on to check that theobject de�ned is the expected one, rather than some alternative of the same type. In thepresent case we ought to prove the goal{A,B,C|Set}{f:Map_set A B}{g:Map_set B C}((comp f g).ap x).eq (f.ap (g.ap x))But the �rst line of the proof below, de�ning comp, should indicate that comp has beencorrectly de�ned.Having de�ned comp we go on to prove the associative law for it, de�ne the identityoperation, id for the category of sets and prove the identity law for it. We are then readyto de�ne the category of sets.Goal Comp_Type Set Map_set;Intros; Refine H1.ap (H.ap H2);Intros; Refine pres; Refine pres; Immed;Intros; Refine H1;Intros; Refine x1.2; Refine H;Save comp; 5

Goal Assoc_law Set Map_set comp;Intros; Refine pr_refl;Save assoc_law;[id[A|Set] = (([x:A.el]x) , [x,y:A.el][u:eq x y]u) :Map A A];Goal Id_law Set Map_set comp id;Intros a b; Refine pair;Intros; Refine pr_refl;Intros; Refine pr_refl;Save id_law;[SET = (Set,Map_set,comp,id,(pair assoc_law id_law)) :Category];2 THE TYPES OF MONOIDS AND GROUPS2.1 The type of monoidsIf A:Set then we de�ne Bin_op A to be the type of curried binary operations on A. Wede�ne a monoid to be a four-tuple with the components a set, a binary operation on thatset, an element of the set and a proof of the conjunction of the two monoid laws.We end with some useful de�nitions for monoids. In particular cong_l and cong_rare useful for equational reasoning with monoids. They express that the binary operationis a congruence with respect to its left and right arguments.[Bin_op[A:Set] = Map_set A (Map_set A A)];[A|Set][op:(Bin_op A).el];$[c=[x:A.el] x.(op.ap).ap]Associative law[Monoid_law1 = {x,y,z:A.el} ((x.c y).c z).eq (x.c (y.c z))];Unit law[Monoid_law2[i:A.el] = {x:A.el} ((x.c i).eq x).and ((i.c x).eq x)];Discharge A;[Monoid = <A:Set><op:(Bin_op A).el><i:A.el>(Monoid_law1 op).and (Monoid_law2 op i)]; 6

[set[A:Monoid] = A.1:Set];[A|Monoid];$[A'=A.set];[op = A.2.1:(Bin_op A').el];[unit = A.2.2.1:A'.el];[monoid_law1 = A.2.2.2.fst];[monoid_law2 = A.2.2.2.snd];[cong_l[x, y, u:A'.el] = [z:x.eq y] (op.pres x y z u)];[cong_r[x, y, u:A'.el] = [z:x.eq y] ((op.ap u).pres x y z)];Discharge A;2.2 The type of groupsWe de�ne a group to be a triple consisting of a monoid, a unary operation inv on theunderlying set and a proof that inv satis�es the inverse law. The auxiliary relationInverses_rel will be useful later.[A|Monoid];$[c=(op|A).ap2];$[e=unit|A];[Inverses_rel[a,a':A.set.el] = (((a.c a').eq e).and ((a'.c a).eq e))];[Inverse_law = [B=A.set][inv:Map B B]{a:B.el} Inverses_rel a a.(inv.ap)];Discharge A;[Group = <A:Monoid><inv:Map A.set A.set> Inverse_law inv];3 THE GROUP OF PERMUTATIONS OF A SETGiven a set X we want to de�ne the group, PermGroup X, of permutations of X. We haveanalysed this into two constructions. First, in 3.1, we de�ne the monoid, Endo_monoid X.This is easy. Then, given a monoid A we de�ne the group, Inverses_group A, of inversepairs of A; i.e. pairs of elements of A together with a proof that the two elements areinverses of each other. Then we de�nePermGroup[X:Set] = (Inverses_group (Endo_monoid X))3.1 The monoid of Endomorphisms on a setEndo_monoid is de�ned implicitly, again exploiting the re�nement proof mechanism ofLego. By examining the �rst three lines of the proof we can see that we have de�ned theintended monoid. 7

[X:Set];Goal Monoid;Intros #; Refine (Map_set X X);Intros # ; Refine comp;Intros #; Refine (id|X);Refine pair; Refine assoc_law;Intros x; Refine pair;Refine (id_law X X).fst; Refine (id_law X X).snd;Save Endo_monoid;Discharge X;3.2 The monoid of inverse pairs on a monoid[A:Monoid];$[t = pr_tran|A.set];The set, Inverses set, of inverse pairs on A[Inverses = <a,a': A.set.el> Inverses_rel a a'];[Inverses_eq[a,a':Inverses] = a.1.eq a'.1];Goal Equiv_rel Inverses_eq;Refine pair3;Intros _; Refine pr_refl;Intros __; Refine pr_symm;Intros ___; Refine t|y.1;Save Inverses_equiv;[Inverses_set = (Inverses,Inverses_eq, Inverses_equiv):Set];Composition operation on Inverses set$[c = (op|A).ap2]$[e = unit|A];$[g[a,b:Inverses_set.el] = ((a.1.c b.1), (b.2.1.c a.2.1))];$[f = [x:Inverses] ((x.2.1 , x.1 , (pair x.2.2.snd x.2.2.fst)):Inverses)];Goal {a,b:Inverses_set.el}[gab = g a b] (gab.1.c gab.2).eq e;Intros a b;Refine t|(a.1.c (b.1.c (c b.2.1 a.2.1)));Refine monoid_law1|A a.1 b.1 (b.2.1.c a.2.1);Refine t|(a.1.c a.2.1);Refine cong_r;Refine t|((b.1.c b.2.1).c a.2.1);8

Refine pr_symm;Refine monoid_law1|A b.1 b.2.1 a.2.1;Refine t|(e.c a.2.1);Refine cong_l;Refine b.2.2.fst;Refine (monoid_law2|A a.2.1).snd;Refine a.2.2.fst;Save gab_lemma;Goal (Bin_op Inverses_set).el;Intros # a # b;Intros; Refine ((a.1).c b.1);Intros; Refine ((b.2.1).c a.2.1);Refine pair;Refine gab_lemma a b;Refine gab_lemma (f b) (f a);Intros x y;Intros; Refine cong_r; Immed;Intros; Refine cong_l; Immed;Save Inverses_op;The monoid of inverse pairsGoal Monoid_law1|Inverses_set Inverses_op;Intros; Refine monoid_law1|A;Save Inverses_ml1;Goal Inverses_rel e e;Refine pair;Refine ?4;Refine (monoid_law2|A e).fst;Save Inverses_unit_3;[Inverses_unit = (e, e, Inverses_unit_3) :Inverses];Goal Monoid_law2|Inverses_set Inverses_op Inverses_unit;Intros x; Refine monoid_law2|A;Save Inverses_ml2;[Inverses_monoid = (Inverses_set, Inverses_op, Inverses_unit,(pair Inverses_ml1 Inverses_ml2)) : Monoid];9

3.3 The group of inverse pairs on a monoidGoal Map_law|Inverses_set|Inverses_set f;Intros;Refine t|(y.2.1.c e);Refine +1 (monoid_law2|A y.2.1).fst;Refine t|(y.2.1.c (x.1.c x.2.1));Refine +1 cong_r;Refine +1 x.2.2.fst;Refine t|((y.2.1.c x.1).c x.2.1);Refine +1 monoid_law1|A;Refine t|((y.2.1.c y.1).c x.2.1);Refine +1 cong_l;Refine +1 cong_r;Refine +1 pr_symm;Refine +1 H;Refine t|(e.c x.2.1);Refine +1 cong_l;Refine +1 pr_symm;Refine +1 y.2.2.snd;Refine pr_symm;Refine (monoid_law2|A x.2.1).snd;Save mlf;[Inverses_inv = (f,mlf):Map Inverses_set Inverses_set];Goal Inverse_law|Inverses_monoid Inverses_inv;Intros a; Refine pair;Refine a.2.2.fst;Refine a.2.2.snd;Save inv_proof;[Inverses_group = (Inverses_monoid , Inverses_inv , inv_proof):Group];Discharge A;3.4 The Group of permutations on a set[PermGroup[X:Set] = (Inverses_group (Endo_monoid X)):Group];
10

