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Abstract

Herein we formalize a segment of category theory using the implementation
of Calculus of Inductive Construction in Coq. Adopting the axiomatization
proposed by Huet and Saibi we start by presenting basic concepts, examples and
results of category theory in Coq. Next we define adjunction and cocartesian
lifting and establish some results using the Coq proof assistant. Finally we
remark that the axiomatization proposed by Huet and Saibi is not good when
dealing with the equality for objects.
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Notation

We use the following notation to denote variables.

Categories

Functors

Morphisms

Natural Transformations
Presetoids

Propositional Formulae
Propositional Signatures
Propositional Symbols
Propositional Theories
Setoids

Sets

Sets of Propositional Formulae
Valuations

c,d, e

fF, £G, fH, fF’, £G’, fH’

f,g,hand v, u, w
nt, nt’

p’ p)’ p))

pf, pf’, pf?’
sig, sig’
ps,ps’, ps’’
pt,pt’, pt’’
s, S’, s??
a,a’,a’’
gamma, gamma’
val



Chapter 1

Introduction

Constructive type theory has been shown to be adequate for representing cat-
egorical reasoning. In this work we use Calculus of Inductive Constructions as
implemented in Coq V6.1 to formalize a segment of category theory. We follow
the axiomatization proposed by Huet and Saibi (see [HS95]) where objects are
modeled as types and hom-sets as hom-setoids.

We start this work by first presenting the axiomatization of the notion of
category proposed by Huet and Saibi. Afterwards we define some examples to
illustrate the previous axiomatization. Finally we present basic concepts and
results related to this notions.

In the second part of this work we define adjunction situation in Coq. Ad-
junction was already defined in Coq by Saibi (see for instance [Sai95]) however
we choose an alternative definition following [AHS90]. After we present some
examples of adjunction situation. We end this chapter showing two results con-
cerning adjunctions. First we prove that a functor G has left adjoint iff for any
object X the comma category X | G has initial object. Second we prove that
the left adjoint of a functor is unique up to natural isomorphism.

In the third part of this work we define cocartesian lifting in Coq. As usual
we provide some examples and show that the codomain of a cocartesian lifting
is unique up to isomorphism. In addition we remark that the axiomatization
proposed by Huet and Saibi is not good when dealing with the equality for
objects.

During these three last chapters we just give the statement of the lemmas
without the proof scripts. In appendix we present a proof in detail explaining
all the tactics used. We also present all the Coq source code and the trace of
proofs in appendix.

We assume that the reader is familiar with the basics of category theory
and considering that the Coq notation is similar to the standard mathematical
notation, we only explain the semantics of some Coq commands that are less
intuitive (for more details see [PM96]).



Chapter 2

A Crash Introduction to Coq

The Coq notation is similar to the usual mathematical notation. It is however
worthwhile to make two remarks. First, the universal quantification is denoted
by parenthesis, so for instance (x:T) (P x) stands for V,epP(x). Second, the
functional abstraction is denoted by square brackets, so for instance [x:T] (f x)
stands for Az € T.f(z).

2.1 Binary Relations

In this section we define binary relations that are central to define the category
theory in Coq. We start by introducing some Coq commands whose semantics
may not be trivial.

When we apply arguments to a term it is common that some arguments can
be determined by other arguments. So, for the sake of simplicity, we would like
to apply only the latter ones. The Coq system allows us to do this by calling
the implicit arguments mode.

Implicit Arguments On.

The Coq section is a modular mechanism to organize the source. All notions
defined in the body of a section can be used outside, with the small difference
that we have to parameterize this notions by the variables on which they depend.
In the sequel, we present the section where we define binary relations and related
properties.

Section BinRel.

Variable t: Type.

Definition Relation:= t—t—Prop.

Variable r: Relation.

Definition Reflexive:= (x:t)(r x x).



Definition Transitive:= (x,y,z:t)(r x y)—=(r y z)—=(r x z).
Definition Symmetric:= (x,y:t)(r x y)—=(r y x).

The macro Structure generates an inductive definition with one constructor
and defines the projection functions for each field. It also defines a constructor
Build_ident where ident stands for the name of the Structure.

Structure Equivalence: Prop:= {
Prf_refl : Reflexive;
Prf_trans : Transitive;
Prf_sym : Symmetric

}.

In this case the projections are Prf_refl, Prf_trans and Prf_sym, thus for in-
stance, given an Equivalence equiv its proof of reflexivity is (Prf_refl equiv).
To build an Equivalence from its constituents we use the constructor
Build Equivalence.

End BinRel.

2.2 Setoids

To define a category as general as possible the objects and the morphisms
can not be sets, or else we are only defining small categories. One possible
axiomatization of category theory in Coq that solves this problem was proposed
by Huet and Saibi (see [HS95]). In this work we adopt this solution and so we
start by defining the structure Setoid.

2.2.1 The Setoid Structure

Setoids are triples composed of a type Carrier, a relation Equal over Carrier
and a proof that Equal is an equivalence relation. It is usual in mathematics to
overload the notation when the context is clear. The Coq system allows us to
overload the notation by using coercions. In a Structure a coercion is defined
by the symbol >. In our case, when we declare a Setoid s, Coq treats s as a
Setoid or as its Carrier, depending of the context.

Structure Setoid: Type:= {
Carrier :> Type;
Equal : (Relation Carrier);
Prf equiv : (Equivalence Equal)

}.

All operators in Coq are prefix however it is more natural for some operators
to be infix. The Infix command defines a prefix operator, like Equal, as infix.



We start to declare =%S as a new token, since it is not predefined. Thus for
each sl and s2 in a Setoid s, s1 =S s2 stands for (Equal sl s2).

Token "=%S".
Infix 2 "=%S" Equal.

The last field of a Setoid is a proof that its equality is an equivalence rela-
tion. Thus it is trivial to obtain the corollaries of reflexivity, symmetry and
transitivity.

Lemma Equal refl: (s:Setoid)(sl:s) sl =S si.
Lemma Equal_sym: (s:Setoid)(s1,s2:s) sl =S s2 — s2 =S si.

Lemma Equal _trans: (s:Setoid)(sl,s2,s3:s)
sl =4S 82 — s2 =%S s3 — sl =)S s3.

2.2.2 The Setoid of Maps between two Setoids

As proposed in [HS95] the morphisms between two objects in a category con-
stitute a setoid. Thus, the concept of map between two setoids is the base to
define the composition of a category.

A mapoid between two setoids s and s’ is a map between the (Carrier s)
and the (Carrier s’) provided that this map preserves the equality of the
setoid. The coercion that we defined before on the Setoid allows us to write
Map as a map between s and s’.

Section Mapoids.
Variables s,s’: Setoid.

Definition MapLaw:= [f:s—s’]
(s1,s82:8) s1 =YS 82 — (f s1) =%S (f s2).

Structure Mapoid: Type:= {
Map :> s—s’;
Prf pres : (MapLaw Map)

}.

The notion of mapoid is needed to define the composition but it is not sufficient.
The composition as a binary operator receives two morphisms and returns the
composite morphism. A mapoid receives only a setoid, hence the codomain of
the composition mapoid must be a setoid of mapoids. This is the traditional
currying transformation commonly used in functional programming.

To define the setoid of mapoids we have to give an equality between two
mapoids and check that it is an equivalence relation. We say that two mapoids
are equal iff they are extensionally equal.



Definition Ext:= [f,g:Mapoid](sl:s) (f s1) =S (g sl).
Lemma Ext_equiv: (Equivalence Ext).

Now that we have defined mapoids and an equality relation over mapoids that
is an equivalence, we can define the setoid of the mapoids between two setoids.

Definition SetoidMapoid: Setoid:= (Build_Setoid Ext_equiv).
End Mapoids.
We write s == s’ for the setoid of mapoids between the setoids s and s’.

Token "==".
Infix Assoc 6 "==" SetoidMapoid.

2.2.3 Binary Mapoids

Given three setoids s, s’ and s’’, a binary mapoid is a mapoid between the
setoid s and the setoid of the mapoids between the setoids s’ and s’°.

Section BinaryMapoids.

Variable s,s’,s’’: Setoid.

Definition BinMapoid:= (Mapoid s s’==>s’’).

Remark that if the morphisms between two objects constitute a setoid the
composition must be a binary mapoid.

Until the end of this section we sketch a few results that we use later on in
some lemmas and definitions. We intend now to prove that from a binary map
f we can obtain a binary mapoid if £ holds the congruence laws for the equality
of the setoid.

Variable f: s—s’—s’’.

Definition BinMapConglLaw:= (s1’,s2’:s’)(sl:s)
s1’ =}S s2’ — ((f s1) s1’) =4S ((f s1) s2’).

Definition BinMapCongrLaw:= (s1,s2:s)(s1’:s’)
s1 =4S s2 — ((f s1) s1’) =kS ((f s2) s1’).

Definition BinMapCongLaw:= (sl1,s2:s)(sl’,s2’:s’)
sl =4S 82 — s1’ =%S s2’ — ((f s1) s1’) =%S ((f s2) s2’).

Hypothesis pcgl: BinMapConglLaw.
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Hypothesis pcgr: BinMapCongrLaw.
Lemma f pres: (sl:s)(MapLaw (f s1)).

Definition Mapf: s—(s’==s’’):=
[s1:s](Build Mapoid (f_pres s1)).

Lemma Mapf pres: (MapLaw Mapf).
Definition Build BinMapoid: BinMapoid:= (Build Mapoid Mapf _pres).
End BinaryMapoids.

Conversely, from a binary mapoid £ we can obtain a binary map that holds the
congruence laws for the equality of the setoid.

Section CongBinMaps.

Variable s,s’,s’’: Setoid.

Variable f: (BinMapoid s s’ s’’).

Definition BinMap:= [sl1:s][s1’:s’]((f s1) s1’).
Lemma BinMap_congl: (BinMapConglLaw BinMap) .
Lemma BinMap_congr: (BinMapCongrLaw BinMap) .
Lemma BinMap_cong: (BinMapCongLaw BinMap) .

End CongBinMaps.

2.3 Categories

2.3.1 The Category Structure

We are finally ready to define category. The objects of a general category have
type Type and the morphisms are a family of setoids indexed by their domain
and codomain. In the sequel we use hom-setoids to denote the setoids of this
family.

Section CatLaws.

Variable ob: Type.

Variable hom: ob—ob—Setoid.

11



As we said before we define the composition as a binary mapoid.

Variable comp mapoid: (x,y,z:ob)
(BinMapoid (hom x y) (hom y z) (hom x z)).

However, the associativity and the identity laws of the composition are defined
over a binary map. We make use of BinMap, defined in the last section, to
extract a binary map from a binary mapoid. Note that this map is congruent
for the equality of the morphisms.

Definition Comp map:= [x,y,z:ob][f:(hom x y)][g: (hom y 2)]
(BinMap (compmapoid x y z) f g).

For simplicity, we write £ o g for (Compmap f g) and we say that this infix
operator is associative.

Infix Assoc 6 "o" Comp_map.
Remark that the symbol o is not used in the usual way (its arguments are in
the inverse order).

In addition we have to assure that this composition map is associative.
Definition AssocLaw:=

(x,y,z,w:ob) (f: (hom x y))(g:(hom y z)) (h:(hom z w))

(f o (g oh)) =%S ((f o g) oh).

Finally we have to define the identity that holds the identity laws for composi-
tion.

Variable id: (x:ob) (hom x x).
Definition IdlLaw:= (x,y:ob)(f:(hom x y)) ((id x) o f) =YS f.
Definition IdrLaw:= (x,y:ob)(f:(hom x y)) £ =S (£ o (id y)).
End CatLaws.
Now we are able to define the category structure.
Structure Category: Type:= {
0b :> Type;
Hom : 0Ob—0b—Setoid;
CompMapoid : (x,y,z:0b)
(BinMapoid (Hom x y) (Hom y z) (Hom x z));

Id : (x:0b) (Hom x x);
Prf_assoc : (AssocLaw CompMapoid);

12



Prf_idl : (IdlLaw CompMapoid Id);
Prf_idr : (IdrLaw CompMapoid Id)

}.

As we shall see later, we use very frequently the composition as a binary map.
So, in order to have a lighter notation, we present the following definition.

Definition CompMap:= [c:Category] (Comp.map (CompMapoid 1!c)).

The exclamation mark is used whenever we want to explicitly give an implicit
argument. The number that appears before the exclamation mark is the number
of the implicit argument. We can see the list of implicit arguments with their
respective numbers by typing the command Print.

We write £ o g for (CompMap £ g) and in addition we say that this infix
operator is associative.

Infix Assoc 6 "o" CompMap.

Remark that grammar definitions inside a section disappear when the section
is closed. Thus this last new rule does no conflict with the previous one defined
inside of the section CatLaws.

By the results of the previous section to build the CompMapoid of a category
we have to give a binary map and check that it holds the congruence laws.
What we present next is a usual procedure to define the composition in any
category from such a map. We shall use systematically this procedure from
now on for every category definition.

Section CatComp.
Variable ob: Type.
Variable hom: ob—ob—Setoid.

Variable compmap: (x,y,z:ob)(hom x y)—(hom y z)—(hom x z).

Definition CongllLaw:= (x,y,z:0b) (f,g:(hom y z)) (h: (hom x y))
f =%S g — (compmap h f) =%S (compmap h g).

Definition CongrLaw:= (x,y,z:ob)(f,g:(hom x y)) (h:(hom y 2z))
f =¥S g — (compmap f h) =S (compmap g h).

Definition Conglaw:= (x,y,z:0b)(f,f’:(hom x y))(g,g’:(hom y z))
f =4S £ — g =4S g> — (compmap f g) =%S (compmap £’ g’).

Hypothesis pcgl: ConglLaw.

Hypothesis pcgr: CongrLaw.

13



Variable x,y,z: ob.
Definition Build CompMapoid:
(BinMapoid (hom x y) (hom y z) (hom x z)):=
(Build BinMapoid (pcgl 1!x 2!y 3!'z) (pcgr 1!'x 2!y 3!z)).
End CatComp.
Now we check that the composition map of a category respects the congruence
laws. These laws are trivial to obtain with the results of the last section but
still they are important to obtain some proofs in the future.
Section CatCong.
Variable c: Category.
Lemma CompMap_congl: (ConglLaw (CompMap 1!c)).
Lemma CompMap_congr: (CongrLaw (CompMap 1!c)).

Lemma CompMap_cong: (Conglaw (CompMap 1!c)).

End CatCong.

2.3.2 The Dual Category

A dual category c of a category ¢ has the same objects of ¢ but its morphisms
are opposite. That is, if f: (Hom c1 ¢2) is a morphism in ¢ then £: (Hom ¢2 c1)
is a morphism in cP.

Variable c: Category.

Definition DHom:= [c1,c2:c](Hom c2 c1).

The composition is defined as expected. If (f o g) is a morphism in ¢ then
(g o f) is a morphism in c’?. We then present the congruence laws to build the

composition and check the associativity law.

Definition DCompMap:= [cl,c2,c3:c]
[df: (DHom c1 c2)][dg: (DHom c2 c3)] dg o df.

Lemma DCompMap_congl: (ConglLaw DCompMap) .
Lemma DCompMap_congr: (CongrLaw DCompMap) .

Definition CompDual:
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(c1,c2,c3:c) (BinMapoid (DHom cl c2)

(DHom c2 c3)

(DHom c1 c3)):=
(Build_CompMapoid DCompMap_congl DCompMap_congr) .

Lemma Dual assoc: (AssocLaw CompDual) .

The identity of c? is the identity of c. After checking the identity laws for
composition we are able to build the dual category.

Lemma Dual_idl: (IdlLaw 2!DHom CompDual (Id 1!c)).
Lemma Dual idr: (IdrLaw 2!DHom CompDual (Id 1!c)).
Definition Dual:= (Build_Category Dual_assoc Dual_idl Dual_idr).

End DualCat.

2.3.3 The Category Setoid
As expected, the objects of the category Setoid are setoids and the morphisms
are mapoids. Since we have already defined the setoid of mapoids our work is
partially done. Hence we start by defining the composition. The composition
of two mapoids is the composition of their respective maps. We ounly have to
check that this composite map is a mapoid.
Section CompositionMapoid.
Variable s,s’,s’’: Setoid.
Variable f: (Mapoid s s’).
Variable g: (Mapoid s’ s’’).
Definition Comp Map:= [s1:s](g (f s1)).
Lemma Comp Map pres: (MapLaw Comp_Map) .
End CompositionMapoid.
Definition SetoidComp:
(s,s’,8’’:8etoid) (s==s8’) > (s’==s8’’) > (s==8’7):=
[s,s’,s’’:Setoid] [sm:s==s’] [sm’:s’==5’]

(Build Mapoid (Comp Map pres sm sm’)).

To build the composition mapoid of a category, we have to give a composition
map, SetoidComp, and check that it verifies the congruence laws.

15



Lemma SetoidComp_congl: (ConglLaw SetoidComp).
Lemma SetoidComp_congr: (CongrLaw SetoidComp).
Definition Comp SETOID:
(s,s’,s’’:Setoid) (BinMapoid s==s’ s’==s’’ s==s’’):=
(Build_CompMapoid SetoidComp_congl SetoidComp_congr).

Lemma Assoc_Setoid: (AssocLaw Comp_SETOID) .

The next step is to define the identity as a mapoid. We only have to check that
the identity map is a mapoid.

Section Setoid_Id.

Variable s: Setoid.

Definition Id Map:= [sl:s]sl.

Lemma Id Map pres: (MapLaw Id Map).

Definition Id SETOID: (Mapoid s s):= (Build Mapoid Id Map_pres).
End Setoid_Id.

Lemma Idl Setoid: (IdlLaw Comp_SETOID Id_SETOID).

Lemma Idr_Setoid: (IdrLaw Comp_SETOID Id_SETO0ID).

With the laws of associativity and identity for composition we can define the
category Setoid.

Definition SETOID: Category:=
(Build _Category Assoc_Setoid Idl_Setoid Idr_Setoid).

2.3.4 The Category Presetoid

The objects of the category Presetoid are preorders and the morphisms are
monotonous mapoids between preorders. A preorder is a reflexive and transitive
binary relation between setoids. Since we are dealing with setoids and not sets
we have to impose that two equal elements in a setoid must be related. To
define the morphisms we have to build a setoid of monotonous mapoids. Hence
we have to give an equality for monotonous mapoids and show that it is an
equivalence relation. Obviously the equality provided is the equality between
mapoids.

16



Section Setoid Presetoid.

Structure PreOrder: Type:= {

S :> Setoid;

Rel : (Relation S);

Prf presequal : (s1,s2:5) (sl =S s2)—(Rel sl s2);
Prf po_refl : (Reflexive Rel);

Prf_po_trans : (Transitive Rel)

Variable p,p’: PreOrder.

Definition IsMonotonous:= [f:(Mapoid p p’)]
(p1,p2:p) (Rel pl p2)—(Rel (f pl) (f p2)).

Structure MonMapoid: Type:= {
Mon Mapoid :> (Mapoid p p’);
Prf ismon : (IsMonotonous Mon Mapoid)
.
Definition EqualMonMapoid:= [f,g:MonMapoid] (Ext f g).

Lemma EqualMonMapoid equiv: (Equivalence EqualMonMapoid) .

Definition Setoid MonMapoid: Setoid:=
(Build_Setoid EqualMonMapoid_equiv).

End Setoid Presetoid.

The next step is to define the composition. The composition of two monotonous
mapoids is the composition of their mapoids. In addition we have to check that
the composite mapoid is monotonous.

Section CompositionMonMapoid.

Variable p,p’,p’’: PreOrder.

Variable f: (MonMapoid p p’).

Variable g: (MonMapoid p’ p’’).

Definition Comp MonMap:= [pl:p](g (f pl1)).

Lemma Comp MonMap pres: (MapLaw Comp_MonMap) .

Definition Comp MonMapoid: (Mapoid p p’’):=

17



(Build Mapoid Comp_MonMap pres) .
Lemma Comp MonMapoid_ismon: (IsMonotonous Comp_MonMapoid).
End CompositionMonMapoid.
Definition PresetoidComp:
(p,p’,p’’ :PreOrder) (Setoid MonMapoid p p’)—
(Setoid MonMapoid p’ p’’ )—
(Setoid MonMapoid p p’’):=
[p,p’,p’’ :Prelrder]
[sm: (Setoid MonMapoid p p’)][sm’: (Setoid MonMapoid p’ p’’)]
(Build MonMapoid (Comp MonMapoid ismon sm sm’)).

To build the composition mapoid of a category, we have to give a composition
map, PreSetoidComp, and check that it verifies the congruence laws.

Lemma PresetoidComp.congl: (ConglLaw PresetoidComp) .
Lemma PresetoidComp_congr: (CongrLaw PresetoidComp).
Definition Comp PRESETOID:
(p,p’,p’’ :PreOrder) (BinMapoid (Setoid MonMapoid p p’)
(Setoid MonMapoid p’ p’?)
(Setoid MonMapoid p p’?’)):=
(Build_CompMapoid PresetoidComp_congl PresetoidComp_congr) .
Lemma Assoc Presetoid: (AssocLaw Comp PRESETO0ID).
We define the identity as the identity mapoid, that is obviously monotonous.
Section Presetoid_Id.
Variable p: PreOrder.
Definition Id MonMap:= [pl:plpl.

Lemma Id MonMap.pres: (MapLaw Id MonMap).

Definition Id MonMapoid: (Mapoid p p):=
(Build Mapoid Id_MonMap pres).

Lemma Id MonMapoid ismon: (IsMonotonous Id MonMapoid) .

Definition Id PRESETOID: (MonMapoid p p):=
(Build MonMapoid Id MonMapoid_ismon) .

18



End Presetoid_Id.
Lemma Idl Presetoid: (IdlLaw Comp_PRESETOID Id_PRESETOID).
Lemma Idr_Presetoid: (IdrLaw Comp_PRESETOID Id_PRESETOID).

Finally with the laws of associativity and identity for composition we can build
the category Presetoid.

Definition PRESETOID: Category:=
(Build_Category Assoc Presetoid Idl Presetoid Idr Presetoid).

2.3.5 The Category Set

The objects of this category are the Set’s. The morphisms must constitute a
setoid so we have to define the setoid of maps between Set’s. In order to define
such setoid we must provide an equality relation for the maps. We say that two
maps are equal iff they are extensional equal.

Section Setoid Set.

Variable a,a’: Set.

Definition EqualFunction:= [f,g:a—a’](al:a)(f al)=(g al).

Lemma EqualFunction equiv: (Equivalence EqualFunction) .

Definition Setoid_Function: Setoid:=
(Build_Setoid EqualFunction equiv) .

End Setoid Set.

The composition is clearly the composition of maps.

Section CompositionFunction.

Variable a,a’,a’’: Set.

Variable f: a—a’.

Variable g: a’—a’’.

Definition Comp Function: a—a’’:= [al:al(g (f al)).
End CompositionFunction.

Definition SetComp:
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(a,a’,a’’:Set) (Setoid Function a a’)—
(Setoid Function a’ a’’)—
(Setoid Function a a’’):=
[a,a’,a’’:Set]
[sm: (Setoid Function a a’)][sm’: (Setoid Function a’ a’’)]
(Comp_Function sm sm’).

To build the composition mapoid of a category, we have to give a composition
map, SetComp, and check that it verifies the congruence laws.

Lemma SetComp_congl: (ConglLaw SetComp) .
Lemma SetComp_congr: (CongrLaw SetComp) .
Definition Comp SET:
(a,a’,a’’:Set) (BinMapoid (Setoid Function a a’)
(Setoid Function a’ a’’)
(Setoid Function a a’’)):=
(Build_CompMapoid SetComp_congl SetComp._congr).
Lemma Assoc Set: (AssocLaw Comp_SET).
Finally it only remains to define the identity, that is the identity map.
Section Set_Id.
Variable a: Set.
Definition Id SET: a—a:= [al:alal.
End Set_Id.
Lemma Idl Set: (IdlLaw Comp_SET Id_SET).
Lemma Idr Set: (IdrLaw Comp_SET Id_SET).

With all the framework above we are able to define the category Set.

Definition SET: Category:=
(Build_Category Assoc_Set Idl_Set Idr_Set).

2.3.6 The Category PTh

Herein we define the category of propositional theories. A propositional theory
is a pair (X,T') where ¥ is a set, called signature, and T" is a subset of Ly
(the language of propositional formulae that can be written with symbols of X)
closed for the semantic entailment. The elements of ¥ are called propositional
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symbols and the elements of I' are called theorems.

A morphism between (propositional) theories o : (¥1,I'1) — (X9,) is a
map between 3 and X9 such that ¢(I'y) C Ts. The extension o of o to
the power of Ly, is canonically established by replacing in each formula each
symbol p of ¥; by o(p).

Section Setoid PTh.

Section Objects.

To define objects we assume as given a signature that we called sig.
Variable sig: Set.

We now have to define the set of theorems that is a subset of the language of
sig. Hence we start by defining the language of sig, Lsig. This definition
is obviously an inductive definition. Until now we have only used inductive
definitions with a single constructor (macro Structure). However to define
Lsig we need three constructors. The command Inductive is the primitive
way to define inductive definitions with as many constructors as we want. In
order to define an inductive type with Inductive we must provide the name of
the constructors and their respective types. In the case of Lsig, id, imp and
no are the constructors.

Inductive Lsig: Type :=
id : sig—Lsig
| imp: Lsig—Lsig—Lsig
| no : Lsig—Lsig.

The satisfaction of a propositional formula, by a valuation, is inductively defined
in the structure of the propositional formulae. Whenever we want to define
inductive objects using the inductive construction of their arguments we must
use the command Fixpoint. In this case to define SatPF we take advantage of
the inductive definition of Lsig.

Fixpoint SatPF[val:sig—Prop; pf:Lsig]: Prop:=
Case pf of
[ps:sig]l (val ps)
[pf1,pf2:Lsig] (SatPF val pfl)—(SatPF val pf2)
[pfi:Lsig]l —(SatPF val pfl)
end.

The Case operator matches the value pf with the various constructors of its
inductive type. Thus when pf is (id ps) it returns (val ps), when pf is
(imp pfl pf2) it returns (SatPF val pfl)—(SatPF val pf2) and when pf
is (no pf1) it returns —(SatPF val pfl).

We say that a valuation satisfies a set of propositional formulae whenever
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it satisfies all the formulae of the set. Actually a set of propositional formulae
is a subset of Lsig. To define subsets of Lsig we use an unary relation, PLsig,
over Lsig.

Definition PLsig:= Lsig—Prop.

Definition SatSet: (sig—Prop) —PLsig—Prop:=
[val:sig—Prop] [gamma:PLsig]
(pf:Lsig) (gamma pf)—(SatPF val pf).

A formula pf of Lsig is a semantic consequence of a subset gamma of Lsig iff
it is satisfied for all valuations that satisfy gamma.

Definition Entailment: PLsig—Lsig—Prop:=
[gamma:PLsig] [pf:Lsig]
(val:sig—Prop) (SatSet val gamma)—(SatPF val pf).

End Objects.

Now it only remains to define what is a set closed for the semantic entailment.
We say that gamma is closed for the semantic entailment iff for any formula pf
that is entailed by gamma belongs to gamma.

Inductive GammaClose[sig:Set; gamma:(PLsig sig)]: Prop:=
Build.TS: ((pf:(Lsig sig)) (Entailment gamma pf)— (gamma pf))—
(GammaClose sig gamma) .

Finally, the objects of a propositional theory are composed by a Signature and
a set Gamma of formulae in (Lsig Signature) that is closed for the semantic
entailment.

Structure PTh: Type:= {
Signature :> Set;
Gamma : (PLsig Signature);
Prf_close : (GammaClose Gamma)

}.

We now define the extension of a map between signatures to the power of the
language of their respective signatures.

Section Morphisms.

Variable sig,sig’:Set.

Fixpoint Extension[f:sig—sig’; pf:(Lsig sig)]: (Lsig sig’):=
Case pf of

[ps:sigl (id (f ps))
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[pf1,pf2:(Lsig sig)] (imp (Extension f pfl)
(Extension f pf2))
[pf1:(Lsig sig)] (no (Extension f pfl))
end.

End Morphisms.

The morphisms between propositional theories are maps that hold the
Inclusionlaw.

Variable pt,pt’:PTh.

Definition InclusionLaw:= [f:pt—pt’]
(pf:(Lsig pt)) ((Gamma 1!pt) pf)—
((Gamma 1!pt’) (Extension f pf)).

Structure MorphismPTh: Type:= {
Application :> pt—pt’;
Prf_inclusion : (InclusionLaw Application)

}.

With all the framework presented above we are able to define the setoid of
the morphisms between propositional theories. Since this morphisms are maps,
that hold the InclusionLaw, the equality is obviously the equality between
maps. As we show next this relation is an equivalence and so we can build the
setoid of morphisms between propositional theories.

Definition EqualMorphismPTh:=[f,g:MorphismPTh]
(ps:pt) (f ps)=(g ps).

Lemma EqualMorphismPTh equiv: (Equivalence EqualMorphismPTh) .

Definition Setoid MorphismPTh: Setoid:=
(Build_Setoid EqualMorphismPTh equiv) .

End Setoid PTh.

The composition of two morphisms between propositional theories is the com-
position of their respective maps. To check that this composition is a mor-
phism between propositional theories we have to show that it respects the
InclusionLaw. For this purpose we start by an auxiliary lemma where we
prove that the extension of a composition is the composition of the extended
maps.

Section CompositionMorphismPTh.

Variable pt,pt’,pt’’: PTh.
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Variable f: (MorphismPTh pt pt’).
Variable g: (MorphismPTh pt’ pt’’).
Definition Comp_Application:= [ps:pt]l(g (f ps)).

Lemma CompExtension: (pf:(Lsig pt))(f’:pt—pt’)(g’:pt’—pt’’)
(Extension [ps:pt]l(g’ (f’ ps)) pf)==
(Extension g’ (Extension f’ pf)).

Lemma Comp_Application_inclusion:
(InclusionLaw Comp_Application).

End CompositionMorphismPTh.

Definition PThComp:

(pt,pt’,pt’’:PTh) (Setoid MorphismPTh pt pt’)—
(Setoid MorphismPTh pt’ pt’’)—
(Setoid MorphismPTh pt pt’’):=

[pt,pt’,pt’’:PThl

[sm: (Setoid MorphismPTh pt pt’)]

[sm’: (Setoid MorphismPTh pt’ pt’’)]

(Build MorphismPTh (Comp_Application_inclusion sm sm’)).

As usual we can build the composition mapoid with the proves that the com-
position map PThComp holds the congruence laws.

Lemma PThComp_congl: (ConglLaw PThComp) .
Lemma PThComp_congr: (CongrLaw PThComp) .
Definition Comp PTH:
(pt,pt’,pt’’:PTh) (BinMapoid (Setoid MorphismPTh pt pt’)
(Setoid MorphismPTh pt’ pt’’)
(Setoid MorphismPTh pt pt’?)):=
(Build_CompMapoid PThComp_congl PThComp._congr).
Lemma Assoc PTh: (AssocLaw Comp PTH).
The identity morphism is obviously the identity map. We only have to check
that it holds the InclusionLaw. To check this we start by showing that the
extension of the identity map is the identity.

Section PTh_Id.

Variable pt: PTh.
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Definition Id Application:= [ps:ptlps.

Lemma IdExtension:
(pf:(Lsig pt)) (Extension [ps:ptlps pf)==pf.

Lemma Id Application_inclusion: (InclusionLaw Id_Application).

Definition Id PTH: (MorphismPTh pt pt):=
(Build MorphismPTh Id Application_inclusion).

End PTh_Id.
Lemma Idl1 PTh: (IdlLaw Comp_PTH Id_PTH).
Lemma Idr PTh: (IdrLaw Comp_ PTH Id_PTH).

Finally with the laws of associativity and identity for composition we are able
to build the category PTh.

Definition PTH: Category:=
(Build_Category Assoc PTh Id1_PTh Idr_PTh).

2.4 Functors

A functor is a pair of maps, one for the objects and another for the morphisms.
The first is a map in Type and the second is a mapoid, since the morphisms
constitute a setoid. These maps must preserve the composition and the identity.
Section FunctorDef.

Variable c,d: Category.

Section FunctorLaws.

Variable fFO: c—d.

Variable fF1: (c1,c2:c)
(Mapoid (Hom cl c2) (Hom (fFO cl1l) (fFO c2))).

Definition FCompLaw:= (cl,c2,c3:c)(f:(Hom cl c2))(g:(Hom c2 c3))
((£F1 c1 c3) (f o g)) =%S (((£fF1 cl c2) ) o ((fF1 ¢2 c3) g)).

Definition FIdLaw:= (cl:c)
((fF1 c1 c1) (Id c1)) =%S (Id (£fFO cl)).

25



End FunctorLaws.

Structure Functor: Type:= {

FO 1> c—d;
F1 : (c1l,c2:c)
(Mapoid (Hom c1 c2) (Hom (FO c1) (FO c2)));
Prf comp : (FCompLaw F1);
Prf_id : (FIdLaw F1)

}.

We can not make two coercions simultaneously for FO and F1 because they are
both functions (the Coq system does not allow it). Thus we choose to make a
coercion for FO.

To simplify the syntax we define FMor that returns the image of a morphism
f by a functor F. In FMor, the arguments c1 and c2 are implicit and that is not
the case for F1.

Definition FMor:= [fF:Functor][cl,c2:c][f:(Hom c1 c2)]
((F1 £fF c1 c2) ).

End FunctorDef.

2.5 Isomorphisms and Initial and Terminal Objects

We say that two objects c1 and c2 are isomorphic whenever there are two
morphisms, IsoMor: (Hom c1 c¢2) and InvIso: (Hom c2 cl1), such that one is
the inverse of the other.

Section IsoDef.

Variable c: Category.

Variable cl1,c2: c.

Definition InverseLaw:= [cl,c2:c][f:(Hom cl c2)][g: (Hom c2 c1)]
(g o £) =%S (Id c2).

Definition IsoLaw:= [f:(Hom cl c2)][g: (Hom c2 c1)]
(InverseLaw f g)A(Inverselaw g f).

Structure Iso: Type:={
IsoMor : (Hom c1 c2);
Inviso : (Hom c2 cl);
Prf_iso : (IsoLaw IsoMor InvIso)
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End IsoDef.

We say that an object 0bI is initial in a category c if there is a family of
morphisms MorI: (c2:c) (Hom O0bI c2) such that for every c¢2 in ¢ any mor-
phism g: (Hom 0bI c2) belongs to the source (0bI, A c2:c.(MorI c2)). See
for instance [AHS90] for more details in sources.

Section InitialDef.

Variable c: Category.

Definition InitialLaw:= [cl:c][f:(c2:c) (Hom cl1 c2)]
(c2:c)(g:(Hom c1 c2)) (f c2) =S g.

Structure Initial: Type:= {

ObI 1> C;
MorIl : (c2:c)(Hom ObI c2);
Prf_initial : (InitialLaw MorI)

}.
End InitialDef.

Terminal objects are defined similarly to initial objects, using a sink instead of
a source.

Section TerminalDef.
Variable c: Category.

Definition TerminalLaw:= [c2:c][f:(cl:c)(Hom cl1 c2)]
(cl:c)(g:(Hom c1 c2)) (f cl) =iS g.

Structure Terminal: Type:= {

ObT :> C;
MorT : (cl:c)(Hom cl1 0bT);
Prf_terminal : (TerminalLaw MorT)

1.

End TerminalDef.

2.6 Some Exercises

Herein we show some lemmas. First we obtain three basic results with respect
to the concepts that we defined above. This results are already established
by Huet and Saibi in [HS95] and are presented here only for satisfying the
curiosity of the reader about the articulation of these concepts. Next we check
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the presentation lemma that is a powerful lemma that we shall use later on for
showing some results.

2.6.1 Basic Results

We start to prove that initial objects are unique up to isomorphism.
Lemma Two_0bI_Iso: (c:Category)(il,i2:(Initial c¢))(Iso il i2).
We now show that an initial object in a category is terminal in the dual category.

Lemma Initial Dual: (c:Category)(cl:c)(i:(c2:c)(Hom c1 c2))
(Initiallaw i) —(TerminallLaw 1!(Dual c) i).

Finally we show that functors preserve isomorphisms.

Lemma F_Preserve_Iso: (c,d:Category) (fF: (Functor c d))
(c1,c2:c)(Iso ¢l c2)—(Iso (fF c1) (F c2)).

2.6.2 The Presentation Lemma

We start by defining the closure of a set for semantic entailment and the inclu-
sion of a set in another set. We also define the set of images, by the extension
of a map £, of a set (given a set gamma we want the set £/ (gamma)).

Definition Closure: (sig:Set) (PLsig sig)—(Lsig sig) —Prop:=
[sig:Set] [gamma: (PLsig sig)] [pf: (Lsig sig)]
(Entailment gamma pf).

Definition Inclusion: (sig:Set) (PLsig sig)—(PLsig sig) —Prop:=
[sig:Set] [gammal,gamma2: (PLsig sig)]
(pf:(Lsig sig)) (gammal pf)—(gamma2 pf).

Inductive ExtensionSet
[sig,sig’:Set;f:sig—sig’;gamma: (PLsig sig)]: (PLsig sig’):=
Build ES: (pf:(Lsig sig)) (gamma pf)—
(ExtensionSet sig sig’ f gamma (Extension f pf)).

Before presenting the presentation lemma we check three properties of the se-
mantic entailment, the monotony, the idempotency and the structurality con-
dition. Actually we only prove half of the idempotency (the inclusion in the
other direction is trivial and not necessary to show the presentation lemma).

Lemma Monotony:
(sig:Set) (gammal,gamma2: (PLsig sig))
(Inclusion gammal gamma2)—
(Inclusion (Closure gammal) (Closure gamma2)).
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Lemma IdemPotency:
(sig:Set) (gamma: (PLsig sig))
(Inclusion (Closure (Closure gamma)) (Closure gamma)).

Lemma Structurality:
(sig,sig’:Set) (f:sig—sig’) (gamma: (PLsig sig))
(pf’:(Lsig sig’))
(ExtensionSet f [pf:(Lsig sig)] (Closure gamma pf) pf’)—
(Closure [pf1l’:(Lsig sig’)](ExtensionSet f gamma pfl’) pf’).

Lemma PresentationLemma:
(sig,sig’:Set) (f:sig—sig’)
(gamma: (PLsig sig)) (gamma’: (PLsig sig’))
(((pf:(Lsig sig)) (gamma pf)—
(Closure gamma’ (Extension f pf)))<
((pf:(Lsig sig)) (Closure gamma pf)—
(Closure gamma’ (Extension f pf)))).
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Chapter 3

Adjunctions

In this section we present the concept of adjunction in Coq. We also define some
examples and results that relate this definition with other concepts of category
theory. The adjunction was already defined in Coq by Saibi (see [Sai95]). We
implement an equivalent but different definition of adjunction. The adjunction
that we define in this section is the one given in [AHS90]:

Let C and D be categories and F : C — D and G : D — C be functors. We
say that F is left adjoint of G iff

e there is a natural transformation n :idc — GoF,
n={nx: X = GF(X))}xec|;

e for all f: X — G(A) in C there is only one morphism g : F(X) — A in
D such that G(g)onx = f.

We say that n is the unit of the adjunction (F,G,n).

3.1 The Adjunction Structure

We start by defining natural transformation. Given two categories ¢ and d and
two functors fF: (Functor ¢ d) and £G: (Functor ¢ d) a natural transforma-
tion NT from fF to £G is a family {(NTMap c1): (Hom (fF c1) (£G c1))}ei:c
that holds the NTLaw.

Section NTDef.

Variable c,d: Category.

Variable fF,fG: (Functor c d).

Definition NTLaw:= [nt:(cl:c)(Hom (fF c1) (£G c1))]

(c1,c2:c)(f:(Hom c1 c2))
((FMor fF f) o (nt c2)) =%S ((nt cl1) o (FMor £fG £f)).
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Structure NT: Type:= {
NTMap :> (cl:c)(Hom (fF c1) (£fG cl1));
Prf ntlaw : (NTLaw NTMap)

}.
End NTDef.
For the specific case of an adjunction the natural transformation is between
an identity functor and a composite functor. Hence we begin by defining the
identity functor IdFunctor for a category c. We call IdFO the map for the
objects and IdF1 the mapoid for the morphisms.
Section IdFunct.
Variable c: Category.
Definition IdFO:= [cl:c]cl.
Section IdMor.
Variable cl1,c2: c.
Definition IdFMor:= [f:(Hom cl c2)]f.
Lemma IdFMor pres: (MapLaw IdFMor).
Definition IdFi:
(Mapoid (Hom cl c2) (Hom (IdFO c1l) (IdFO c2))):=
(Build Mapoid IdFMor_pres) .
End IdMor.
Lemma IdF1 comp: (!FCompLaw c¢c ¢ IdFO IdF1).

Lemma IdF1_id: (!FIdLaw c ¢ IdFO IdF1).

Definition IdFunctor: (Functor c¢ c):=
(Build Functor IdF1_comp IdF1_id).

End IdFunct.
Next we check that the composition of two functors is a functor. We call the
composite functor by CompFunctor, the map for the objects by CompFO and the

mapoid for the morphisms CompF1.

Section CompFunct.
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Variable c,d,e: Category.

Variable £fG: (Functor c d).

Variable fH: (Functor d e).

Definition CompFO0:= [cl:c](fH (£G c1)).

Section CompMor.

Variable cl,c2:c.

Definition CompFMor:= [f:(Hom cl c2)](FMor fH (FMor £fG £f)).

Lemma CompFMor pres: (MapLaw CompFMor) .

Definition CompF1:
(Mapoid (Hom c1 c2) (Hom (CompFO c1) (CompFO c2))):=
(Build Mapoid CompFMor pres) .

End CompMor.

Lemma CompF1 comp: (FCompLaw CompF1).

Lemma CompF1 id: (FIdLaw CompF1).

Definition CompFunctor: (Functor c e):=
(Build Functor CompFl comp CompF1 id).

End CompFunct.

Finally we can define adjunction. Given two categories ¢ and d and two functors
fF: (Functor ¢ d) and fG: (Functor d c) we say that fF is left adjoint of £G
whenever we can find a natural transformation unit from (IdFunctor c) to
(CompFunctor fF £G) that holds the universal property of the adjunction. We
split the universal property into two properties, one dealing with commutation,
AdjCommuteLaw, and other dealing with uniqueness, AdjUniqueLaw.

Section AdjunctionDef.

Variable c¢,d: Category.

Variable fF: (Functor c d).

Variable fG: (Functor d c).

Section AdjunctionLaws.
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Variable unit: (NT (IdFunctor c¢) (CompFunctor fF £G)).
Definition Commute _c:=
[x:c][a:d] [f:(Hom x (£fG a))][g:(Hom (fF x) a)]
((unit x) o (FMor £G g)) =US f.
Variable g: (x:c)(a:d)(f:(Hom x (£G a))) (Hom (fF x) a).
Definition Unique d:=
[x:c][a:d] [f:(Hom x (£fG a))][g’:(Hom (fF x) a)l
(Commutec f g’) — (g £) =kS g’.

Definition AdjCommuteLaw:=
(x:c)(a:d) (f: (Hom x (£fG a))) (Commutec f (g £)).

Definition AdjUniqueLaw:=
(x:c)(a:d) (f: (Hom x (£G a))) (g’:(Hom (fF x) a))
(Uniqued f g’).

End AdjunctionLaws.

Structure Adjunction: Type:= {

unit : (NT (IdFunctor c) (CompFunctor fF £G));

g : (x:c)(a:d) (f: (Hom x (£G a))) (Hom (fF x) a);
Prf_commute : (AdjCommutelaw unit g);

Prf unique : (AdjUniquelaw unit g)

}.

End AdjunctionDef.

3.2 The Adjunction between Setoid and Presetoid

In this section we intend to prove that the forgetful functor from PRESETOID
to SETOID has left and right adjoint. We start by defining this forgetful func-
tor, FForgetfulPS. We call FOForgetfulPS to the map of the objects and
FlForgetfulPS to the mapoid of the morphisms.

Section F_PRESETOID_SETOID.

Variable p,p’: PRESETOID.

Definition FOForgetfulPS: PRESETOID—SETOID := [p:PRESETOID]p.
Definition FMapForgetfulPS:

(Hom p p’)—(Hom (FOForgetfulPS p) (FOForgetfulPS p’)):=
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[£f: (MonMapoid p p’)] (Mon Mapoid f).
Lemma FMapForgetfulPS pres: (MapLaw FMapForgetfulPS).

Definition FiForgetfulPS:
(Mapoid (Hom p p’)
(Hom (FOForgetfulPS p) (FOForgetfulPS p’))):
(Build Mapoid FMapForgetfulPS pres).

End F_PRESETOID_SETOID.
Lemma F1lForgetfulPS comp: (FCompLaw F1lForgetfulPS).
Lemma F1ForgetfulPS_id: (FIdLaw FlForgetfulPS).

Definition FForgetfulPS: (Functor PRESETOID SETO0ID):=
(Build Functor FlForgetfulPS_comp FlForgetfulPS_id).

Next we define the functor FEqualRel, the candidate for left adjoint of
FForgetfulPS. The functor FEqualRel maps each setoid s into a preorder
POEqual corresponding to a pair having s and the equality relation of the setoid
s. Obviously any mapoid between two preorders, that are image of POEqual, is
a monotonous mapoid. The preservation of the relation is just the functionality

condition for mapoids.
Section F_SETOID_PRESETOID.
Section FEqualRelPQ.

Variable s: SETOID.

Lemma Equal presequal: (s1,s2:s)(sl =S s2)— (sl =S s2).

Lemma Equal porefl: (Reflexive (!Equal s)).
Lemma Equal po_trans: (Transitive (!Equal s)).

Definition EqualP0: PreOrder:=

(Build PreOrder Equal presequal Equal po_refl Equal po_trans).

End FEqualRelPO.

Definition FOEqualRel: SETO0ID—PRESET0ID:=
[s:SETOID] (EqualPO0 s).

Section FEqualRelMonMapoid.
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Variable s,s’: SETOID.

Variable f: (Mapoid (FOEqualRel s) (FOEqualRel s’)).

Lemma f_ismon: (IsMonotonous f).

Definition MonMapf:
(MonMapoid (FOEqualRel s) (FOEqualRel s’)):=
(Build MonMapoid f_ismon).

End FEqualRelMonMapoid.

Variable s,s’: SETOID.

Definition FMapEqualRel:
(Hom s s’)—(Hom (FOEqualRel s) (FOEqualRel s’)):=
[£: (Mapoid s s’)] (MonMapf £f).

Lemma FMapEqualRel pres: (MapLaw FMapEqualRel).

Definition FlEqualRel:
(Mapoid (Hom s s’) (Hom (FOEqualRel s) (FOEqualRel s’))):=
(Build Mapoid FMapEqualRel pres) .

End F_SETOID PRESETOID.

Lemma F1EqualRel comp: (FCompLaw F1EqualRel).

Lemma F1EqualRel_id: (FIdLaw F1EqualRel).

Definition FEqualRel: (Functor SETOID PRESETOID) :=
(Build Functor F1lEqualRel comp F1lEqualRel id).

To define the adjunction we must provide a natural transformation between
(IdFunctor SETOID) and (CompFunctor FEqualRel FForgetfulPS). The nat-
ural transformation NTSETOID associates each setoid with its identity.
Section NT_SETOID.
Variable s: SETOID.
Definition NTSetoidMap:

((IdFunctor SETO0ID) s)—

((CompFunctor FEqualRel FForgetfulPS) s):=

(IdMap 1!s).

Lemma NTSetoidMap pres: (MapLaw NTSetoidMap).
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Definition NTSetoidMapoid:
(Mapoid ((IdFunctor SETOID) s)
((CompFunctor FEqualRel FForgetfulPS) s)):=
(Build Mapoid NTSetoidMap_pres).
End NT_SETOID.

Lemma NTSetoidMapoid ntlaw:
(NTLaw 1!SETOID 2!SETOID NTSetoidMapoid) .

Definition NTSETO0ID:
(NT (IdFunctor SETOID) (CompFunctor FEqualRel FForgetfulPS)):=
(Build NT NTSetoidMapoid ntlaw).
Finally we have to show the universal property of the adjunction. This is, given
a setoid s and a presetoid p, for each morphism f: (Hom s (FForgetfulPS p)),
we must provide a morphism g:(Hom (FEqualRel s) p) that holds
AdjCommuteLaw and AdjUniqueLaw. Obviously the candidate for g is £.
Section Adj_SETOID.
Variable s: SETOID.
Variable p: PRESETOID.
Variable f: (Hom s (FForgetfulPS p)).

Lemma f_ismon: (!IsMonotonous (FEqualRel s) p f).

Definition g: (MonMapoid (FEqualRel s) p):=
(Build MonMapoid f_ismon) .

End Adj_SETOID.
Lemma g _commute: (AdjCommutelLaw NTSETOID g).
Lemma g_unique: (AdjUniquelLaw NTSETOID g).

Definition AdjSETOID: (Adjunction FEqualRel FForgetfulPS):=
(Build_Adjunction g_commute g unique).

Next we define the functor FTotalRel, the candidate for right adjoint of
FForgetfulPS. The functor FTotalRel maps each setoid s into a preorder cor-
responding to a pair having s and the total relation over s, that we call Total.
It is trivial to check that mapoids are always monotonous with respect to total
relations.
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Section F_SETOID_PRESETOID.
Section FTotalRelPO.
Variable s: SETOID.

Inductive Total: (Relation (Carrier s)):=
Build_Total: (s1,s2:s)(Total sl s2).

Lemma Total presequal: (s1,s2:s8)(sl =%S s2)—(Total sl s2).
Lemma Total porefl: (Reflexive Total).
Lemma Total po_trans: (Transitive Total).

Definition TotalP0: PreOrder:=
(Build PreOrder Total presequal Total po._refl Total po_trans).

End FTotalRelPO.

Definition FOTotalRel: SETOID—PRESETOID:=
[s:SETOID] (TotalPO s).

Section FTotalRelMonMapoid.

Variable s,s’: SETOID.

Variable f: (Mapoid (FOTotalRel s) (FOTotalRel s’)).

Lemma f_ismon: (IsMonotonous f).

Definition MonMapf:
(MonMapoid (FOTotalRel s) (FOTotalRel s’)):=
(Build MonMapoid f_ismon) .

End FTotalRelMonMapoid.

Variable s,s’: SETOID.

Definition FMapTotalRel:
(Hom s s’)—(Hom (FOTotalRel s) (FOTotalRel s’)):=
[£: (Mapoid s s’)] (MonMapf £f).

Lemma FMapTotalRel pres: (MapLaw FMapTotalRel).

Definition FiTotalRel:
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(Mapoid (Hom s s’) (Hom (FOTotalRel s) (FOTotalRel s’))):=
(Build Mapoid FMapTotalRel pres).

End F_SETOID_PRESETOID.
Lemma FiTotalRel comp: (FCompLaw FlTotalRel).
Lemma F1TotalRel id: (FIdLaw FiTotalRel).

Definition FTotalRel: (Functor SETOID PRESETOID) :=
(Build Functor F1TotalRel comp F1TotalRel_id).

To define the adjunction we must provide a natural transformation between
(IdFunctor PRESETOID) and (CompFunctor FForgetfulPS FTotalRel). The
natural transformation NTPRESETOID associates each preorder with its identity.

Section NT_PRESETOID.
Variable p: PRESETOID.

Definition NTPresetoidMap:
((IdFunctor PRESETO0ID) p)—
((CompFunctor FForgetfulPS FTotalRel) p):=
(Id_MonMap 1'p).

Lemma NTPresetoidMap pres: (MapLaw NTPresetoidMap) .

Definition NTPresetoidMapoid:
(Mapoid ((IdFunctor PRESETOID) p)
((CompFunctor FForgetfulPS FTotalRel) p)):=
(Build Mapoid NTPresetoidMap_pres) .

Lemma NTPresetoidMapoid_ismon:
(IsMonotonous NTPresetoidMapoid) .

Definition NTPresetoidMonMap:
(MonMapoid ((IdFunctor PRESETOID) p)
((CompFunctor FForgetfulPS FTotalRel) p)):=
(Build MonMapoid NTPresetoidMapoid_ismon) .
End NT_PRESETOID.

Lemma NTPresetoidMonMap ntlaw:
(NTLaw 1!PRESETOID 2!PRESET0ID NTPresetoidMonMap) .

Definition NTPRESETOID:
(NT (IdFunctor PRESETOID)
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(CompFunctor FForgetfulPS FTotalRel)):=
(Build NT NTPresetoidMonMap ntlaw) .

Finally we have to show the universal property of the adjunction. This is, given
a presetoid p and a setoid s, for each morphism f: (Hom p (FTotalRel s)),
we must provide a morphism g:(Hom (FForgetfulPS p) s) that holds
AdjCommuteLaw and AdjUniqueLaw. Obviously the candidate for g is £.
Section Adj_PRESETOID.

Variable p: PRESETOID.

Variable s: SETOID.

Variable f: (Hom p (FTotalRel s)).

Lemma MonMapoidf pres: (MapLaw (Mon Mapoid £f)).

Definition g: (Mapoid (FForgetfulPS p) s):=
(Build Mapoid MonMapoidf pres) .

End Adj_PRESETOID.
Lemma g _commute: (AdjCommuteLaw NTPRESETOID g) .
Lemma g unique: (AdjUniquelLaw NTPRESETOID g) .

Definition AdjPRESETOID: (Adjunction FForgetfulPS FTotalRel):=
(Build_Adjunction g_commute g_unique).

3.3 The Adjunction between Set and PTh

Herein we show that the forgetful functor from PTH to SET has right adjoint.
First we define the forgetful functor, FForgetfulPT. This functor maps any
propositional theory in its corresponding signature with FOForgetfulPT and,
maps any morphism between propositional theories in its corresponding map
with F1ForgetfulPT.
Section F PTH SET.
Variable pt,pt’: PTH.
Definition FOForgetfulPT: PTH—SET:= [pt:PTH]pt.
Definition FMapForgetfulPT:

(Hom pt pt’)— (Hom (FOForgetfulPT pt) (FOForgetfulPT pt’)):=
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[£f: (MorphismPTh pt pt’)] (Application f).
Lemma FMapForgetfulPT pres: (MapLaw FMapForgetfulPT).
Definition FiForgetfulPT:
(Mapoid (Hom pt pt’)
(Hom (FOForgetfulPT pt) (FOForgetfulPT pt’))):=
(Build Mapoid FMapForgetfulPT pres).
End F_PTH SET.
Lemma F1lForgetfulPT comp: (FCompLaw F1lForgetfulPT).

Lemma F1ForgetfulPT_id: (FIdLaw FlForgetfulPT).

Definition FForgetfulPT: (Functor PTH SET):=
(Build Functor FlForgetfulPT_comp FlForgetfulPT_id).

Now we have to give the candidate for right adjoint of FForgetfulPT. We
propose the functor FLanguage from SET to PTH that maps any set a in the
propositional theory constituted by a and the language of a, L. A map between
propositional theories where the set of theorems is the language of its signatures
verifies clearly the InclusionLaw.

Section F_SET_PTH.

Section FLanguagePTh.

Variable a: SET.

Definition L: (Lsig a)—Prop:= [pf:(Lsig a)]True.

Lemma L_close: (GammaClose L).

Definition LPTh: PTh:= (Build PTh L_close).

End FLanguagePTh.

Definition FOLanguage: SET—PTH:= [a:SET](LPTh a).

Section FLanguageMorphism.

Variable a,a’: SET.

Variable f: (LPTh a)—(LPTh a’).

Lemma f_inclusion: (InclusionLaw f).
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Definition Morphismf:
(MorphismPTh (LPTh a) (LPTh a’)):=
(Build MorphismPTh f_inclusion).

End FLanguageMorphism.
Variable a,a’: SET.

Definition FMapLanguage:
(Hom a a’)— (Hom (FOLanguage a) (FOLanguage a’)):=
[f:a—a’] (Morphismf f).

Lemma FMapLanguage pres: (MapLaw FMapLanguage) .

Definition FiLanguage:
(Mapoid (Hom a a’) (Hom (FOLanguage a) (FOLanguage a’))):=
(Build Mapoid FMapLanguage pres).

End F_SET PTH.

Lemma FillLanguage_comp: (FCompLaw FlLanguage) .

Lemma FlLanguage_id: (FIdLaw FlLanguage).

Definition FLanguage: (Functor SET PTH):=
(Build Functor FllLanguage comp FlLanguage id).

The next step is to give a natural transformation from (IdFunctor PTH) to
(CompFunctor FForgetfulPT FLanguage). The natural transformation NTPTH
associates to each propositional theory its identity.

Section NT_PTH.
Variable pt: PTH.

Definition NTPThApplication:
((IdFunctor PTH) pt)—
((CompFunctor FForgetfulPT FLanguage) pt):=
(Id_Application 1!pt).

Lemma NTPThApplication_inclusion:
(InclusionLaw NTPThApplication).

Definition NTPThMorphismPTh:

(MorphismPTh ((IdFunctor PTH) pt)
((CompFunctor FForgetfulPT FLanguage) pt)):=
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(Build MorphismPTh NTPThApplication_inclusion).
End NT_PTH.

Lemma NTPThMorphismPTh ntlaw:
(NTLaw 1!PTH 2!PTH NTPThMorphismPTh) .

Definition NTPTH:
(NT (IdFunctor PTH) (CompFunctor FForgetfulPT FLanguage)):=
(Build NT NTPThMorphismPTh ntlaw) .
Finally we are able to define the adjunction. We only have to find, given a
propositional theory pt, a set a and a morphism f: (Hom pt (FLanguage a)),
a morphism g: (Hom (FForgetfulPT pt) a) that holds the universal property.
It is clear that the candidate for g is f.
Section Adj_PTH.
Variable pt: PTH.
Variable a: SET.
Variable f: (Hom pt (FLanguage a)).
Definition g: (FForgetfulPT pt)—a:= (Application f).
End Adj_PTH.
Lemma g_commute: (AdjCommutelLaw NTPTH g).

Lemma g_unique: (AdjUniquelLaw NTPTH g).

Definition AdjPTH: (Adjunction FForgetfulPT FLanguage) :=
(Build_Adjunction g_commute g unique).

3.4 Adjunction vs Initial in Comma Category

Herein we intend to show the result that relates left adjoints with initial objects
in comma category:

Let C and D be categories and G : D — C be a functor. Then, G has left
adjoint iff X | G has initial object for any X € |C|.

We start by defining the comma category. If x is an object of ¢ and £G a func-
tor from d to c, the category x|fG has as objects all pairs Codom and Arrow,
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where Codom:d and Arrow: (Hom x (£G Codom)), and as morphisms from v
to u all those arrows MorComma: (Hom (Codom v) (Codom u)) in d such that
(v o (FMor £fG MorComa)) =%S u. To this property we call CommaCommuteLaw.
To define the morphisms we have to build a setoid of comma morphisms. Hence
we have to give an equality for comma morphisms and show that it is an equiva-
lence relation. The equality provided is the equality between the corresponding
arrows in d.

Section CommaDef .

Variable c,d: Category.
Variable fG: (Functor d c).
Variable x: c.

Section Setoid Comma.

Structure ObjectComma: Type:= {

Codom : d;
Arrow :> (Hom x (£fG Codom))

.
Variable v,u: 0ObjectComma.

Definition CommaCommutelLaw:=
[c1,c2,c3:c]lv:(Hom c1 c2)][u:(Hom c1 ¢3)][w:(Hom c2 c3)]
(v o w) =%S u.

Structure MorphismComma: Type:= {
MorComma :> (Hom (Codom v) (Codom u));
Prf_commute : (CommaCommutelLaw v u (FMor fG MorComma))

}.

Definition EqualMorphismComma:= [g,h:MorphismCommal
(MorComma g) =%S (MorComma h).

Lemma EqualMorphismComma_equiv:
(Equivalence EqualMorphismComma) .

Definition Setoid MorphismComma: Setoid:=
(Build_Setoid EqualMorphismComma_equiv) .

End Setoid_Comma.

As usual after the definition of objects and the setoid of morphisms we have to
define the composition. The composition of two MorphismComma is the compo-
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sition of the corresponding arrows MorComma. We only have to check that the
composite arrow holds CommaCommuteLaw.

Section CompositionMorphismComma.
Variable v,u,w: ObjectComma.

Variable g: (MorphismComma v u).
Variable h: (MorphismComma u w) .

Lemma Comp MorComma commute :
(CommaCommuteLaw v w (FMor fG (g o h))).

End CompositionMorphismComma.

Definition CommaComp:
(v,u,w:0bjectComma) (Setoid MorphismComma v u)—
(Setoid MorphismComma u w)—
(Setoid MorphismComma v w):=
[v,u,w:0bjectCommal
[sm: (Setoid MorphismComma v u)] [sm’:(Setoid MorphismComma u w)]
(Build MorphismComma (Comp MorComma commute sm sm’)).

To build the composition mapoid we have to show that the composition map
CommaComp holds the congruence laws.

Lemma CommaComp_congl: (ConglLaw CommaComp) .
Lemma CommaComp_congr: (CongrLaw CommaComp) .
Definition Comp_Comma:
(v,u,w:0bjectComma)
(BinMapoid (Setoid MorphismComma v u)
(Setoid MorphismComma u w)
(Setoid MorphismComma v w)):=
(Build_CompMapoid CommaComp_congl CommaComp_congr) .

Lemma Assoc Comma: (AssocLaw Comp_Comma) .

The final step is to define the identity. The identity in comma category is
defined by the identity arrow in d that clearly holds CommaCommuteLaw.

Section Comma_Id.

Variable v: 0ObjectComma.
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Lemma Id_commute:
(CommaCommuteLaw v v (FMor fG (Id 1!'d (Codom v)))).

Definition Id Comma: (MorphismComma v v):=
(Build MorphismComma Id_commute) .

End Comma_Id.
Lemma Idl Comma: (IdlLaw Comp_Comma Id Comma) .
Lemma Idr Comma: (IdrLaw Comp_Comma Id Comma) .

Provided with the laws of associativity and identity for composition we can
define the comma category.

Definition COMMA: Category:=
(Build_Category Assoc_Comma Idl_Comma Idr_Comma) .

End CommaDef.
With the comma category defined we are able to show the result that relates
left adjoints with initial objects in comma category. To state this lemma we
have to have a way to say that there is a left adjoint for a functor £G and
there is an initial object in x|£fG for any object x. Since we only can express
an existence of an adjunction by Adjunction, that requires two functors, we
define first HasLeftAdjoint. The proposition (HasLeftAdjoint fG) states
that there is a functor that is a left adjoint of £G. We use the same reasoning
to define HasInitialForAnyX.
Section HasDef.
Variable c,d: Category.
Variable fG: (Functor d c).
Definition HasLeftAdjoint: Prop:=

(ExT [fF: (Functor c d)]

(ExT [aFG: (Adjunction fF £G)] True)).

Definition HasInitialForAnyX: Prop:=
(ExT [i:(x:c)(Initial (COMMA £fG x))] True).

End HasDef.
The envisage lemma is simply stated by,

Lemma AdjInitialComma: (c,d:Category) (£G:(Functor d c))
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(HasLeftAdjoint f£G)<>(HasInitialForAnyX £G).

3.5 Left Adjoint Unique up to Natural Isomorphism

In this section we want to show that the left adjoint of a functor is unique up
to natural isomorphism:

Let C and D be categories and F, F' : C — D and G : D — C be functors, such
that both F and F' are left adjoints of G. Then, there is a natural isomorphism
a from F to F', i.e., there is a natural transformation o« : F — F' where ayx is
an isomorphism for each X € |C|.

We are talking about natural isomorphism but until now it has not been defined.
So this is the first thing that we do.

Section NatIsoDef.
Variable c,d: Category.
Variable fF,fF’:(Functor c d).

Definition NTIsoLaw:= [nt:(NT fF fF’)][nt’:(NT fF’ fF)]
(cl:c)(IsoLaw 1!'d (nt cl1) (nt’ ci1)).

Structure NTIso: Type:= {
IsoNT : (NT fF fF’);
InvIso : (NT fF’ fF);
Prf ntiso : (NTIsoLaw IsoNT InvIso)

}.
End NatIsoDef.

The result of left adjoint unique up to natural isomorphism is simply stated by
the lemma NTIsoLeftAdjoints.

Lemma NTIsoLeftAdjoints:

(c,d:Category) (£G: (Functor d c)) (fF,fF’: (Functor ¢ d))
(Adjunction fF £G)— (Adjunction fF’ £G)— (NTIso fF fF’).
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Chapter 4

Cocartesian Liftings

In this section we define in Coq the concept of cocartesian lifting that is given
in [BW90]:

Let C' and D be categories and F : C — D be a functor. Let X be an object
in C, A be an object in D and f : F(X) — A be a morphism in D. Then
u: X =Y € Morc is called cocartesian lifting by F' for X and f iff

e F(Y)=A;
o F(u)=f;
o foranyv: X — Z € Morc and g: F(Y) = F(Z) € Morp such that
— g o F(u) = F(v);
there is only one morphism w:Y — Z € Morc such that

— F(w) =g;

—wou="mv.

We also define examples of cocartesian lifting and show that the codomain of
cocartesian lifting is unique up to isomorphism.

4.1 The Cocartesian Lifting Structure

To define cocartesian lifting we have to check, among other things, that an
object and a morphism are image by a functor of another object and morphism.
In order to assert that an object is image of another we need an equality for
objects. Considering that in a category objects have sort Type and that in a
functor the map for objects is a map in Type (and thus preserves the equality in
Type), we conclude that the envisaged equality is the equality in Type. Having
this in mind we define the predicate IsImageF0. Remark that in Coq the token
== is the infix representation of the Type equality eqT (for more details see
[PM96]).
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Definition IsImageF0:=
[c,d:Category] [fF: (Functor ¢ d)][cl:c][dl:d] (fF cl)==d1.

The first problem in considering this equality with our category implementation
is that we are not able to show that if two objects are equal then there is a
morphism between them (at least the identity morphism should exist). We can
solve this problem by changing the Coq definition of category. In this case we
have to say that there is an identity between two equal objects. However this
solution is not easy to implement and it is out of the scope of this work since all
the previous work would have to be redone. Instead of changing the category
definition we introduce a global variable that will do the job of the identity
between equal objects. We call ident to this global variable that in Coq is
declared by the command Parameter.

Structure Identity: Type:= {

Ident :> (c:Category) (cl,c2:c) (prf:(cl==c2)) (Hom cl c2);

IdentId : (c:Category)(cl:c) (prf:(cl==cl))
(Ident c cl cl prf)=%S(Id cl);

IdentComp : (c:Category)(cl,c2,c3:c)
(prf: (cl==c2)) (prf’: (c2==c3)) (prf’’: (cl==c3))
((Ident ¢ c1 c2 prf)o(Ident ¢ c2 c3 prf’))=%S
(Ident c cl c3 prf’?)

.
Parameter ident: Identity.

To simplify the syntax we define identity. In identity, the arguments c, c1
and c2 are implicit and that is not the case for ident.

Definition identity:=
[c:Category] [cl,c2:c] [prf:(cl==c2)](ident ¢ cl c2 prf).

Remark that Ident, as we define, must hold some properties for ensuring that it
is the identity modulo equality in Type. This properties are stated by IdentId
and IdentComp.

With respect to the equality of morphisms we may think that the setoid
equality will be enough, however this is not the case. Why? After having a
candidate u for cocartesian lifting by F' for f and X we must check that f is
image of u by F. However the codomain of F(u) is F(Y) and the codomain
of f is A. Even if we consider that F'(Y) and A are equal we can not use the
equality of the setoid (that only compares morphisms with the same domain
and codomain). Hence we have to extend the equality of the hom-setoid in such
a way that we can compare morphisms with different domains and codomains.
We define a new equality, EqualHom, that extends Equal and takes into account
the new definition identity.
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Definition EqualHom:
(c:Category)(cl,c2:c) (Hom cl1 c2)—(c3,c4:c) (Hom c3 c4)—Prop:=
[c:Category]l [c1l,c2:c][f:(Hom c1 c2)][c3,c4:c][g:(Hom c3 c4)]
cl==c3 A c2==c4 A
(prf:(c1==c3)) (prf’:(c2==c4))
((f o (identity prf’))=}S((identity prf) o g)).

We write £ =/H g to denote (EqualHom f g).

Token "=JH".
Infix Assoc 6 "=JH" EqualHom.

Before presenting cocartesian lifting we still want to establish some results that
will help us clear up the idea about identity. We start by checking that
EqualHom is an equivalence relation.

Lemma EqualHom refl: (c:Category)(cl,c2:c)(f:(Hom cl c2))
(f =¥H £f).

Lemma EqualHom trans: (c:Category)(cl,c2,c3,c4,c5,c6:c)
(f:(Hom c1 c2))(g:(Hom c3 c4)) (h:(Hom c5 c6))
(f =%H g)—(g =%H h)—(f =%H h).
Lemma EqualHom sym: (c:Category)(cl,c2,c3,c4:c)
(f:(Hom c1 c2))(g:(Hom c3 c4))
(f =VH g)— (g =¥H £).

Next we prove that Id and identity are in the same equivalence class relative
to EqualHom.

Lemma Ident. Id: (c:Category)(cl,c2:c)(prf:(cl==c2))
(identity prf) =/H (Id cl).

We also establish the relation between EqualHom and Equal.

Lemma EqualEqualHom Equiv: (c:Category)(cl,c2:c)
(f,g:(Hom c1 ¢2))(f =}H g) (£ =4S g).

By the definition of identity we may think that given two proofs of equality
between objects we obtain two different morphisms. However we show that this

is not the case.

Lemma Ident Proofs: (c:Category)(cl,c2:c)(prf,prf’:(cl==c2))
(identity prf)=%S(identity prf’).

Finally we check the laws of the identity identity for composition.
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Lemma IdentL: (c:Category)(cl,c2,c3:c)(prf:(cl==c2))
(f:(Hom c2 c3)) ((identity prf) o f) =JH f.

Lemma IdentR: (c:Category)(cl,c2,c3:c)(prf:(c2==c3))
(f: (Hom c1 c2)) £ =JH (f o (identity prf)).

Remark that if we have two morphisms such that the codomain of one is equal to
the domain of the other we should be able to compose them. We can define this
composition by,

Definition CompHom:=[c:Category][cl,c2,c3,c4:c|[prf:(c2==c3)]
[f:(Hom c1 ¢2)][g:(Hom ¢3 c4)] ((f o (identity prf)) o g).

However to define cocartesian lifting we do not have to deal with this kind
of composition. Note that both this composition and the usual composition
are congruent for the new equality EqualHom. We do not present these results
because they are not needed but they are in the appendix.

Before cocartesian lifting it only remains to define the predicate IsImageF1
that is true whenever a morphism is image of another by a functor.

Definition IsImageFl:=

[c,d:Category] [fF: (Functor ¢ d)][cl,c2:c][d1,d2:d]

[u: (Hom c1 c2)][f:(Hom d1 d42)] (FMor fF u) =JH f.
Finally we can define cocartesian lifting. Given two categories ¢ and d, a func-
tor fF: (Functor c¢ d), an object x in ¢, an object a in d and a morphism
f:(Hom (fF x) a)) in c , we say that u: (Hom x y) is a cocartesian lifting by
fF for £ and x iff we can show aImagey and fImageu and we can find a mor-
phism w: (Hom y z) that holds the universal property. For simplicity we split
the universal property into two properties, one representing the commutation,
CoCartCommuteLaw, and other representing the uniqueness, CocartUniqueLaw.
Section CoCartesianLiftDef.
Variable c,d: Category.
Variable fF: (Functor c d).
Variable x: c.
Variable a: d.
Variable f: (Hom (fF x) a).

Section CoCartesianLiftLaws.

Variable y: c.
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Variable u: (Hom x y).
Hypothesis aImagey: (IsImageFO fF y a).
Hypothesis fImageu: (IsImageFl fF u f).

Definition Commute d:=
[z:cl[v:(Hom x z)][g: (Hom (fF y) (fF z))]
((FMor fF u) o g) =%S (FMor fF v).

Variable w:
(z:c)(v:(Hom x z)) (g: (Hom (fF y) (fF 2))) (prf:(Commuted v g))
(Hom y z).

Definition Commute_c:=
[z:c]lv:(Hom x z)] [w:(Hom y z)]
(u o w) =4S v.

Definition Unique_w:=
[z:c][v:(Hom x 2)][g:(Hom (fF y) (fF z))]
[prf: (Commute d v g)l[w’:(Hom y z)]
((FMor fF w’) =%S g)A(Commute_c v w’)— ((w prf) =kS w’).

Definition CoCartCommuteLaw:=
(z:c) (v:(Hom x z)) (g: (Hom (fF y) (fF 2))) (prf:(Commuted v g))
((FMor fF (w prf)) =%S g)A(Commutec v (w prf)).

Definition CoCartUniquelaw:=
(z:c)(v:(Hom x z)) (g: (Hom (fF y) (fF 2))) (prf:(Commuted v g))
(w?:(Hom y z)) (Uniquew prf w’).

End CoCartesianLiftLaws.

Structure CoCartLift: Type:= {
y 1> C;
u :> (Hom x y);
Prf_aImagey : (IsImageFO fF y a);
Prf_fImageu : (IsImageFl fF u f);

W : (z:c)(v:(Hom x z))(g:(Hom (fF y) (fF z)))
(prf: (Commuted u v g))(Hom y z);

Prf_commute : (CoCartCommutelLaw w);

Prf unique : (CoCartUniquelLaw w)

}.

End CoCartesianLiftDef.
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4.2 The Cocartesian Lifting from Setoid to Presetoid

Herein we give an example of cocartesian lifting from SETOID to PRESETOID.
We use, and we do not present again, the definitions of these two categories as
well as the definition of the forgetful functor with respect to them.

Given an object s in SETOID, an object p in PRESETOID and a morphism
f:(Hom (FOForgetfulPS p) s) in SETOID the candidate for Y is the pre-
order p’= (s,R). The relation R is the least reflexive and transitive closure
of {((Map f p1),(Map £ p2)): (p1,p2) € (Rel 1!p)} that contains the equal-
ity of the setoid s.

Section CoCart PRESETOID_SETQID.
Variable s: SETOID.
Variable p: PRESETOID.
Variable f: (Hom (FOForgetfulPS p) s).
Inductive R: (Relation (Carrier s)):=
Refl : (sl:(Carrier s))(R sl si)
| Trans : (s1,s2,s3:(Carrier s)) (R s1 s2)—(R s2 s3)—(R sl s3)
| Pres : (s1,s2:(Carrier s)) (sl =4S s2)—(R sl s2)
| Image : (s1,s2:(Carrier (FOForgetfulPS p)))
(Rel s1 s2)—»(R (Map f s1) (Map f s2)).
Lemma R presequal: (s1,s2:(Carrier s)) (sl =/S s2)—(R sl s2).
Lemma R porefl: (Reflexive R).

Lemma R po_trans: (Transitive R).

Definition p’: PreOrder:=
(Build PreOrder R_presequal R_po._refl R_po_trans).

Next we have to find the candidate for u. The candidate is £. It is very easy to
check that the mapoid f is monotonous with respect to the preorders p and p’.

Lemma f_ismon: (!IsMonotonous p p’ f).
Definition u: (MonMapoid p p’):= (Build_MonMapoid f_ismon) .

With p’ and u defined we have to show that s is the image of p’ and £ is the
image of u, by the functor FForgetfulPS.

Lemma sImgp’: (IsImageFO FForgetfulPS p’ s).
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Lemma fImgu: (IsImageFl FForgetfulPS u f).

Finally it only remains to find the morphism w that holds the universal property.
This is, for any object p’’ in PRESETOID and any morphisms v: (Hom p p’’)
in PRESETOID and g:(Hom (FOForgetfulPS p’) (FOForgetfulPS p’’)) in
SETOID such that the commutation prf holds, we have to find the morphism
w that respects the properties CoCartCommuteLaw and CoCartUniqueLaw. The
candidate for w is g. To define the morphism w we only have to check that g is
monotonous with respect to the preorders p’ and p’’.

Section PropUniversal.

Variable p’’: PRESETOID.

Variable v: (Hom p p’’).

Variable g: (Hom (FOForgetfulPS p’) (FOForgetfulPS p’’)).

Variable prf:
(!Commute_d PRESETOID SETOID FForgetfulPS p p’ u p’’ v g).

Lemma g_ismon: (!IsMonotonous p’ p’’ g).
Definition w: (MonMapoid p’ p’’):= (Build MonMapoid g_ismon) .
End PropUniversal.

After we prove that w holds CoCartCommutelLaw and CocartUniqueLaw we are
able to define the cocartesian lifting, that we call CoCartPRESETOID.

Lemma w_commute:
(!CoCartCommuteLaw PRESETOID SETOID FForgetfulPS p p’ u w).

Lemma w_unique:
(!CoCartUniqueLaw PRESETOID SETOID FForgetfulPS p p’ u w).

Definition CoCartPRESETOID:
(!'CoCartLift PRESETOID SETOID FForgetfulPS p s f):=

(Build CoCartLift sImgp’ fImgu w_commute w_unique).

End CoCart PRESETOID SETOID.

4.3 The Cocartesian Lifting from Set to PTh

In this section we present another example of cocartesian lifting, this time from
SET to PTH.
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Given an object a in SET, an object pt in PTH and a morphism
f:(Hom (FOForgetfulPT pt) a) in SET the candidate for Y is the proposi-
tional theory pt’= (a,G). The set of theorems G is the closure of the set of the
images, by the extension of the map £, of the set of theorems of the propositional
theory pt.

Section CoCart PTH_SET.
Variable a: SET.
Variable pt: PTH.
Variable f: (Hom (FOForgetfulPT pt) a).
Inductive Gamma a: (PLsig a):=
Build Gamma.a: (pf:(Lsig (Signature pt)))
(Gamma 1!'pt pf)—(Gamma a (Extension f pf)).
Definition G: (Lsig a)—Prop:= (Closure Gamma a) .
Lemma G._close: (GammaClose G).

Definition pt’: PTh:=(Build PTh G_close).

Next we have to give the candidate for the cocartesian lifting. It is clear that
the candidate is £. We only have to prove that £ holds the InclusionLaw.

Lemma f_inclusion: (!InclusionlLaw pt pt’ f).

Definition u: (MorphismPTh pt pt’):=
(Build MorphismPTh f_inclusion).

With pt’ and u defined we start by checking that a is image of pt’ and that £
is image of u, by the functor FForgetfulPT.

Lemma alImgpt’: (IsImageFO0 FForgetfulPT pt’ a).
Lemma fImgu: (IsImageFl FForgetfulPT u f).

Finally it only remains to find the morphism w that holds the universal property.
This is, given an object pt’’ in PTH a morphism v:(Hom pt pt’’) in PTH
and a morphism g: (Hom (FOForgetfulPT pt’) (FOForgetfulPT pt’’)) in
SET such that the commutation prf holds, we have to find the morphism w
that respects the properties CoCartCommutelLaw and CoCartUniqueLaw. The
candidate for w is g. To define the morphism w we only have to check that g
holds the InclusionLaw.
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Section PropUniversal.

Variable pt’’: PTH.

Variable v: (Hom pt pt’’).

Variable g: (Hom (FOForgetfulPT pt’) (FOForgetfulPT pt’’)).

Variable prf:
(!Commute_d PTH SET FForgetfulPT pt pt’ u pt’’ v g).

Lemma g_inclusion: (!InclusionLaw pt’ pt’’ g).

Definition w: (MorphismPTh pt’ pt’’):=
(Build MorphismPTh g_inclusion).

End PropUniversal.

After we check that w is the unique morphism in PTH that commutes the diagram
in SET we are able to build the cocartesian lifting form SET to PTH, that we call
CoCartPTH.

Lemma w_commute:
(!CoCartCommuteLaw PTH SET FForgetfulPT pt pt’ u w).

Lemma w_unique:
(!CoCartUniquelLaw PTH SET FForgetfulPT pt pt’ u w).

Definition CoCartPTH:
(!CoCartLift PTH SET FForgetfulPT pt a f):=
(Build_CoCartLift aImgy fImgu w_commute w_unique).

End CoCart PTH_SET.

4.4 Codomain of Cocartesian Lifting Unique up to
Isomorphism

In this section we want to show that the codomain of cocartesian lifting is
unique up to isomorphism:

Let C' and D be categories and F : C — D be a functor. Let X be an object
in C, A be an object in D and f : F(X) — A be a morphism in D. If the
morphisms v : X =Y and v’ : X =Y’ in C are cocartesian liftings by F for
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f and X then'Y is isomorphic to Y.

In Coq this lemma can be simply stated by
Lemma IsoCoCart:

(c,d:Category) (fF: (Functor c d))(x:c) (a:d) (f: (Hom (fF x) a))
(ccl,ccl?’:(CoCartLift £)) (Iso (y ccl) (y ccl’)).
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Chapter 5

Concluding Remarks

We achieved to define adjunctions and some heavy categories, like the comma
category and the category of propositional theories, as well as results concerning
these definitions without any trouble. We conclude that the category axioma-
tization proposed by Huet and Saibi is good whenever we are defining concepts
that do not refer explicitly the equality between objects. This is not the case
of the cocartesian lifting where we have to check that an object is image of
another. Considering that in a category objects have sort Type and that in
a functor the map for objects is a map in Type we were forced to compare
objects with the equality in Type. The problem in considering this equality is
that with our category implementation we are not able to obtain an identity
between equal objects. So we either change the category definition or we com-
pensate this limitation artificially. We chose the second solution, providing an
identity morphism between equal objects, since we did not want to loose the
previous work. For further work we may consider developing a new definition
of category in Coq where we can compare objects with a given relation, rather
than comparing them with the equality in Type. We remark that along the way
we were able to provide examples of cocartesian lifting easily.

With this incursion in the Coq system we conclude that Coq can be used
more as a proof checker than as a proof assistant. Even using the Hint command
that is supposed to help the automatization of the proofs we were not able to
automatize very simple reasoning.
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