
Category Theory in CoqAlexandra Carvalho
Diploma ThesisSupervised by Am��lcar Sernadas and Paulo Mateus

May 1998

AbstractHerein we formalize a segment of category theory using the implementationof Calculus of Inductive Construction in Coq. Adopting the axiomatizationproposed by Huet and Sa��bi we start by presenting basic concepts, examples andresults of category theory in Coq. Next we de�ne adjunction and cocartesianlifting and establish some results using the Coq proof assistant. Finally weremark that the axiomatization proposed by Huet and Sa��bi is not good whendealing with the equality for objects.

1

AcknowledgmentsSpecial thanks to:Professor Am��lcar Sernadas for his enthusiasm in supervising this thesis and forbeing always a good source of ideas;Professor Cristina Sernadas for her advice and assistance;Paulo for his support and motivation during many stages of this work;Sara for her company, patience and being always willing to help;Carlos, Jaime and Nuno for our fruitful talks;All section 84 for the excellent working environment;My parents for their patience;Mia for being my furry friend.

This work was partially supported by the PRAXIS XXI Program andFCT, as well as by PRAXIS XXI Projects 2/2.1/MAT/262/94 SitCalc,PCEX/P/MAT/46/96 ACL plus 2/2.1/TIT/1658/95 LogComp, and ESPRITIV Working Groups 22704 ASPIRE and 23531 FIREworks.2

Contents
Notation 51 Introduction 62 A Crash Introduction to Coq 72.1 Binary Relations . 72.2 Setoids . 82.2.1 The Setoid Structure . 82.2.2 The Setoid of Maps between two Setoids 92.2.3 Binary Mapoids . 102.3 Categories . 112.3.1 The Category Structure 112.3.2 The Dual Category . 142.3.3 The Category Setoid . 152.3.4 The Category Presetoid 162.3.5 The Category Set . 192.3.6 The Category PTh . 202.4 Functors . 252.5 Isomorphisms and Initial and Terminal Objects 262.6 Some Exercises . 272.6.1 Basic Results . 282.6.2 The Presentation Lemma 283 Adjunctions 303.1 The Adjunction Structure . 303.2 The Adjunction between Setoid and Presetoid 333.3 The Adjunction between Set and PTh 393.4 Adjunction vs Initial in Comma Category 423.5 Left Adjoint Unique up to Natural Isomorphism 464 Cocartesian Liftings 474.1 The Cocartesian Lifting Structure 474.2 The Cocartesian Lifting from Setoid to Presetoid 524.3 The Cocartesian Lifting from Set to PTh 534.4 Codomain of Cocartesian Lifting Unique up to Isomorphism . . . 555 Concluding Remarks 573

Bibliography 58A Example Proof 59B Coq Source Code 70B.1 A Crash Introduction to Coq . 70B.1.1 Binary Relations . 70B.1.2 Setoids . 70The Setoid Structure 70The Setoid of Maps between two Setoids 71Binary Mapoids . 72B.1.3 Categories . 74The Category Structure 74The Dual Category . 76The Category Setoid . 78The Category Presetoid 80The Category Set . 84The Category PTh . 87B.1.4 Isomorphisms and Initial and Terminal Objects 93B.1.5 Some Exercises . 95Basic Results . 95The Presentation Lemma 96B.2 Adjunctions . 103B.2.1 The Adjunction Structure 103B.2.2 The Adjunction between Setoid and Presetoid 107B.2.3 The Adjunction between Set and PTh 117B.2.4 Adjunction vs Initial in Comma Category 121B.2.5 Left Adjoint Unique up to Natural Isomorphism 133B.3 Cocartesian Liftings . 138B.3.1 The Cocartesian Lifting Structure 138B.3.2 The Cocartesian Lifting from Setoid to Presetoid 147B.3.3 The Cocartesian Lifting from Set to PTh 150B.3.4 Codomain of Cocartesian Lifting Unique up to Isomorphism153

4

NotationWe use the following notation to denote variables.Categories c, d, eFunctors fF, fG, fH, fF', fG', fH'Morphisms f, g, h and v, u, wNatural Transformations nt, nt'Presetoids p, p', p''Propositional Formulae pf, pf', pf''Propositional Signatures sig, sig'Propositional Symbols ps, ps', ps''Propositional Theories pt, pt', pt''Setoids s, s', s''Sets a, a', a''Sets of Propositional Formulae gamma, gamma'Valuations val

5

Chapter 1IntroductionConstructive type theory has been shown to be adequate for representing cat-egorical reasoning. In this work we use Calculus of Inductive Constructions asimplemented in Coq V6.1 to formalize a segment of category theory. We followthe axiomatization proposed by Huet and Sa��bi (see [HS95]) where objects aremodeled as types and hom-sets as hom-setoids.We start this work by �rst presenting the axiomatization of the notion ofcategory proposed by Huet and Sa��bi. Afterwards we de�ne some examples toillustrate the previous axiomatization. Finally we present basic concepts andresults related to this notions.In the second part of this work we de�ne adjunction situation in Coq. Ad-junction was already de�ned in Coq by Sa��bi (see for instance [Sa��95]) howeverwe choose an alternative de�nition following [AHS90]. After we present someexamples of adjunction situation. We end this chapter showing two results con-cerning adjunctions. First we prove that a functor G has left adjoint i� for anyobject X the comma category X # G has initial object. Second we prove thatthe left adjoint of a functor is unique up to natural isomorphism.In the third part of this work we de�ne cocartesian lifting in Coq. As usualwe provide some examples and show that the codomain of a cocartesian liftingis unique up to isomorphism. In addition we remark that the axiomatizationproposed by Huet and Sa��bi is not good when dealing with the equality forobjects.During these three last chapters we just give the statement of the lemmaswithout the proof scripts. In appendix we present a proof in detail explainingall the tactics used. We also present all the Coq source code and the trace ofproofs in appendix.We assume that the reader is familiar with the basics of category theoryand considering that the Coq notation is similar to the standard mathematicalnotation, we only explain the semantics of some Coq commands that are lessintuitive (for more details see [PM96]).
6

Chapter 2A Crash Introduction to CoqThe Coq notation is similar to the usual mathematical notation. It is howeverworthwhile to make two remarks. First, the universal quanti�cation is denotedby parenthesis, so for instance (x:T)(P x) stands for 8x2TP (x). Second, thefunctional abstraction is denoted by square brackets, so for instance [x:T](f x)stands for �x 2 T:f(x).2.1 Binary RelationsIn this section we de�ne binary relations that are central to de�ne the categorytheory in Coq. We start by introducing some Coq commands whose semanticsmay not be trivial.When we apply arguments to a term it is common that some arguments canbe determined by other arguments. So, for the sake of simplicity, we would liketo apply only the latter ones. The Coq system allows us to do this by callingthe implicit arguments mode.Implicit Arguments On.The Coq section is a modular mechanism to organize the source. All notionsde�ned in the body of a section can be used outside, with the small di�erencethat we have to parameterize this notions by the variables on which they depend.In the sequel, we present the section where we de�ne binary relations and relatedproperties.Section BinRel.Variable t: Type.De�nition Relation:= t!t!Prop.Variable r: Relation.De�nition Reflexive:= (x:t)(r x x).7

De�nition Transitive:= (x,y,z:t)(r x y)!(r y z)!(r x z).De�nition Symmetric:= (x,y:t)(r x y)!(r y x).The macro Structure generates an inductive de�nition with one constructorand de�nes the projection functions for each �eld. It also de�nes a constructorBuild ident where ident stands for the name of the Structure.Structure Equivalence: Prop:= fPrf refl : Reflexive;Prf trans : Transitive;Prf sym : Symmetricg.In this case the projections are Prf refl, Prf trans and Prf sym, thus for in-stance, given an Equivalence equiv its proof of reexivity is (Prf refl equiv).To build an Equivalence from its constituents we use the constructorBuild Equivalence.End BinRel.2.2 SetoidsTo de�ne a category as general as possible the objects and the morphismscan not be sets, or else we are only de�ning small categories. One possibleaxiomatization of category theory in Coq that solves this problem was proposedby Huet and Sa��bi (see [HS95]). In this work we adopt this solution and so westart by de�ning the structure Setoid.2.2.1 The Setoid StructureSetoids are triples composed of a type Carrier, a relation Equal over Carrierand a proof that Equal is an equivalence relation. It is usual in mathematics tooverload the notation when the context is clear. The Coq system allows us tooverload the notation by using coercions. In a Structure a coercion is de�nedby the symbol >. In our case, when we declare a Setoid s, Coq treats s as aSetoid or as its Carrier, depending of the context.Structure Setoid: Type:= fCarrier :> Type;Equal : (Relation Carrier);Prf equiv : (Equivalence Equal)g.All operators in Coq are pre�x however it is more natural for some operatorsto be in�x. The Infix command de�nes a pre�x operator, like Equal, as in�x.8

We start to declare =%S as a new token, since it is not prede�ned. Thus foreach s1 and s2 in a Setoid s, s1 =%S s2 stands for (Equal s1 s2).Token "=%S".Infix 2 "=%S" Equal.The last �eld of a Setoid is a proof that its equality is an equivalence rela-tion. Thus it is trivial to obtain the corollaries of reexivity, symmetry andtransitivity.Lemma Equal refl: (s:Setoid)(s1:s) s1 =%S s1.Lemma Equal sym: (s:Setoid)(s1,s2:s) s1 =%S s2 ! s2 =%S s1.Lemma Equal trans: (s:Setoid)(s1,s2,s3:s)s1 =%S s2 ! s2 =%S s3 ! s1 =%S s3.2.2.2 The Setoid of Maps between two SetoidsAs proposed in [HS95] the morphisms between two objects in a category con-stitute a setoid. Thus, the concept of map between two setoids is the base tode�ne the composition of a category.A mapoid between two setoids s and s' is a map between the (Carrier s)and the (Carrier s') provided that this map preserves the equality of thesetoid. The coercion that we de�ned before on the Setoid allows us to writeMap as a map between s and s'.Section Mapoids.Variables s,s': Setoid.De�nition MapLaw:= [f:s!s'](s1,s2:s) s1 =%S s2 ! (f s1) =%S (f s2).Structure Mapoid: Type:= fMap :> s!s';Prf pres : (MapLaw Map)g.The notion of mapoid is needed to de�ne the composition but it is not su�cient.The composition as a binary operator receives two morphisms and returns thecomposite morphism. A mapoid receives only a setoid, hence the codomain ofthe composition mapoid must be a setoid of mapoids. This is the traditionalcurrying transformation commonly used in functional programming.To de�ne the setoid of mapoids we have to give an equality between twomapoids and check that it is an equivalence relation. We say that two mapoidsare equal i� they are extensionally equal.9

De�nition Ext:= [f,g:Mapoid](s1:s) (f s1) =%S (g s1).Lemma Ext equiv: (Equivalence Ext).Now that we have de�ned mapoids and an equality relation over mapoids thatis an equivalence, we can de�ne the setoid of the mapoids between two setoids.De�nition SetoidMapoid: Setoid:= (Build Setoid Ext equiv).End Mapoids.We write s =) s' for the setoid of mapoids between the setoids s and s'.Token "=)".Infix Assoc 6 "=)" SetoidMapoid.2.2.3 Binary MapoidsGiven three setoids s, s' and s'', a binary mapoid is a mapoid between thesetoid s and the setoid of the mapoids between the setoids s' and s''.Section BinaryMapoids.Variable s,s',s'': Setoid.De�nition BinMapoid:= (Mapoid s s'=)s'').Remark that if the morphisms between two objects constitute a setoid thecomposition must be a binary mapoid.Until the end of this section we sketch a few results that we use later on insome lemmas and de�nitions. We intend now to prove that from a binary mapf we can obtain a binary mapoid if f holds the congruence laws for the equalityof the setoid.Variable f: s!s'!s''.De�nition BinMapConglLaw:= (s1',s2':s')(s1:s)s1' =%S s2' ! ((f s1) s1') =%S ((f s1) s2').De�nition BinMapCongrLaw:= (s1,s2:s)(s1':s')s1 =%S s2 ! ((f s1) s1') =%S ((f s2) s1').De�nition BinMapCongLaw:= (s1,s2:s)(s1',s2':s')s1 =%S s2 ! s1' =%S s2' ! ((f s1) s1') =%S ((f s2) s2').Hypothesis pcgl: BinMapConglLaw.10

Hypothesis pcgr: BinMapCongrLaw.Lemma f pres: (s1:s)(MapLaw (f s1)).De�nition Mapf: s!(s'=)s''):=[s1:s](Build Mapoid (f pres s1)).Lemma Mapf pres: (MapLaw Mapf).De�nition Build BinMapoid: BinMapoid:= (Build Mapoid Mapf pres).End BinaryMapoids.Conversely, from a binary mapoid f we can obtain a binary map that holds thecongruence laws for the equality of the setoid.Section CongBinMaps.Variable s,s',s'': Setoid.Variable f: (BinMapoid s s' s'').De�nition BinMap:= [s1:s][s1':s']((f s1) s1').Lemma BinMap congl: (BinMapConglLaw BinMap).Lemma BinMap congr: (BinMapCongrLaw BinMap).Lemma BinMap cong: (BinMapCongLaw BinMap).End CongBinMaps.2.3 Categories2.3.1 The Category StructureWe are �nally ready to de�ne category. The objects of a general category havetype Type and the morphisms are a family of setoids indexed by their domainand codomain. In the sequel we use hom-setoids to denote the setoids of thisfamily.Section CatLaws.Variable ob: Type.Variable hom: ob!ob!Setoid. 11

As we said before we de�ne the composition as a binary mapoid.Variable comp mapoid: (x,y,z:ob)(BinMapoid (hom x y) (hom y z) (hom x z)).However, the associativity and the identity laws of the composition are de�nedover a binary map. We make use of BinMap, de�ned in the last section, toextract a binary map from a binary mapoid. Note that this map is congruentfor the equality of the morphisms.De�nition Comp map:= [x,y,z:ob][f:(hom x y)][g:(hom y z)](BinMap (comp mapoid x y z) f g).For simplicity, we write f o g for (Comp map f g) and we say that this in�xoperator is associative.Infix Assoc 6 "o" Comp map.Remark that the symbol o is not used in the usual way (its arguments are inthe inverse order).In addition we have to assure that this composition map is associative.De�nition AssocLaw:=(x,y,z,w:ob)(f:(hom x y))(g:(hom y z))(h:(hom z w))(f o (g o h)) =%S ((f o g) o h).Finally we have to de�ne the identity that holds the identity laws for composi-tion.Variable id: (x:ob)(hom x x).De�nition IdlLaw:= (x,y:ob)(f:(hom x y)) ((id x) o f) =%S f.De�nition IdrLaw:= (x,y:ob)(f:(hom x y)) f =%S (f o (id y)).End CatLaws.Now we are able to de�ne the category structure.Structure Category: Type:= fOb :> Type;Hom : Ob!Ob!Setoid;CompMapoid : (x,y,z:Ob)(BinMapoid (Hom x y) (Hom y z) (Hom x z));Id : (x:Ob)(Hom x x);Prf assoc : (AssocLaw CompMapoid);12

Prf idl : (IdlLaw CompMapoid Id);Prf idr : (IdrLaw CompMapoid Id)g.As we shall see later, we use very frequently the composition as a binary map.So, in order to have a lighter notation, we present the following de�nition.De�nition CompMap:= [c:Category](Comp map (CompMapoid 1!c)).The exclamation mark is used whenever we want to explicitly give an implicitargument. The number that appears before the exclamation mark is the numberof the implicit argument. We can see the list of implicit arguments with theirrespective numbers by typing the command Print.We write f o g for (CompMap f g) and in addition we say that this in�xoperator is associative.Infix Assoc 6 "o" CompMap.Remark that grammar de�nitions inside a section disappear when the sectionis closed. Thus this last new rule does no conict with the previous one de�nedinside of the section CatLaws.By the results of the previous section to build the CompMapoid of a categorywe have to give a binary map and check that it holds the congruence laws.What we present next is a usual procedure to de�ne the composition in anycategory from such a map. We shall use systematically this procedure fromnow on for every category de�nition.Section CatComp.Variable ob: Type.Variable hom: ob!ob!Setoid.Variable compmap: (x,y,z:ob)(hom x y)!(hom y z)!(hom x z).De�nition ConglLaw:= (x,y,z:ob)(f,g:(hom y z))(h:(hom x y))f =%S g ! (compmap h f) =%S (compmap h g).De�nition CongrLaw:= (x,y,z:ob)(f,g:(hom x y))(h:(hom y z))f =%S g ! (compmap f h) =%S (compmap g h).De�nition CongLaw:= (x,y,z:ob)(f,f':(hom x y))(g,g':(hom y z))f =%S f' ! g =%S g' ! (compmap f g) =%S (compmap f' g').Hypothesis pcgl: ConglLaw.Hypothesis pcgr: CongrLaw. 13

Variable x,y,z: ob.De�nition Build CompMapoid:(BinMapoid (hom x y) (hom y z) (hom x z)):=(Build BinMapoid (pcgl 1!x 2!y 3!z) (pcgr 1!x 2!y 3!z)).End CatComp.Now we check that the composition map of a category respects the congruencelaws. These laws are trivial to obtain with the results of the last section butstill they are important to obtain some proofs in the future.Section CatCong.Variable c: Category.Lemma CompMap congl: (ConglLaw (CompMap 1!c)).Lemma CompMap congr: (CongrLaw (CompMap 1!c)).Lemma CompMap cong: (CongLaw (CompMap 1!c)).End CatCong.2.3.2 The Dual CategoryA dual category cop of a category c has the same objects of c but its morphismsare opposite. That is, if f:(Hom c1 c2) is a morphism in c then f:(Hom c2 c1)is a morphism in cop.Variable c: Category.De�nition DHom:= [c1,c2:c](Hom c2 c1).The composition is de�ned as expected. If (f o g) is a morphism in c then(g o f) is a morphism in cop. We then present the congruence laws to build thecomposition and check the associativity law.De�nition DCompMap:= [c1,c2,c3:c][df:(DHom c1 c2)][dg:(DHom c2 c3)] dg o df.Lemma DCompMap congl: (ConglLaw DCompMap).Lemma DCompMap congr: (CongrLaw DCompMap).De�nition CompDual: 14

(c1,c2,c3:c)(BinMapoid (DHom c1 c2)(DHom c2 c3)(DHom c1 c3)):=(Build CompMapoid DCompMap congl DCompMap congr).Lemma Dual assoc: (AssocLaw CompDual).The identity of cop is the identity of c. After checking the identity laws forcomposition we are able to build the dual category.Lemma Dual idl: (IdlLaw 2!DHom CompDual (Id 1!c)).Lemma Dual idr: (IdrLaw 2!DHom CompDual (Id 1!c)).De�nition Dual:= (Build Category Dual assoc Dual idl Dual idr).End DualCat.2.3.3 The Category SetoidAs expected, the objects of the category Setoid are setoids and the morphismsare mapoids. Since we have already de�ned the setoid of mapoids our work ispartially done. Hence we start by de�ning the composition. The compositionof two mapoids is the composition of their respective maps. We only have tocheck that this composite map is a mapoid.Section CompositionMapoid.Variable s,s',s'': Setoid.Variable f: (Mapoid s s').Variable g: (Mapoid s' s'').De�nition Comp Map:= [s1:s](g (f s1)).Lemma Comp Map pres: (MapLaw Comp Map).End CompositionMapoid.De�nition SetoidComp:(s,s',s'':Setoid)(s=)s')!(s'=)s'')!(s=)s''):=[s,s',s'':Setoid][sm:s=)s'][sm':s'=)s''](Build Mapoid (Comp Map pres sm sm')).To build the composition mapoid of a category, we have to give a compositionmap, SetoidComp, and check that it veri�es the congruence laws.15

Lemma SetoidComp congl: (ConglLaw SetoidComp).Lemma SetoidComp congr: (CongrLaw SetoidComp).De�nition Comp SETOID:(s,s',s'':Setoid)(BinMapoid s=)s' s'=)s'' s=)s''):=(Build CompMapoid SetoidComp congl SetoidComp congr).Lemma Assoc Setoid: (AssocLaw Comp SETOID).The next step is to de�ne the identity as a mapoid. We only have to check thatthe identity map is a mapoid.Section Setoid Id.Variable s: Setoid.De�nition Id Map:= [s1:s]s1.Lemma Id Map pres: (MapLaw Id Map).De�nition Id SETOID: (Mapoid s s):= (Build Mapoid Id Map pres).End Setoid Id.Lemma Idl Setoid: (IdlLaw Comp SETOID Id SETOID).Lemma Idr Setoid: (IdrLaw Comp SETOID Id SETOID).With the laws of associativity and identity for composition we can de�ne thecategory Setoid.De�nition SETOID: Category:=(Build Category Assoc Setoid Idl Setoid Idr Setoid).2.3.4 The Category PresetoidThe objects of the category Presetoid are preorders and the morphisms aremonotonous mapoids between preorders. A preorder is a reexive and transitivebinary relation between setoids. Since we are dealing with setoids and not setswe have to impose that two equal elements in a setoid must be related. Tode�ne the morphisms we have to build a setoid of monotonous mapoids. Hencewe have to give an equality for monotonous mapoids and show that it is anequivalence relation. Obviously the equality provided is the equality betweenmapoids. 16

Section Setoid Presetoid.Structure PreOrder: Type:= fS :> Setoid;Rel : (Relation S);Prf presequal : (s1,s2:S)(s1 =%S s2)!(Rel s1 s2);Prf po refl : (Reflexive Rel);Prf po trans : (Transitive Rel)g.Variable p,p': PreOrder.De�nition IsMonotonous:= [f:(Mapoid p p')](p1,p2:p)(Rel p1 p2)!(Rel (f p1) (f p2)).Structure MonMapoid: Type:= fMon Mapoid :> (Mapoid p p');Prf ismon : (IsMonotonous Mon Mapoid)g.De�nition EqualMonMapoid:= [f,g:MonMapoid](Ext f g).Lemma EqualMonMapoid equiv: (Equivalence EqualMonMapoid).De�nition Setoid MonMapoid: Setoid:=(Build Setoid EqualMonMapoid equiv).End Setoid Presetoid.The next step is to de�ne the composition. The composition of two monotonousmapoids is the composition of their mapoids. In addition we have to check thatthe composite mapoid is monotonous.Section CompositionMonMapoid.Variable p,p',p'': PreOrder.Variable f: (MonMapoid p p').Variable g: (MonMapoid p' p'').De�nition Comp MonMap:= [p1:p](g (f p1)).Lemma Comp MonMap pres: (MapLaw Comp MonMap).De�nition Comp MonMapoid: (Mapoid p p''):=17

(Build Mapoid Comp MonMap pres).Lemma Comp MonMapoid ismon: (IsMonotonous Comp MonMapoid).End CompositionMonMapoid.De�nition PresetoidComp:(p,p',p'':PreOrder)(Setoid MonMapoid p p')!(Setoid MonMapoid p' p'')!(Setoid MonMapoid p p''):=[p,p',p'':PreOrder][sm:(Setoid MonMapoid p p')][sm':(Setoid MonMapoid p' p'')](Build MonMapoid (Comp MonMapoid ismon sm sm')).To build the composition mapoid of a category, we have to give a compositionmap, PreSetoidComp, and check that it veri�es the congruence laws.Lemma PresetoidComp congl: (ConglLaw PresetoidComp).Lemma PresetoidComp congr: (CongrLaw PresetoidComp).De�nition Comp PRESETOID:(p,p',p'':PreOrder)(BinMapoid (Setoid MonMapoid p p')(Setoid MonMapoid p' p'')(Setoid MonMapoid p p'')):=(Build CompMapoid PresetoidComp congl PresetoidComp congr).Lemma Assoc Presetoid: (AssocLaw Comp PRESETOID).We de�ne the identity as the identity mapoid, that is obviously monotonous.Section Presetoid Id.Variable p: PreOrder.De�nition Id MonMap:= [p1:p]p1.Lemma Id MonMap pres: (MapLaw Id MonMap).De�nition Id MonMapoid: (Mapoid p p):=(Build Mapoid Id MonMap pres).Lemma Id MonMapoid ismon: (IsMonotonous Id MonMapoid).De�nition Id PRESETOID: (MonMapoid p p):=(Build MonMapoid Id MonMapoid ismon).18

End Presetoid Id.Lemma Idl Presetoid: (IdlLaw Comp PRESETOID Id PRESETOID).Lemma Idr Presetoid: (IdrLaw Comp PRESETOID Id PRESETOID).Finally with the laws of associativity and identity for composition we can buildthe category Presetoid.De�nition PRESETOID: Category:=(Build Category Assoc Presetoid Idl Presetoid Idr Presetoid).2.3.5 The Category SetThe objects of this category are the Set's. The morphisms must constitute asetoid so we have to de�ne the setoid of maps between Set's. In order to de�nesuch setoid we must provide an equality relation for the maps. We say that twomaps are equal i� they are extensional equal.Section Setoid Set.Variable a,a': Set.De�nition EqualFunction:= [f,g:a!a'](a1:a)(f a1)=(g a1).Lemma EqualFunction equiv: (Equivalence EqualFunction).De�nition Setoid Function: Setoid:=(Build Setoid EqualFunction equiv).End Setoid Set.The composition is clearly the composition of maps.Section CompositionFunction.Variable a,a',a'': Set.Variable f: a!a'.Variable g: a'!a''.De�nition Comp Function: a!a'':= [a1:a](g (f a1)).End CompositionFunction.De�nition SetComp: 19

(a,a',a'':Set)(Setoid Function a a')!(Setoid Function a' a'')!(Setoid Function a a''):=[a,a',a'':Set][sm:(Setoid Function a a')][sm':(Setoid Function a' a'')](Comp Function sm sm').To build the composition mapoid of a category, we have to give a compositionmap, SetComp, and check that it veri�es the congruence laws.Lemma SetComp congl: (ConglLaw SetComp).Lemma SetComp congr: (CongrLaw SetComp).De�nition Comp SET:(a,a',a'':Set)(BinMapoid (Setoid Function a a')(Setoid Function a' a'')(Setoid Function a a'')):=(Build CompMapoid SetComp congl SetComp congr).Lemma Assoc Set: (AssocLaw Comp SET).Finally it only remains to de�ne the identity, that is the identity map.Section Set Id.Variable a: Set.De�nition Id SET: a!a:= [a1:a]a1.End Set Id.Lemma Idl Set: (IdlLaw Comp SET Id SET).Lemma Idr Set: (IdrLaw Comp SET Id SET).With all the framework above we are able to de�ne the category Set.De�nition SET: Category:=(Build Category Assoc Set Idl Set Idr Set).2.3.6 The Category PThHerein we de�ne the category of propositional theories. A propositional theoryis a pair h�;�i where � is a set, called signature, and � is a subset of L�(the language of propositional formulae that can be written with symbols of �)closed for the semantic entailment. The elements of � are called propositional20

symbols and the elements of � are called theorems.A morphism between (propositional) theories � : h�1;�1i ! h�2;�2i is amap between �1 and �2 such that �^(�1) � �2. The extension �^ of � tothe power of L�1 is canonically established by replacing in each formula eachsymbol p of �1 by �(p).Section Setoid PTh.Section Objects.To de�ne objects we assume as given a signature that we called sig.Variable sig: Set.We now have to de�ne the set of theorems that is a subset of the language ofsig. Hence we start by de�ning the language of sig, Lsig. This de�nitionis obviously an inductive de�nition. Until now we have only used inductivede�nitions with a single constructor (macro Structure). However to de�neLsig we need three constructors. The command Inductive is the primitiveway to de�ne inductive de�nitions with as many constructors as we want. Inorder to de�ne an inductive type with Inductive we must provide the name ofthe constructors and their respective types. In the case of Lsig, id, imp andno are the constructors.Inductive Lsig: Type :=id : sig!Lsigj imp: Lsig!Lsig!Lsigj no : Lsig!Lsig.The satisfaction of a propositional formula, by a valuation, is inductively de�nedin the structure of the propositional formulae. Whenever we want to de�neinductive objects using the inductive construction of their arguments we mustuse the command Fixpoint. In this case to de�ne SatPF we take advantage ofthe inductive de�nition of Lsig.Fixpoint SatPF[val:sig!Prop; pf:Lsig]: Prop:=Case pf of[ps:sig] (val ps)[pf1,pf2:Lsig] (SatPF val pf1)!(SatPF val pf2)[pf1:Lsig] :(SatPF val pf1)end.The Case operator matches the value pf with the various constructors of itsinductive type. Thus when pf is (id ps) it returns (val ps), when pf is(imp pf1 pf2) it returns (SatPF val pf1)!(SatPF val pf2) and when pfis (no pf1) it returns :(SatPF val pf1).We say that a valuation satis�es a set of propositional formulae whenever21

it satis�es all the formulae of the set. Actually a set of propositional formulaeis a subset of Lsig. To de�ne subsets of Lsig we use an unary relation, PLsig,over Lsig.De�nition PLsig:= Lsig!Prop.De�nition SatSet: (sig!Prop)!PLsig!Prop:=[val:sig!Prop][gamma:PLsig](pf:Lsig)(gamma pf)!(SatPF val pf).A formula pf of Lsig is a semantic consequence of a subset gamma of Lsig i�it is satis�ed for all valuations that satisfy gamma.De�nition Entailment: PLsig!Lsig!Prop:=[gamma:PLsig][pf:Lsig](val:sig!Prop)(SatSet val gamma)!(SatPF val pf).End Objects.Now it only remains to de�ne what is a set closed for the semantic entailment.We say that gamma is closed for the semantic entailment i� for any formula pfthat is entailed by gamma belongs to gamma.Inductive GammaClose[sig:Set; gamma:(PLsig sig)]: Prop:=Build TS: ((pf:(Lsig sig))(Entailment gamma pf)!(gamma pf))!(GammaClose sig gamma).Finally, the objects of a propositional theory are composed by a Signature anda set Gamma of formulae in (Lsig Signature) that is closed for the semanticentailment.Structure PTh: Type:= fSignature :> Set;Gamma : (PLsig Signature);Prf close : (GammaClose Gamma)g.We now de�ne the extension of a map between signatures to the power of thelanguage of their respective signatures.Section Morphisms.Variable sig,sig':Set.Fixpoint Extension[f:sig!sig'; pf:(Lsig sig)]: (Lsig sig'):=Case pf of[ps:sig] (id (f ps)) 22

[pf1,pf2:(Lsig sig)] (imp (Extension f pf1)(Extension f pf2))[pf1:(Lsig sig)] (no (Extension f pf1))end.End Morphisms.The morphisms between propositional theories are maps that hold theInclusionLaw.Variable pt,pt':PTh.De�nition InclusionLaw:= [f:pt!pt'](pf:(Lsig pt))((Gamma 1!pt) pf)!((Gamma 1!pt') (Extension f pf)).Structure MorphismPTh: Type:= fApplication :> pt!pt';Prf inclusion : (InclusionLaw Application)g.With all the framework presented above we are able to de�ne the setoid ofthe morphisms between propositional theories. Since this morphisms are maps,that hold the InclusionLaw, the equality is obviously the equality betweenmaps. As we show next this relation is an equivalence and so we can build thesetoid of morphisms between propositional theories.De�nition EqualMorphismPTh:=[f,g:MorphismPTh](ps:pt)(f ps)=(g ps).Lemma EqualMorphismPTh equiv: (Equivalence EqualMorphismPTh).De�nition Setoid MorphismPTh: Setoid:=(Build Setoid EqualMorphismPTh equiv).End Setoid PTh.The composition of two morphisms between propositional theories is the com-position of their respective maps. To check that this composition is a mor-phism between propositional theories we have to show that it respects theInclusionLaw. For this purpose we start by an auxiliary lemma where weprove that the extension of a composition is the composition of the extendedmaps.Section CompositionMorphismPTh.Variable pt,pt',pt'': PTh. 23

Variable f: (MorphismPTh pt pt').Variable g: (MorphismPTh pt' pt'').De�nition Comp Application:= [ps:pt](g (f ps)).Lemma CompExtension: (pf:(Lsig pt))(f':pt!pt')(g':pt'!pt'')(Extension [ps:pt](g' (f' ps)) pf)==(Extension g' (Extension f' pf)).Lemma Comp Application inclusion:(InclusionLaw Comp Application).End CompositionMorphismPTh.De�nition PThComp:(pt,pt',pt'':PTh)(Setoid MorphismPTh pt pt')!(Setoid MorphismPTh pt' pt'')!(Setoid MorphismPTh pt pt''):=[pt,pt',pt'':PTh][sm:(Setoid MorphismPTh pt pt')][sm':(Setoid MorphismPTh pt' pt'')](Build MorphismPTh (Comp Application inclusion sm sm')).As usual we can build the composition mapoid with the proves that the com-position map PThComp holds the congruence laws.Lemma PThComp congl: (ConglLaw PThComp).Lemma PThComp congr: (CongrLaw PThComp).De�nition Comp PTH:(pt,pt',pt'':PTh)(BinMapoid (Setoid MorphismPTh pt pt')(Setoid MorphismPTh pt' pt'')(Setoid MorphismPTh pt pt'')):=(Build CompMapoid PThComp congl PThComp congr).Lemma Assoc PTh: (AssocLaw Comp PTH).The identity morphism is obviously the identity map. We only have to checkthat it holds the InclusionLaw. To check this we start by showing that theextension of the identity map is the identity.Section PTh Id.Variable pt: PTh. 24

De�nition Id Application:= [ps:pt]ps.Lemma IdExtension:(pf:(Lsig pt))(Extension [ps:pt]ps pf)==pf.Lemma Id Application inclusion: (InclusionLaw Id Application).De�nition Id PTH: (MorphismPTh pt pt):=(Build MorphismPTh Id Application inclusion).End PTh Id.Lemma Idl PTh: (IdlLaw Comp PTH Id PTH).Lemma Idr PTh: (IdrLaw Comp PTH Id PTH).Finally with the laws of associativity and identity for composition we are ableto build the category PTh.De�nition PTH: Category:=(Build Category Assoc PTh Idl PTh Idr PTh).2.4 FunctorsA functor is a pair of maps, one for the objects and another for the morphisms.The �rst is a map in Type and the second is a mapoid, since the morphismsconstitute a setoid. These maps must preserve the composition and the identity.Section FunctorDef.Variable c,d: Category.Section FunctorLaws.Variable fF0: c!d.Variable fF1: (c1,c2:c)(Mapoid (Hom c1 c2) (Hom (fF0 c1) (fF0 c2))).De�nition FCompLaw:= (c1,c2,c3:c)(f:(Hom c1 c2))(g:(Hom c2 c3))((fF1 c1 c3) (f o g)) =%S (((fF1 c1 c2) f) o ((fF1 c2 c3) g)).De�nition FIdLaw:= (c1:c)((fF1 c1 c1) (Id c1)) =%S (Id (fF0 c1)).25

End FunctorLaws.Structure Functor: Type:= fF0 :> c!d;F1 : (c1,c2:c)(Mapoid (Hom c1 c2) (Hom (F0 c1) (F0 c2)));Prf comp : (FCompLaw F1);Prf id : (FIdLaw F1)g.We can not make two coercions simultaneously for F0 and F1 because they areboth functions (the Coq system does not allow it). Thus we choose to make acoercion for F0.To simplify the syntax we de�ne FMor that returns the image of a morphismf by a functor F. In FMor, the arguments c1 and c2 are implicit and that is notthe case for F1.De�nition FMor:= [fF:Functor][c1,c2:c][f:(Hom c1 c2)]((F1 fF c1 c2) f).End FunctorDef.2.5 Isomorphisms and Initial and Terminal ObjectsWe say that two objects c1 and c2 are isomorphic whenever there are twomorphisms, IsoMor:(Hom c1 c2) and InvIso:(Hom c2 c1), such that one isthe inverse of the other.Section IsoDef.Variable c: Category.Variable c1,c2: c.De�nition InverseLaw:= [c1,c2:c][f:(Hom c1 c2)][g:(Hom c2 c1)](g o f) =%S (Id c2).De�nition IsoLaw:= [f:(Hom c1 c2)][g:(Hom c2 c1)](InverseLaw f g)^(InverseLaw g f).Structure Iso: Type:=fIsoMor : (Hom c1 c2);InvIso : (Hom c2 c1);Prf iso : (IsoLaw IsoMor InvIso)g. 26

End IsoDef.We say that an object ObI is initial in a category c if there is a family ofmorphisms MorI:(c2:c)(Hom ObI c2) such that for every c2 in c any mor-phism g:(Hom ObI c2) belongs to the source hObI, � c2:c.(MorI c2)i. Seefor instance [AHS90] for more details in sources.Section InitialDef.Variable c: Category.De�nition InitialLaw:= [c1:c][f:(c2:c)(Hom c1 c2)](c2:c)(g:(Hom c1 c2)) (f c2) =%S g.Structure Initial: Type:= fObI :> c;MorI : (c2:c)(Hom ObI c2);Prf initial : (InitialLaw MorI)g.End InitialDef.Terminal objects are de�ned similarly to initial objects, using a sink instead ofa source.Section TerminalDef.Variable c: Category.De�nition TerminalLaw:= [c2:c][f:(c1:c)(Hom c1 c2)](c1:c)(g:(Hom c1 c2)) (f c1) =%S g.Structure Terminal: Type:= fObT :> c;MorT : (c1:c)(Hom c1 ObT);Prf terminal : (TerminalLaw MorT)g.End TerminalDef.2.6 Some ExercisesHerein we show some lemmas. First we obtain three basic results with respectto the concepts that we de�ned above. This results are already establishedby Huet and Sa��bi in [HS95] and are presented here only for satisfying thecuriosity of the reader about the articulation of these concepts. Next we check27

the presentation lemma that is a powerful lemma that we shall use later on forshowing some results.2.6.1 Basic ResultsWe start to prove that initial objects are unique up to isomorphism.Lemma Two ObI Iso: (c:Category)(i1,i2:(Initial c))(Iso i1 i2).We now show that an initial object in a category is terminal in the dual category.Lemma Initial Dual: (c:Category)(c1:c)(i:(c2:c)(Hom c1 c2))(InitialLaw i)!(TerminalLaw 1!(Dual c) i).Finally we show that functors preserve isomorphisms.Lemma F Preserve Iso: (c,d:Category)(fF:(Functor c d))(c1,c2:c)(Iso c1 c2)!(Iso (fF c1) (F c2)).2.6.2 The Presentation LemmaWe start by de�ning the closure of a set for semantic entailment and the inclu-sion of a set in another set. We also de�ne the set of images, by the extensionof a map f, of a set (given a set gamma we want the set f^(gamma)).De�nition Closure: (sig:Set)(PLsig sig)!(Lsig sig)!Prop:=[sig:Set][gamma:(PLsig sig)][pf:(Lsig sig)](Entailment gamma pf).De�nition Inclusion: (sig:Set)(PLsig sig)!(PLsig sig)!Prop:=[sig:Set][gamma1,gamma2:(PLsig sig)](pf:(Lsig sig))(gamma1 pf)!(gamma2 pf).Inductive ExtensionSet[sig,sig':Set;f:sig!sig';gamma:(PLsig sig)]: (PLsig sig'):=Build ES: (pf:(Lsig sig))(gamma pf)!(ExtensionSet sig sig' f gamma (Extension f pf)).Before presenting the presentation lemma we check three properties of the se-mantic entailment, the monotony, the idempotency and the structurality con-dition. Actually we only prove half of the idempotency (the inclusion in theother direction is trivial and not necessary to show the presentation lemma).Lemma Monotony:(sig:Set)(gamma1,gamma2:(PLsig sig))(Inclusion gamma1 gamma2)!(Inclusion (Closure gamma1) (Closure gamma2)).28

Lemma IdemPotency:(sig:Set)(gamma:(PLsig sig))(Inclusion (Closure (Closure gamma)) (Closure gamma)).Lemma Structurality:(sig,sig':Set)(f:sig!sig')(gamma:(PLsig sig))(pf':(Lsig sig'))(ExtensionSet f [pf:(Lsig sig)](Closure gamma pf) pf')!(Closure [pf1':(Lsig sig')](ExtensionSet f gamma pf1') pf').Lemma PresentationLemma:(sig,sig':Set)(f:sig!sig')(gamma:(PLsig sig))(gamma':(PLsig sig'))(((pf:(Lsig sig))(gamma pf)!(Closure gamma' (Extension f pf)))$((pf:(Lsig sig))(Closure gamma pf)!(Closure gamma' (Extension f pf)))).

29

Chapter 3AdjunctionsIn this section we present the concept of adjunction in Coq. We also de�ne someexamples and results that relate this de�nition with other concepts of categorytheory. The adjunction was already de�ned in Coq by Sa��bi (see [Sa��95]). Weimplement an equivalent but di�erent de�nition of adjunction. The adjunctionthat we de�ne in this section is the one given in [AHS90]:Let C and D be categories and F : C ! D and G : D ! C be functors. Wesay that F is left adjoint of G i�� there is a natural transformation � : idC ! GoF;� = f�X : X ! G(F (X))gX2jCj;� for all f : X ! G(A) in C there is only one morphism g : F (X) ! A inD such that G(g)o�X = f .We say that � is the unit of the adjunction hF,G,�i.3.1 The Adjunction StructureWe start by de�ning natural transformation. Given two categories c and d andtwo functors fF:(Functor c d) and fG:(Functor c d) a natural transforma-tion NT from fF to fG is a family f(NTMap c1):(Hom (fF c1) (fG c1))gc1:cthat holds the NTLaw.Section NTDef.Variable c,d: Category.Variable fF,fG: (Functor c d).De�nition NTLaw:= [nt:(c1:c)(Hom (fF c1) (fG c1))](c1,c2:c)(f:(Hom c1 c2))((FMor fF f) o (nt c2)) =%S ((nt c1) o (FMor fG f)).30

Structure NT: Type:= fNTMap :> (c1:c)(Hom (fF c1) (fG c1));Prf ntlaw : (NTLaw NTMap)g.End NTDef.For the speci�c case of an adjunction the natural transformation is betweenan identity functor and a composite functor. Hence we begin by de�ning theidentity functor IdFunctor for a category c. We call IdF0 the map for theobjects and IdF1 the mapoid for the morphisms.Section IdFunct.Variable c: Category.De�nition IdF0:= [c1:c]c1.Section IdMor.Variable c1,c2: c.De�nition IdFMor:= [f:(Hom c1 c2)]f.Lemma IdFMor pres: (MapLaw IdFMor).De�nition IdF1:(Mapoid (Hom c1 c2) (Hom (IdF0 c1) (IdF0 c2))):=(Build Mapoid IdFMor pres).End IdMor.Lemma IdF1 comp: (!FCompLaw c c IdF0 IdF1).Lemma IdF1 id: (!FIdLaw c c IdF0 IdF1).De�nition IdFunctor: (Functor c c):=(Build Functor IdF1 comp IdF1 id).End IdFunct.Next we check that the composition of two functors is a functor. We call thecomposite functor by CompFunctor, the map for the objects by CompF0 and themapoid for the morphisms CompF1.Section CompFunct. 31

Variable c,d,e: Category.Variable fG: (Functor c d).Variable fH: (Functor d e).De�nition CompF0:= [c1:c](fH (fG c1)).Section CompMor.Variable c1,c2:c.De�nition CompFMor:= [f:(Hom c1 c2)](FMor fH (FMor fG f)).Lemma CompFMor pres: (MapLaw CompFMor).De�nition CompF1:(Mapoid (Hom c1 c2) (Hom (CompF0 c1) (CompF0 c2))):=(Build Mapoid CompFMor pres).End CompMor.Lemma CompF1 comp: (FCompLaw CompF1).Lemma CompF1 id: (FIdLaw CompF1).De�nition CompFunctor: (Functor c e):=(Build Functor CompF1 comp CompF1 id).End CompFunct.Finally we can de�ne adjunction. Given two categories c and d and two functorsfF:(Functor c d) and fG:(Functor d c) we say that fF is left adjoint of fGwhenever we can �nd a natural transformation unit from (IdFunctor c) to(CompFunctor fF fG) that holds the universal property of the adjunction. Wesplit the universal property into two properties, one dealing with commutation,AdjCommuteLaw, and other dealing with uniqueness, AdjUniqueLaw.Section AdjunctionDef.Variable c,d: Category.Variable fF: (Functor c d).Variable fG: (Functor d c).Section AdjunctionLaws. 32

Variable unit: (NT (IdFunctor c) (CompFunctor fF fG)).De�nition Commute c:=[x:c][a:d][f:(Hom x (fG a))][g:(Hom (fF x) a)]((unit x) o (FMor fG g)) =%S f.Variable g: (x:c)(a:d)(f:(Hom x (fG a)))(Hom (fF x) a).De�nition Unique d:=[x:c][a:d][f:(Hom x (fG a))][g':(Hom (fF x) a)](Commute c f g') ! (g f) =%S g'.De�nition AdjCommuteLaw:=(x:c)(a:d)(f:(Hom x (fG a)))(Commute c f (g f)).De�nition AdjUniqueLaw:=(x:c)(a:d)(f:(Hom x (fG a)))(g':(Hom (fF x) a))(Unique d f g').End AdjunctionLaws.Structure Adjunction: Type:= funit : (NT (IdFunctor c) (CompFunctor fF fG));g : (x:c)(a:d)(f:(Hom x (fG a)))(Hom (fF x) a);Prf commute : (AdjCommuteLaw unit g);Prf unique : (AdjUniqueLaw unit g)g.End AdjunctionDef.3.2 The Adjunction between Setoid and PresetoidIn this section we intend to prove that the forgetful functor from PRESETOIDto SETOID has left and right adjoint. We start by de�ning this forgetful func-tor, FForgetfulPS. We call F0ForgetfulPS to the map of the objects andF1ForgetfulPS to the mapoid of the morphisms.Section F PRESETOID SETOID.Variable p,p': PRESETOID.De�nition F0ForgetfulPS: PRESETOID!SETOID := [p:PRESETOID]p.De�nition FMapForgetfulPS:(Hom p p')!(Hom (F0ForgetfulPS p) (F0ForgetfulPS p')):=33

[f:(MonMapoid p p')](Mon Mapoid f).Lemma FMapForgetfulPS pres: (MapLaw FMapForgetfulPS).De�nition F1ForgetfulPS:(Mapoid (Hom p p')(Hom (F0ForgetfulPS p) (F0ForgetfulPS p'))):=(Build Mapoid FMapForgetfulPS pres).End F PRESETOID SETOID.Lemma F1ForgetfulPS comp: (FCompLaw F1ForgetfulPS).Lemma F1ForgetfulPS id: (FIdLaw F1ForgetfulPS).De�nition FForgetfulPS: (Functor PRESETOID SETOID):=(Build Functor F1ForgetfulPS comp F1ForgetfulPS id).Next we de�ne the functor FEqualRel, the candidate for left adjoint ofFForgetfulPS. The functor FEqualRel maps each setoid s into a preorderPOEqual corresponding to a pair having s and the equality relation of the setoids. Obviously any mapoid between two preorders, that are image of POEqual, isa monotonous mapoid. The preservation of the relation is just the functionalitycondition for mapoids.Section F SETOID PRESETOID.Section FEqualRelPO.Variable s: SETOID.Lemma Equal presequal: (s1,s2:s)(s1 =%S s2)!(s1 =%S s2).Lemma Equal po refl: (Reflexive (!Equal s)).Lemma Equal po trans: (Transitive (!Equal s)).De�nition EqualPO: PreOrder:=(Build PreOrder Equal presequal Equal po refl Equal po trans).End FEqualRelPO.De�nition F0EqualRel: SETOID!PRESETOID:=[s:SETOID](EqualPO s).Section FEqualRelMonMapoid. 34

Variable s,s': SETOID.Variable f: (Mapoid (F0EqualRel s) (F0EqualRel s')).Lemma f ismon: (IsMonotonous f).De�nition MonMapf:(MonMapoid (F0EqualRel s) (F0EqualRel s')):=(Build MonMapoid f ismon).End FEqualRelMonMapoid.Variable s,s': SETOID.De�nition FMapEqualRel:(Hom s s')!(Hom (F0EqualRel s) (F0EqualRel s')):=[f:(Mapoid s s')](MonMapf f).Lemma FMapEqualRel pres: (MapLaw FMapEqualRel).De�nition F1EqualRel:(Mapoid (Hom s s') (Hom (F0EqualRel s) (F0EqualRel s'))):=(Build Mapoid FMapEqualRel pres).End F SETOID PRESETOID.Lemma F1EqualRel comp: (FCompLaw F1EqualRel).Lemma F1EqualRel id: (FIdLaw F1EqualRel).De�nition FEqualRel: (Functor SETOID PRESETOID):=(Build Functor F1EqualRel comp F1EqualRel id).To de�ne the adjunction we must provide a natural transformation between(IdFunctor SETOID) and (CompFunctor FEqualRel FForgetfulPS). The nat-ural transformation NTSETOID associates each setoid with its identity.Section NT SETOID.Variable s: SETOID.De�nition NTSetoidMap:((IdFunctor SETOID) s)!((CompFunctor FEqualRel FForgetfulPS) s):=(Id Map 1!s).Lemma NTSetoidMap pres: (MapLaw NTSetoidMap).35

De�nition NTSetoidMapoid:(Mapoid ((IdFunctor SETOID) s)((CompFunctor FEqualRel FForgetfulPS) s)):=(Build Mapoid NTSetoidMap pres).End NT SETOID.Lemma NTSetoidMapoid ntlaw:(NTLaw 1!SETOID 2!SETOID NTSetoidMapoid).De�nition NTSETOID:(NT (IdFunctor SETOID) (CompFunctor FEqualRel FForgetfulPS)):=(Build NT NTSetoidMapoid ntlaw).Finally we have to show the universal property of the adjunction. This is, givena setoid s and a presetoid p, for each morphism f:(Hom s (FForgetfulPS p)),we must provide a morphism g:(Hom (FEqualRel s) p) that holdsAdjCommuteLaw and AdjUniqueLaw. Obviously the candidate for g is f.Section Adj SETOID.Variable s: SETOID.Variable p: PRESETOID.Variable f: (Hom s (FForgetfulPS p)).Lemma f ismon: (!IsMonotonous (FEqualRel s) p f).De�nition g: (MonMapoid (FEqualRel s) p):=(Build MonMapoid f ismon).End Adj SETOID.Lemma g commute: (AdjCommuteLaw NTSETOID g).Lemma g unique: (AdjUniqueLaw NTSETOID g).De�nition AdjSETOID: (Adjunction FEqualRel FForgetfulPS):=(Build Adjunction g commute g unique).Next we de�ne the functor FTotalRel, the candidate for right adjoint ofFForgetfulPS. The functor FTotalRel maps each setoid s into a preorder cor-responding to a pair having s and the total relation over s, that we call Total.It is trivial to check that mapoids are always monotonous with respect to totalrelations. 36

Section F SETOID PRESETOID.Section FTotalRelPO.Variable s: SETOID.Inductive Total: (Relation (Carrier s)):=Build Total: (s1,s2:s)(Total s1 s2).Lemma Total presequal: (s1,s2:s)(s1 =%S s2)!(Total s1 s2).Lemma Total po refl: (Reflexive Total).Lemma Total po trans: (Transitive Total).De�nition TotalPO: PreOrder:=(Build PreOrder Total presequal Total po refl Total po trans).End FTotalRelPO.De�nition F0TotalRel: SETOID!PRESETOID:=[s:SETOID](TotalPO s).Section FTotalRelMonMapoid.Variable s,s': SETOID.Variable f: (Mapoid (F0TotalRel s) (F0TotalRel s')).Lemma f ismon: (IsMonotonous f).De�nition MonMapf:(MonMapoid (F0TotalRel s) (F0TotalRel s')):=(Build MonMapoid f ismon).End FTotalRelMonMapoid.Variable s,s': SETOID.De�nition FMapTotalRel:(Hom s s')!(Hom (F0TotalRel s) (F0TotalRel s')):=[f:(Mapoid s s')](MonMapf f).Lemma FMapTotalRel pres: (MapLaw FMapTotalRel).De�nition F1TotalRel: 37

(Mapoid (Hom s s') (Hom (F0TotalRel s) (F0TotalRel s'))):=(Build Mapoid FMapTotalRel pres).End F SETOID PRESETOID.Lemma F1TotalRel comp: (FCompLaw F1TotalRel).Lemma F1TotalRel id: (FIdLaw F1TotalRel).De�nition FTotalRel: (Functor SETOID PRESETOID):=(Build Functor F1TotalRel comp F1TotalRel id).To de�ne the adjunction we must provide a natural transformation between(IdFunctor PRESETOID) and (CompFunctor FForgetfulPS FTotalRel). Thenatural transformation NTPRESETOID associates each preorder with its identity.Section NT PRESETOID.Variable p: PRESETOID.De�nition NTPresetoidMap:((IdFunctor PRESETOID) p)!((CompFunctor FForgetfulPS FTotalRel) p):=(Id MonMap 1!p).Lemma NTPresetoidMap pres: (MapLaw NTPresetoidMap).De�nition NTPresetoidMapoid:(Mapoid ((IdFunctor PRESETOID) p)((CompFunctor FForgetfulPS FTotalRel) p)):=(Build Mapoid NTPresetoidMap pres).Lemma NTPresetoidMapoid ismon:(IsMonotonous NTPresetoidMapoid).De�nition NTPresetoidMonMap:(MonMapoid ((IdFunctor PRESETOID) p)((CompFunctor FForgetfulPS FTotalRel) p)):=(Build MonMapoid NTPresetoidMapoid ismon).End NT PRESETOID.Lemma NTPresetoidMonMap ntlaw:(NTLaw 1!PRESETOID 2!PRESETOID NTPresetoidMonMap).De�nition NTPRESETOID:(NT (IdFunctor PRESETOID) 38

(CompFunctor FForgetfulPS FTotalRel)):=(Build NT NTPresetoidMonMap ntlaw).Finally we have to show the universal property of the adjunction. This is, givena presetoid p and a setoid s, for each morphism f:(Hom p (FTotalRel s)),we must provide a morphism g:(Hom (FForgetfulPS p) s) that holdsAdjCommuteLaw and AdjUniqueLaw. Obviously the candidate for g is f.Section Adj PRESETOID.Variable p: PRESETOID.Variable s: SETOID.Variable f: (Hom p (FTotalRel s)).Lemma MonMapoidf pres: (MapLaw (Mon Mapoid f)).De�nition g: (Mapoid (FForgetfulPS p) s):=(Build Mapoid MonMapoidf pres).End Adj PRESETOID.Lemma g commute: (AdjCommuteLaw NTPRESETOID g).Lemma g unique: (AdjUniqueLaw NTPRESETOID g).De�nition AdjPRESETOID: (Adjunction FForgetfulPS FTotalRel):=(Build Adjunction g commute g unique).3.3 The Adjunction between Set and PThHerein we show that the forgetful functor from PTH to SET has right adjoint.First we de�ne the forgetful functor, FForgetfulPT. This functor maps anypropositional theory in its corresponding signature with F0ForgetfulPT and,maps any morphism between propositional theories in its corresponding mapwith F1ForgetfulPT.Section F PTH SET.Variable pt,pt': PTH.De�nition F0ForgetfulPT: PTH!SET:= [pt:PTH]pt.De�nition FMapForgetfulPT:(Hom pt pt')!(Hom (F0ForgetfulPT pt) (F0ForgetfulPT pt')):=39

[f:(MorphismPTh pt pt')](Application f).Lemma FMapForgetfulPT pres: (MapLaw FMapForgetfulPT).De�nition F1ForgetfulPT:(Mapoid (Hom pt pt')(Hom (F0ForgetfulPT pt) (F0ForgetfulPT pt'))):=(Build Mapoid FMapForgetfulPT pres).End F PTH SET.Lemma F1ForgetfulPT comp: (FCompLaw F1ForgetfulPT).Lemma F1ForgetfulPT id: (FIdLaw F1ForgetfulPT).De�nition FForgetfulPT: (Functor PTH SET):=(Build Functor F1ForgetfulPT comp F1ForgetfulPT id).Now we have to give the candidate for right adjoint of FForgetfulPT. Wepropose the functor FLanguage from SET to PTH that maps any set a in thepropositional theory constituted by a and the language of a, L. A map betweenpropositional theories where the set of theorems is the language of its signaturesveri�es clearly the InclusionLaw.Section F SET PTH.Section FLanguagePTh.Variable a: SET.De�nition L: (Lsig a)!Prop:= [pf:(Lsig a)]True.Lemma L close: (GammaClose L).De�nition LPTh: PTh:= (Build PTh L close).End FLanguagePTh.De�nition F0Language: SET!PTH:= [a:SET](LPTh a).Section FLanguageMorphism.Variable a,a': SET.Variable f: (LPTh a)!(LPTh a').Lemma f inclusion: (InclusionLaw f).40

De�nition Morphismf:(MorphismPTh (LPTh a) (LPTh a')):=(Build MorphismPTh f inclusion).End FLanguageMorphism.Variable a,a': SET.De�nition FMapLanguage:(Hom a a')!(Hom (F0Language a) (F0Language a')):=[f:a!a'](Morphismf f).Lemma FMapLanguage pres: (MapLaw FMapLanguage).De�nition F1Language:(Mapoid (Hom a a') (Hom (F0Language a) (F0Language a'))):=(Build Mapoid FMapLanguage pres).End F SET PTH.Lemma F1Language comp: (FCompLaw F1Language).Lemma F1Language id: (FIdLaw F1Language).De�nition FLanguage: (Functor SET PTH):=(Build Functor F1Language comp F1Language id).The next step is to give a natural transformation from (IdFunctor PTH) to(CompFunctor FForgetfulPT FLanguage). The natural transformation NTPTHassociates to each propositional theory its identity.Section NT PTH.Variable pt: PTH.De�nition NTPThApplication:((IdFunctor PTH) pt)!((CompFunctor FForgetfulPT FLanguage) pt):=(Id Application 1!pt).Lemma NTPThApplication inclusion:(InclusionLaw NTPThApplication).De�nition NTPThMorphismPTh:(MorphismPTh ((IdFunctor PTH) pt)((CompFunctor FForgetfulPT FLanguage) pt)):=41

(Build MorphismPTh NTPThApplication inclusion).End NT PTH.Lemma NTPThMorphismPTh ntlaw:(NTLaw 1!PTH 2!PTH NTPThMorphismPTh).De�nition NTPTH:(NT (IdFunctor PTH) (CompFunctor FForgetfulPT FLanguage)):=(Build NT NTPThMorphismPTh ntlaw).Finally we are able to de�ne the adjunction. We only have to �nd, given apropositional theory pt, a set a and a morphism f:(Hom pt (FLanguage a)),a morphism g:(Hom (FForgetfulPT pt) a) that holds the universal property.It is clear that the candidate for g is f.Section Adj PTH.Variable pt: PTH.Variable a: SET.Variable f: (Hom pt (FLanguage a)).De�nition g: (FForgetfulPT pt)!a:= (Application f).End Adj PTH.Lemma g commute: (AdjCommuteLaw NTPTH g).Lemma g unique: (AdjUniqueLaw NTPTH g).De�nition AdjPTH: (Adjunction FForgetfulPT FLanguage):=(Build Adjunction g commute g unique).3.4 Adjunction vs Initial in Comma CategoryHerein we intend to show the result that relates left adjoints with initial objectsin comma category:Let C and D be categories and G : D ! C be a functor. Then, G has leftadjoint i� X # G has initial object for any X 2 jCj.We start by de�ning the comma category. If x is an object of c and fG a func-tor from d to c, the category x#fG has as objects all pairs Codom and Arrow,42

where Codom:d and Arrow:(Hom x (fG Codom)), and as morphisms from vto u all those arrows MorComma:(Hom (Codom v) (Codom u)) in d such that(v o (FMor fG MorComa)) =%S u. To this property we call CommaCommuteLaw.To de�ne the morphisms we have to build a setoid of comma morphisms. Hencewe have to give an equality for comma morphisms and show that it is an equiva-lence relation. The equality provided is the equality between the correspondingarrows in d.Section CommaDef.Variable c,d: Category.Variable fG: (Functor d c).Variable x: c.Section Setoid Comma.Structure ObjectComma: Type:= fCodom : d;Arrow :> (Hom x (fG Codom))g.Variable v,u: ObjectComma.De�nition CommaCommuteLaw:=[c1,c2,c3:c][v:(Hom c1 c2)][u:(Hom c1 c3)][w:(Hom c2 c3)](v o w) =%S u.Structure MorphismComma: Type:= fMorComma :> (Hom (Codom v) (Codom u));Prf commute : (CommaCommuteLaw v u (FMor fG MorComma))g.De�nition EqualMorphismComma:= [g,h:MorphismComma](MorComma g) =%S (MorComma h).Lemma EqualMorphismComma equiv:(Equivalence EqualMorphismComma).De�nition Setoid MorphismComma: Setoid:=(Build Setoid EqualMorphismComma equiv).End Setoid Comma.As usual after the de�nition of objects and the setoid of morphisms we have tode�ne the composition. The composition of two MorphismComma is the compo-43

sition of the corresponding arrows MorComma. We only have to check that thecomposite arrow holds CommaCommuteLaw.Section CompositionMorphismComma.Variable v,u,w: ObjectComma.Variable g: (MorphismComma v u).Variable h: (MorphismComma u w).Lemma Comp MorComma commute:(CommaCommuteLaw v w (FMor fG (g o h))).End CompositionMorphismComma.De�nition CommaComp:(v,u,w:ObjectComma)(Setoid MorphismComma v u)!(Setoid MorphismComma u w)!(Setoid MorphismComma v w):=[v,u,w:ObjectComma][sm:(Setoid MorphismComma v u)][sm':(Setoid MorphismComma u w)](Build MorphismComma (Comp MorComma commute sm sm')).To build the composition mapoid we have to show that the composition mapCommaComp holds the congruence laws.Lemma CommaComp congl: (ConglLaw CommaComp).Lemma CommaComp congr: (CongrLaw CommaComp).De�nition Comp Comma:(v,u,w:ObjectComma)(BinMapoid (Setoid MorphismComma v u)(Setoid MorphismComma u w)(Setoid MorphismComma v w)):=(Build CompMapoid CommaComp congl CommaComp congr).Lemma Assoc Comma: (AssocLaw Comp Comma).The �nal step is to de�ne the identity. The identity in comma category isde�ned by the identity arrow in d that clearly holds CommaCommuteLaw.Section Comma Id.Variable v: ObjectComma. 44

Lemma Id commute:(CommaCommuteLaw v v (FMor fG (Id 1!d (Codom v)))).De�nition Id Comma: (MorphismComma v v):=(Build MorphismComma Id commute).End Comma Id.Lemma Idl Comma: (IdlLaw Comp Comma Id Comma).Lemma Idr Comma: (IdrLaw Comp Comma Id Comma).Provided with the laws of associativity and identity for composition we cande�ne the comma category.De�nition COMMA: Category:=(Build Category Assoc Comma Idl Comma Idr Comma).End CommaDef.With the comma category de�ned we are able to show the result that relatesleft adjoints with initial objects in comma category. To state this lemma wehave to have a way to say that there is a left adjoint for a functor fG andthere is an initial object in x#fG for any object x. Since we only can expressan existence of an adjunction by Adjunction, that requires two functors, wede�ne �rst HasLeftAdjoint. The proposition (HasLeftAdjoint fG) statesthat there is a functor that is a left adjoint of fG. We use the same reasoningto de�ne HasInitialForAnyX.Section HasDef.Variable c,d: Category.Variable fG: (Functor d c).De�nition HasLeftAdjoint: Prop:=(ExT [fF:(Functor c d)](ExT [aFG:(Adjunction fF fG)] True)).De�nition HasInitialForAnyX: Prop:=(ExT [i:(x:c)(Initial (COMMA fG x))] True).End HasDef.The envisage lemma is simply stated by,Lemma AdjInitialComma: (c,d:Category)(fG:(Functor d c))45

(HasLeftAdjoint fG)$(HasInitialForAnyX fG).3.5 Left Adjoint Unique up to Natural IsomorphismIn this section we want to show that the left adjoint of a functor is unique upto natural isomorphism:Let C and D be categories and F; F 0 : C ! D and G : D ! C be functors, suchthat both F and F 0 are left adjoints of G. Then, there is a natural isomorphism� from F to F 0, i.e., there is a natural transformation � : F ! F 0 where �X isan isomorphism for each X 2 jCj.We are talking about natural isomorphism but until now it has not been de�ned.So this is the �rst thing that we do.Section NatIsoDef.Variable c,d: Category.Variable fF,fF':(Functor c d).De�nition NTIsoLaw:= [nt:(NT fF fF')][nt':(NT fF' fF)](c1:c)(IsoLaw 1!d (nt c1) (nt' c1)).Structure NTIso: Type:= fIsoNT : (NT fF fF');InvIso : (NT fF' fF);Prf ntiso : (NTIsoLaw IsoNT InvIso)g.End NatIsoDef.The result of left adjoint unique up to natural isomorphism is simply stated bythe lemma NTIsoLeftAdjoints.Lemma NTIsoLeftAdjoints:(c,d:Category)(fG:(Functor d c))(fF,fF':(Functor c d))(Adjunction fF fG)!(Adjunction fF' fG)!(NTIso fF fF').
46

Chapter 4Cocartesian LiftingsIn this section we de�ne in Coq the concept of cocartesian lifting that is givenin [BW90]:Let C and D be categories and F : C ! D be a functor. Let X be an objectin C, A be an object in D and f : F (X) ! A be a morphism in D. Thenu : X ! Y 2MorC is called cocartesian lifting by F for X and f i�� F (Y) = A;� F (u) = f ;� for any v : X ! Z 2MorC and g : F (Y)! F (Z) 2MorD such that{ g o F (u) = F (v);there is only one morphism w : Y ! Z 2MorC such that{ F (w) = g;{ w o u = v.We also de�ne examples of cocartesian lifting and show that the codomain ofcocartesian lifting is unique up to isomorphism.4.1 The Cocartesian Lifting StructureTo de�ne cocartesian lifting we have to check, among other things, that anobject and a morphism are image by a functor of another object and morphism.In order to assert that an object is image of another we need an equality forobjects. Considering that in a category objects have sort Type and that in afunctor the map for objects is a map in Type (and thus preserves the equality inType), we conclude that the envisaged equality is the equality in Type. Havingthis in mind we de�ne the predicate IsImageF0. Remark that in Coq the token== is the in�x representation of the Type equality eqT (for more details see[PM96]). 47

De�nition IsImageF0:=[c,d:Category][fF:(Functor c d)][c1:c][d1:d] (fF c1)==d1.The �rst problem in considering this equality with our category implementationis that we are not able to show that if two objects are equal then there is amorphism between them (at least the identity morphism should exist). We cansolve this problem by changing the Coq de�nition of category. In this case wehave to say that there is an identity between two equal objects. However thissolution is not easy to implement and it is out of the scope of this work since allthe previous work would have to be redone. Instead of changing the categoryde�nition we introduce a global variable that will do the job of the identitybetween equal objects. We call ident to this global variable that in Coq isdeclared by the command Parameter.Structure Identity: Type:= fIdent :> (c:Category)(c1,c2:c)(prf:(c1==c2))(Hom c1 c2);IdentId : (c:Category)(c1:c)(prf:(c1==c1))(Ident c c1 c1 prf)=%S(Id c1);IdentComp : (c:Category)(c1,c2,c3:c)(prf:(c1==c2))(prf':(c2==c3))(prf'':(c1==c3))((Ident c c1 c2 prf)o(Ident c c2 c3 prf'))=%S(Ident c c1 c3 prf'')g.Parameter ident: Identity.To simplify the syntax we de�ne identity. In identity, the arguments c, c1and c2 are implicit and that is not the case for ident.De�nition identity:=[c:Category][c1,c2:c][prf:(c1==c2)](ident c c1 c2 prf).Remark that Ident, as we de�ne, must hold some properties for ensuring that itis the identity modulo equality in Type. This properties are stated by IdentIdand IdentComp.With respect to the equality of morphisms we may think that the setoidequality will be enough, however this is not the case. Why? After having acandidate u for cocartesian lifting by F for f and X we must check that f isimage of u by F . However the codomain of F (u) is F (Y) and the codomainof f is A. Even if we consider that F (Y) and A are equal we can not use theequality of the setoid (that only compares morphisms with the same domainand codomain). Hence we have to extend the equality of the hom-setoid in sucha way that we can compare morphisms with di�erent domains and codomains.We de�ne a new equality, EqualHom, that extends Equal and takes into accountthe new de�nition identity. 48

De�nition EqualHom:(c:Category)(c1,c2:c)(Hom c1 c2)!(c3,c4:c)(Hom c3 c4)!Prop:=[c:Category][c1,c2:c][f:(Hom c1 c2)][c3,c4:c][g:(Hom c3 c4)]c1==c3 ^ c2==c4 ^(prf:(c1==c3))(prf':(c2==c4))((f o (identity prf'))=%S((identity prf) o g)).We write f =%H g to denote (EqualHom f g).Token "=%H".Infix Assoc 6 "=%H" EqualHom.Before presenting cocartesian lifting we still want to establish some results thatwill help us clear up the idea about identity. We start by checking thatEqualHom is an equivalence relation.Lemma EqualHom refl: (c:Category)(c1,c2:c)(f:(Hom c1 c2))(f =%H f).Lemma EqualHom trans: (c:Category)(c1,c2,c3,c4,c5,c6:c)(f:(Hom c1 c2))(g:(Hom c3 c4))(h:(Hom c5 c6))(f =%H g)!(g =%H h)!(f =%H h).Lemma EqualHom sym: (c:Category)(c1,c2,c3,c4:c)(f:(Hom c1 c2))(g:(Hom c3 c4))(f =%H g)!(g =%H f).Next we prove that Id and identity are in the same equivalence class relativeto EqualHom.Lemma Ident Id: (c:Category)(c1,c2:c)(prf:(c1==c2))(identity prf) =%H (Id c1).We also establish the relation between EqualHom and Equal.Lemma EqualEqualHom Equiv: (c:Category)(c1,c2:c)(f,g:(Hom c1 c2))(f =%H g)$(f =%S g).By the de�nition of identity we may think that given two proofs of equalitybetween objects we obtain two di�erent morphisms. However we show that thisis not the case.Lemma Ident Proofs: (c:Category)(c1,c2:c)(prf,prf':(c1==c2))(identity prf)=%S(identity prf').Finally we check the laws of the identity identity for composition.49

Lemma IdentL: (c:Category)(c1,c2,c3:c)(prf:(c1==c2))(f:(Hom c2 c3)) ((identity prf) o f) =%H f.Lemma IdentR: (c:Category)(c1,c2,c3:c)(prf:(c2==c3))(f:(Hom c1 c2)) f =%H (f o (identity prf)).Remark that if we have two morphisms such that the codomain of one is equal tothe domain of the other we should be able to compose them. We can de�ne thiscomposition by,De�nition CompHom:=[c:Category][c1,c2,c3,c4:c][prf:(c2==c3)][f:(Hom c1 c2)][g:(Hom c3 c4)] ((f o (identity prf)) o g).However to de�ne cocartesian lifting we do not have to deal with this kindof composition. Note that both this composition and the usual compositionare congruent for the new equality EqualHom. We do not present these resultsbecause they are not needed but they are in the appendix.Before cocartesian lifting it only remains to de�ne the predicate IsImageF1that is true whenever a morphism is image of another by a functor.De�nition IsImageF1:=[c,d:Category][fF:(Functor c d)][c1,c2:c][d1,d2:d][u:(Hom c1 c2)][f:(Hom d1 d2)] (FMor fF u) =%H f.Finally we can de�ne cocartesian lifting. Given two categories c and d, a func-tor fF:(Functor c d), an object x in c, an object a in d and a morphismf:(Hom (fF x) a)) in c , we say that u:(Hom x y) is a cocartesian lifting byfF for f and x i� we can show aImagey and fImageu and we can �nd a mor-phism w:(Hom y z) that holds the universal property. For simplicity we splitthe universal property into two properties, one representing the commutation,CoCartCommuteLaw, and other representing the uniqueness, CocartUniqueLaw.Section CoCartesianLiftDef.Variable c,d: Category.Variable fF: (Functor c d).Variable x: c.Variable a: d.Variable f: (Hom (fF x) a).Section CoCartesianLiftLaws.Variable y: c. 50

Variable u: (Hom x y).Hypothesis aImagey: (IsImageF0 fF y a).Hypothesis fImageu: (IsImageF1 fF u f).De�nition Commute d:=[z:c][v:(Hom x z)][g:(Hom (fF y) (fF z))]((FMor fF u) o g) =%S (FMor fF v).Variable w:(z:c)(v:(Hom x z))(g:(Hom (fF y) (fF z)))(prf:(Commute d v g))(Hom y z).De�nition Commute c:=[z:c][v:(Hom x z)][w:(Hom y z)](u o w) =%S v.De�nition Unique w:=[z:c][v:(Hom x z)][g:(Hom (fF y) (fF z))][prf:(Commute d v g)][w':(Hom y z)]((FMor fF w') =%S g)^(Commute c v w')!((w prf) =%S w').De�nition CoCartCommuteLaw:=(z:c)(v:(Hom x z))(g:(Hom (fF y) (fF z)))(prf:(Commute d v g))((FMor fF (w prf)) =%S g)^(Commute c v (w prf)).De�nition CoCartUniqueLaw:=(z:c)(v:(Hom x z))(g:(Hom (fF y) (fF z)))(prf:(Commute d v g))(w':(Hom y z))(Unique w prf w').End CoCartesianLiftLaws.Structure CoCartLift: Type:= fy :> c;u :> (Hom x y);Prf aImagey : (IsImageF0 fF y a);Prf fImageu : (IsImageF1 fF u f);w : (z:c)(v:(Hom x z))(g:(Hom (fF y) (fF z)))(prf:(Commute d u v g))(Hom y z);Prf commute : (CoCartCommuteLaw w);Prf unique : (CoCartUniqueLaw w)g.End CoCartesianLiftDef. 51

4.2 The Cocartesian Lifting from Setoid to PresetoidHerein we give an example of cocartesian lifting from SETOID to PRESETOID.We use, and we do not present again, the de�nitions of these two categories aswell as the de�nition of the forgetful functor with respect to them.Given an object s in SETOID, an object p in PRESETOID and a morphismf:(Hom (F0ForgetfulPS p) s) in SETOID the candidate for Y is the pre-order p'= hs,Ri. The relation R is the least reexive and transitive closureof f((Map f p1),(Map f p2)): (p1,p2) 2 (Rel 1!p)g that contains the equal-ity of the setoid s.Section CoCart PRESETOID SETOID.Variable s: SETOID.Variable p: PRESETOID.Variable f: (Hom (F0ForgetfulPS p) s).Inductive R: (Relation (Carrier s)):=Refl : (s1:(Carrier s))(R s1 s1)j Trans : (s1,s2,s3:(Carrier s))(R s1 s2)!(R s2 s3)!(R s1 s3)j Pres : (s1,s2:(Carrier s))(s1 =%S s2)!(R s1 s2)j Image : (s1,s2:(Carrier (F0ForgetfulPS p)))(Rel s1 s2)!(R (Map f s1) (Map f s2)).Lemma R presequal: (s1,s2:(Carrier s))(s1 =%S s2)!(R s1 s2).Lemma R po refl: (Reflexive R).Lemma R po trans: (Transitive R).De�nition p': PreOrder:=(Build PreOrder R presequal R po refl R po trans).Next we have to �nd the candidate for u. The candidate is f. It is very easy tocheck that the mapoid f is monotonous with respect to the preorders p and p'.Lemma f ismon: (!IsMonotonous p p' f).De�nition u: (MonMapoid p p'):= (Build MonMapoid f ismon).With p' and u de�ned we have to show that s is the image of p' and f is theimage of u, by the functor FForgetfulPS.Lemma sImgp': (IsImageF0 FForgetfulPS p' s).52

Lemma fImgu: (IsImageF1 FForgetfulPS u f).Finally it only remains to �nd the morphismw that holds the universal property.This is, for any object p'' in PRESETOID and any morphisms v:(Hom p p'')in PRESETOID and g:(Hom (F0ForgetfulPS p') (F0ForgetfulPS p'')) inSETOID such that the commutation prf holds, we have to �nd the morphismw that respects the properties CoCartCommuteLaw and CoCartUniqueLaw. Thecandidate for w is g. To de�ne the morphism w we only have to check that g ismonotonous with respect to the preorders p' and p''.Section PropUniversal.Variable p'': PRESETOID.Variable v: (Hom p p'').Variable g: (Hom (F0ForgetfulPS p') (F0ForgetfulPS p'')).Variable prf:(!Commute d PRESETOID SETOID FForgetfulPS p p' u p'' v g).Lemma g ismon: (!IsMonotonous p' p'' g).De�nition w: (MonMapoid p' p''):= (Build MonMapoid g ismon).End PropUniversal.After we prove that w holds CoCartCommuteLaw and CocartUniqueLaw we areable to de�ne the cocartesian lifting, that we call CoCartPRESETOID.Lemma w commute:(!CoCartCommuteLaw PRESETOID SETOID FForgetfulPS p p' u w).Lemma w unique:(!CoCartUniqueLaw PRESETOID SETOID FForgetfulPS p p' u w).De�nition CoCartPRESETOID:(!CoCartLift PRESETOID SETOID FForgetfulPS p s f):=(Build CoCartLift sImgp' fImgu w commute w unique).End CoCart PRESETOID SETOID.4.3 The Cocartesian Lifting from Set to PThIn this section we present another example of cocartesian lifting, this time fromSET to PTH. 53

Given an object a in SET, an object pt in PTH and a morphismf:(Hom (F0ForgetfulPT pt) a) in SET the candidate for Y is the proposi-tional theory pt'= ha,Gi. The set of theorems G is the closure of the set of theimages, by the extension of the map f, of the set of theorems of the propositionaltheory pt.Section CoCart PTH SET.Variable a: SET.Variable pt: PTH.Variable f: (Hom (F0ForgetfulPT pt) a).Inductive Gamma a: (PLsig a):=Build Gamma a: (pf:(Lsig (Signature pt)))(Gamma 1!pt pf)!(Gamma a (Extension f pf)).De�nition G: (Lsig a)!Prop:= (Closure Gamma a).Lemma G close: (GammaClose G).De�nition pt': PTh:=(Build PTh G close).Next we have to give the candidate for the cocartesian lifting. It is clear thatthe candidate is f. We only have to prove that f holds the InclusionLaw.Lemma f inclusion: (!InclusionLaw pt pt' f).De�nition u: (MorphismPTh pt pt'):=(Build MorphismPTh f inclusion).With pt' and u de�ned we start by checking that a is image of pt' and that fis image of u, by the functor FForgetfulPT.Lemma aImgpt': (IsImageF0 FForgetfulPT pt' a).Lemma fImgu: (IsImageF1 FForgetfulPT u f).Finally it only remains to �nd the morphismw that holds the universal property.This is, given an object pt'' in PTH a morphism v:(Hom pt pt'') in PTHand a morphism g:(Hom (F0ForgetfulPT pt') (F0ForgetfulPT pt'')) inSET such that the commutation prf holds, we have to �nd the morphism wthat respects the properties CoCartCommuteLaw and CoCartUniqueLaw. Thecandidate for w is g. To de�ne the morphism w we only have to check that gholds the InclusionLaw. 54

Section PropUniversal.Variable pt'': PTH.Variable v: (Hom pt pt'').Variable g: (Hom (F0ForgetfulPT pt') (F0ForgetfulPT pt'')).Variable prf:(!Commute d PTH SET FForgetfulPT pt pt' u pt'' v g).Lemma g inclusion: (!InclusionLaw pt' pt'' g).De�nition w: (MorphismPTh pt' pt''):=(Build MorphismPTh g inclusion).End PropUniversal.After we check that w is the unique morphism in PTH that commutes the diagramin SET we are able to build the cocartesian lifting form SET to PTH, that we callCoCartPTH.Lemma w commute:(!CoCartCommuteLaw PTH SET FForgetfulPT pt pt' u w).Lemma w unique:(!CoCartUniqueLaw PTH SET FForgetfulPT pt pt' u w).De�nition CoCartPTH:(!CoCartLift PTH SET FForgetfulPT pt a f):=(Build CoCartLift aImgy fImgu w commute w unique).End CoCart PTH SET.4.4 Codomain of Cocartesian Lifting Unique up toIsomorphismIn this section we want to show that the codomain of cocartesian lifting isunique up to isomorphism:Let C and D be categories and F : C ! D be a functor. Let X be an objectin C, A be an object in D and f : F (X) ! A be a morphism in D. If themorphisms u : X ! Y and u0 : X ! Y 0 in C are cocartesian liftings by F for
55

f and X then Y is isomorphic to Y 0.In Coq this lemma can be simply stated by,Lemma IsoCoCart:(c,d:Category)(fF:(Functor c d))(x:c)(a:d)(f:(Hom (fF x) a))(ccl,ccl':(CoCartLift f))(Iso (y ccl) (y ccl')).

56

Chapter 5Concluding RemarksWe achieved to de�ne adjunctions and some heavy categories, like the commacategory and the category of propositional theories, as well as results concerningthese de�nitions without any trouble. We conclude that the category axioma-tization proposed by Huet and Sa��bi is good whenever we are de�ning conceptsthat do not refer explicitly the equality between objects. This is not the caseof the cocartesian lifting where we have to check that an object is image ofanother. Considering that in a category objects have sort Type and that ina functor the map for objects is a map in Type we were forced to compareobjects with the equality in Type. The problem in considering this equality isthat with our category implementation we are not able to obtain an identitybetween equal objects. So we either change the category de�nition or we com-pensate this limitation arti�cially. We chose the second solution, providing anidentity morphism between equal objects, since we did not want to loose theprevious work. For further work we may consider developing a new de�nitionof category in Coq where we can compare objects with a given relation, ratherthan comparing them with the equality in Type. We remark that along the waywe were able to provide examples of cocartesian lifting easily.With this incursion in the Coq system we conclude that Coq can be usedmore as a proof checker than as a proof assistant. Even using the Hint commandthat is supposed to help the automatization of the proofs we were not able toautomatize very simple reasoning.

57

Bibliography[AHS90] J. Ad�amek, H. Herrlich, and G. Strecker. Abstract and concretecategories: the joy of cats. John Wiley & Sons, 1990.[Ano96] Anonymous. The Coq Proof Assistant: The Standard Library. IN-RIA Rocquencourt, �rst edition, December 1996.[BW90] Michael Barr and Charles Wells. Category Theory for ComputingScience. Prentice-Hall International Series in Computer Science.Prentice-Hall, 1990.[Coq97] Thierry Coquand. Course notes in typed lambda calculus. Technicalreport, Chalmers University, 1997.[HKPM96] G�erard Huet, Gilles Kahn, and Christine Paulin-Mohring. The CoqProof Assistance: A Tutorial. INRIA Rocquencourt, �rst edition,December 1996.[HS95] G�erard Huet and Amokrane Sa��bi. Constructive category theory.Technical report, INRIA Rocquencourt, 1995.[Lan71] Saunders Mac Lane. Categories for the Working Mathematician.Springer-Verlag, 1971.[PM96] Christine Paulin-Mohring. The Coq Proof Assistant: ReferenceManual V6.1. INRIA Rocquencourt, �rst edition, December 1996.[Sa��95] Amokrane Sa��bi. Th�eorie constructive des cat�egories: Draft. Tech-nical report, INRIA Rocquencourt, 1995.[Sel92] Jonathan P. Seldin. Coquand's calculus of constructions: A mathe-matical foundation for a proof development system. Formal Aspectsof Computing, 4:425{441, 1992.
58

