
Macros:
Menace to the
Modern HLL
J e r e m y H . B r o w n

j h b r o w n @ a l u m . m i t . e d u

Macros
Considered

Harmful
J e r e m y H . B r o w n

j h b r o w n @ a l u m . m i t . e d u

Macros:
 They’re for

Nazis
J e r e m y H . B r o w n

j h b r o w n @ a l u m . m i t . e d u

Macros are for
Dirty Hippies

J e r e m y H . B r o w n
j h b r o w n @ a l u m . m i t . e d u

Macros are Just
Like Goto

J e r e m y H . B r o w n
j h b r o w n @ a l u m . m i t . e d u

GOTO is Good, Right?

Gurus can do amazing things with GOTO

If, switch, for, and while aren’t enough

No language provides all control-flow patterns

Good programmers won’t make mistakes very often

Coding guidelines make it safe

GOTO makes up for deficiencies in base language!

You love C++
Parameter Passing

int x;
foo (x); // int foo(int &arg) ?

Static Syntax:
Feel the Love

Recently, I found myself needing to deal with a
“convenience” macro, which quoted several of its
arguments for me before passing them along to the
real function. Unfortunately, only the macro was
exported from the library, and I was unable to
access the base function.

(define-syntax convenient-function
 (syntax-rules ()
 ((_ arg1 arg2) (much-harder-function 'arg1
'arg2))))

How useful. To save me a handful of quotes, I lose
the ability to programmatically generate my
arguments.

 -- Will Donnelly, willdonnelly.wordpress.com
 “Fixing broken macros with eval and quasiquote”

...the only prerequisite to understanding EVAL-WHEN is an
understanding of how the two functions LOAD and

COMPILE-FILE interact... There are three possible situations...
To explain the meaning of the three situations, I’ll need to
explain a bit about how COMPILE-FILE... goes about

compiling a file. To explain how COMPILE-FILE compiles
EVAL-WHEN forms, I need to introduce a distinction between
compiling top-level forms and compiling non-top-level forms...
There are two ways you’re most likely to use EVAL-WHEN.

One is if you want to write macros that need to save some
information at compile time... The other time... is if you want to
put the definition of a macro and helper functions it uses in the

same file as code that uses the macro.

EVAL-WHEN
explained

--- Peter Siebel, Practical Common Lisp

You Shouldn’t Need ‘em
For “derived” constructs in language core,
use the compiler

Replace common language “extensions” with
reusable idioms and interfaces
(e.g. Python: for+iterators, with+context guards)

For embedded DSLs, use distinctive syntax and
write a tiny compiler/interpreter

For non-embedded DSLs, write a compiler

Don’t force readers to learn a new language!

Precisely Stated
Macros encourage people who are not good at
language design to do something equivalent
to language design, using tools that don't
help, and with effects that are too
powerful. This makes code unreadable to
people joining later and for the authors
after time has passed. Well designed macros
are well documented, but this doesn't
happen much.
 -- Richard P. Gabriel,
 personal communication

Imprecisely Stated

Q: What do you get when amateurs do
 language design?

A: PHP.

SQL Embedding

Bad:
(select * from addresses where city = (get-city o))

unheralded macro-driven transition

"regular" lisp evaluation at irregular points

not programmatically composable

 Better:
(sql-query
 `(select * from addresses where city = ,(get-city o)))

