
Advanced Scheme Techniques

Advanced Scheme Techniques

Some Naughty Bits

Jeremy Brown

January 7-8, 2003

Page 1 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Acknowledgements

Jonathan Bachrach, Alan Bawden, Chris Hanson, Neel

Krishnaswami, and Greg Sullivan offered many helpful suggestions.

These slides draw on works by
Hal Abelson, Alan Bawden, Chris Hanson, Paul Graham, Oleg Kiselyov, Neel

Krishnaswami, Al Petrofsky, Jonathan Rees, Dorai Sitaram, Gerry Sussman, Julie

Sussman, and the R5RS authors group

Thanks also to Scheme Boston, the Boston-area Scheme User’s

Group.

And of course to SIPB, for organizing.

Page 2 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Advanced Scheme

Day 2:

Continuations

Page 3 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Scheme Requests for Implementation (SRFIs)

Several of the examples today will refer to SRFIs.

The SRFI documents represent the Scheme community’s de facto,

post-R5RS standards

Check them out at http://srfi.schemers.org/

Page 4 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Anatomy of a Closure

In Scheme, procedures are closures.

A closure expects to be invoked with a certain number of arguments.

A closure contains:

� a pointer to some code

� a pointer to an environment

Page 5 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Procedure Call

When executing function A invokes closure B, A expects to be

returned to with a single return value.

Information enabling B to return a value to A must be saved,

specifically:

a pointer to some code: the return address in A

a pointer to an environment: A’s execution environment

Taken altogether, the information looks a lot like a closure that

expects a single argument! (And never returns.)

We call a closure-version of this information a continuation (k).

We can view returning a value V as calling (k V).

Page 6 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Procedure Call

When executing function A invokes closure B, A expects to be

returned to with a single return value.

Information enabling B to return a value to A must be saved,

specifically:

� a pointer to some code: the return address in A

� a pointer to an environment: A’s execution environment

Taken altogether, the information looks a lot like a closure that

expects a single argument! (And never returns.)

We call a closure-version of this information a continuation (k).

We can view returning a value V as calling (k V).

Page 6 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Procedure Call

When executing function A invokes closure B, A expects to be

returned to with a single return value.

Information enabling B to return a value to A must be saved,

specifically:

� a pointer to some code: the return address in A

� a pointer to an environment: A’s execution environment

Taken altogether, the information looks a lot like a closure that

expects a single argument! (And never returns.)

We call a closure-version of this information a continuation (k).

We can view returning a value V as calling (k V).

Page 6 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Procedure Call

When executing function A invokes closure B, A expects to be

returned to with a single return value.

Information enabling B to return a value to A must be saved,

specifically:

� a pointer to some code: the return address in A

� a pointer to an environment: A’s execution environment

Taken altogether, the information looks a lot like a closure that

expects a single argument! (And never returns.)

We call a closure-version of this information a continuation (k).

We can view returning a value V as calling (k V).

Page 6 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Procedure Call

When executing function A invokes closure B, A expects to be

returned to with a single return value.

Information enabling B to return a value to A must be saved,

specifically:

� a pointer to some code: the return address in A

� a pointer to an environment: A’s execution environment

Taken altogether, the information looks a lot like a closure that

expects a single argument! (And never returns.)

We call a closure-version of this information a continuation (k).

We can view returning a value V as calling (k V).

Page 6 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Continuations

A continuation...

� represents the “future” of a computation from a given point

� never returns to its caller

� (usually) expects one argument — the value to be returned from

the point at which the continuation was created

Page 7 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

A Quick Review of Tail Calls

Consider

(lambda (x y) (y x))

The lambda will return the value returned by (y x) — we call

(y x) a tail-call.

Since the lambda has done all its work by the time the tail-call is

called, its environment, etc., do not need to be preserved.

A Scheme implementation must support an unbounded number of

active tail calls.

Page 8 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Normal Factorial

Normal fact:

(define (fact n)

(if (= n 1)

1

(* n (fact (- n 1)))))

(fact 5) ==> 120

What if we made all the implicit returns into explicit continuation

calls? (Continuation-Passing Style)

Page 9 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Continuation Passing Style (CPS)

(define (cps-fact k n)

(cps-=

(lambda (eq-n-1)

(if eq-n-1

(k 1)

(cps--

(lambda (nval)

(cps-fact

(lambda (rval)

(cps-* k n rval)) nval)) n 1)))

n 1))

(cps-fact (lambda (x) x) 5) ==> 120

Note “inside-out” structure:

every call is a tail call!

Page 10 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

CPS call-with-current-continuation

call-with-current-continuation (AKA call/cc) makes the return

continuation explicitly available as a closure.

The CPS version of call/cc is simple:

(define (cps-call/cc k func)

(func k k))

The “normal” version of call/cc is a language primitive.

We need an example...

Page 11 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Early Return Using call/cc

Contrived example use of call/cc

(define evencount 0)

(let ((test 17))

(call/cc (lambda (return)

(if (odd? test) (return 5))

(set! evencount (+ evencount 1))

7)))

==> 5

The lambda is invoked with a continuation as its return argument.

The continuation represents returning a value from the call/cc form.

When the continuation is invoked with the argument 5, the call/cc

form immediately returns 5. The set! is never executed!

Page 12 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Continuations are First Class

Continuations

� ...are first-class functions

� ...can be invoked many times

� ...can be used to create nearly any control-flow structure!

Page 13 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Multiple-Value Continuations

Scheme limits normal functions to returning a single value.

In CPS-style, it’s easy to have multiple-value “return”:

(define (cps-values k . args)

(cps-apply k args))

...all you need is a continuation (k, above) that accepts multiple

values!

Scheme provides a language primitive “values” to return multiple

values:

(lambda (a b)

(values a b))

But how do we get the continuation that can accept them?

Page 14 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Multiple-Value Continuations

Scheme limits normal functions to returning a single value.

In CPS-style, it’s easy to have multiple-value “return”:

(define (cps-values k . args)

(cps-apply k args))

...all you need is a continuation (k, above) that accepts multiple

values!

Scheme provides a language primitive “values” to return multiple

values:

(lambda (a b)

(values a b))

But how do we get the continuation that can accept them?

Page 14 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

call-with-values

Scheme provides another primitive that works with values. From

R5RS:

(call-with-values

(lambda () (values 4 5)) ; producer

(lambda (a b) (+ a b))) ; consumer

; (continuation)

==> 9

call-with-values calls the producer, providing the consumer as its

continuation

SRFI-11 defines special forms LET-VALUES and LET*-VALUES

which hide the call-by-values form

Page 15 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

call-with-values

Scheme provides another primitive that works with values. From

R5RS:

(call-with-values

(lambda () (values 4 5)) ; producer

(lambda (a b) (+ a b))) ; consumer

; (continuation)

==> 9

call-with-values calls the producer, providing the consumer as its

continuation

SRFI-11 defines special forms LET-VALUES and LET*-VALUES

which hide the call-by-values form

Page 15 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Control Flow Structures

Page 16 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Control Flow Structures

We’ve already seen early-return using continuations. Coming up:

� Exceptions

� Iterators/Co-routining

� Backtracking

� Multi-threading

Page 17 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Exceptions

Page 18 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Simple Exception Semantics

Simplest possible scheme:

(define (le10-or-bust x)

(if (> x 10) (throw) x))

(let ((x 17))

(try (lambda () 5)

(le10-or-bust x)

12))

==> 5

First argument to “try” is the handler; remainder args are body.

Handler is instantly invoked if (throw) is called while execution is in

the try-form; its return value is then the value of the try expression.

Otherwise, the body’s value is the try’s return value.

Page 19 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Simple Exception Implementation

(define top-exception-handler (lambda () (error "unhandled")))

(define (throw) (top-exception-handler))

(define-syntax try

(syntax-rules ()

((try catch-clause body ...)

(let* ((result #f)

(old-handler top-exception-handler)

(success (call/cc (lambda (cont)

(set! top-exception-handler

(lambda () (cont #f)))

(set! result (begin body ...))

#t))))

(set! top-exception-handler old-handler)

(if success result (catch-clause))))))

Page 20 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

SRFI-34 Exceptions

SRFI-34 defines a more sophisticated exception-handling suite:

� Thrown exceptions include values

� Exception handlers can dispatch on values

� etc.

Check it out

Page 21 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Backtracking

Page 22 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Backtracking: a Teaser

The “amb” operator always picks an acceptable value:

(let ((value (amb 0 1 2 3 4 5 6)))

(assert (> value 2))

(assert (even? value))

value)

==>

4

And you can ask for more:

(next)

==> 6

Page 23 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Backtracking: a Teaser

The “amb” operator always picks an acceptable value:

(let ((value (amb 0 1 2 3 4 5 6)))

(assert (> value 2))

(assert (even? value))

value)

==> 4

And you can ask for more:

(next)

==> 6

Page 23 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Backtracking: a Teaser

The “amb” operator always picks an acceptable value:

(let ((value (amb 0 1 2 3 4 5 6)))

(assert (> value 2))

(assert (even? value))

value)

==> 4

And you can ask for more:

(next)

==> 6

Page 23 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Backtracking: An Application

(define (three-dice sumto)

(let ((die1 (amb 1 2 3 4 5 6))

(die2 (amb 1 2 3 4 5 6))

(die3 (amb 1 2 3 4 5 6)))

(assert (= sumto (+ die1 die2 die3)))

(list die1 die2 die3)))

(initialize-amb-fail)

(three-dice 4) ==> (2 1 1)

(next) ==> (1 2 1)

(next) ==> (1 1 2)

(next) ==> ERROR:

amb tree exhausted

Page 24 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Amb: Principle of Operation

Amb works by backtracking

Think of amb as a glorified exception handler:

1. Pick a value and run forward

2. If no exception is thrown, great

3. If an exception is thrown, pick another value and run forward

again

Page 25 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Amb: Framework

Everything but the definition of amb:

(define amb-fail ’())

(define (initialize-amb-fail)

(set! amb-fail

(lambda (x)

(error "amb tree exhausted"))))

(define (assert pred)

(if (not pred) (amb)))

(define (fail) (amb))

(define (next) (amb))

Adapted from “Teach yourself Scheme in Fixnum Days (TYSiFD)”, by Dorai Sitaram

Page 26 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Amb: The Macro

(define-syntax amb

(syntax-rules ()

((amb argument ...)

(let ((old-amb-fail amb-fail))

(call/cc (lambda (return)

(call/cc (lambda (next)

(set! amb-fail next)

(return argument))) ...

(set! amb-fail old-amb-fail)

(amb-fail #f)))))))

Each ambiguous decision point adds to the stack. Each failure

backtracks to the last decision point.
Adapted from “Teach yourself Scheme in Fixnum Days (TYSiFD)”, by Dorai Sitaram

Page 27 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

bag-of: Getting All the Options

bag-of gives you a list of all acceptable solutions:

(bag-of (three-dice 4))

==> ((1 1 2) (1 2 1) (2 1 1))

And it’s recursive:

(bag-of

(let ((sum (amb 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)))

(bag-of (three-dice sum))))

(let loop ((die 18))

(if (>= die 3)

(cons (bag-of (three-dice die)) (loop (- die 1)))

’())))

==> ((((6 6 6)) ((5 6 6) (6 5 6) (6 6 5)) ((4 6 6) (5 5 6)

Page 28 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

bag-of: Getting All the Options

bag-of gives you a list of all acceptable solutions:

(bag-of (three-dice 4))

==> ((1 1 2) (1 2 1) (2 1 1))

And it’s recursive:

(bag-of

(let ((sum (amb 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)))

(bag-of (three-dice sum))))

(let loop ((die 18))

(if (>= die 3)

(cons (bag-of (three-dice die)) (loop (- die 1)))

’())))

==> ((((6 6 6)) ((5 6 6) (6 5 6) (6 6 5)) ((4 6 6) (5 5 6)

Page 28 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

bag-of: The Macro

(define-syntax bag-of

(syntax-rules ()

((bag-of expr)

(let* ((old-amb-fail amb-fail)

(result ’()))

(if (call/cc (lambda (ifcondcont)

(set! amb-fail ifcondcont)

(let ((e expr))

(set! result (cons e result))

(ifcondcont #t))))

(amb-fail #f))

(set! amb-fail old-amb-fail)

result))))

Page 29 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

10 Minute Break

Page 30 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Iterators

Page 31 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Traversals

It’s easy to traverse a data structure recursively:

(define (list-traverse list)

(if (pair? list)

(list-traverse (cdr list))))

(define (tree-traverse tree)

(if (pair? tree)

(begin

(tree-traverse (car tree))

(tree-traverse (cdr tree)))))

Not that these do anything useful

Page 32 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

A List Iterator

(define (list-iter list)

(lambda ()

(if list

(let ((value (car list)))

(set! list (cdr list))

value)

’())))

(define li (list-iter ’(1 2 3)))

(li) ==> 1

(li) ==> 2

(li) ==> 3

(li) ==> ()

This is pretty clean, but...

Page 33 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Iterating Over a Tree

(define (tree-iter tree)

(let ((cell-stack (list tree)))

(lambda ()

(if cell-stack

(let loop ((node (pop! cell-stack)))

(if (pair? node)

(begin

(push! (cdr node) cell-stack)

(loop (car node)))

node))

’()))))

(define ti (tree-iter ’((1 . 2) . (3 . 4))))

(ti) ==> 1 etc.

...now we’re keeping a history of the computation in cell-stack!

Page 34 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Tree Iterator Using Continuations and Macros

We add four lines to the tree-traverse routine:

(define (tree-iter tree)

(with-caller caller loopstate ; save calling cont.

(let loop ((node tree))

(if (pair? node)

(begin

(loop (car node))

(loop (cdr node)))

(begin ; sequence

(send caller loopstate node) ; send value

’()))))) ; ’done’ value

Adapted from “Teach yourself Scheme in Fixnum Days (TYSiFD)”, by Dorai Sitaram

Page 35 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Helper Macro: Send

(send caller localstate value)

Send gives the value to the ’caller’ continuation, storing the current

continuation in the localstate variable:

(with-caller caller localstate body ...)

with-caller saves the calling continuation into caller, constructs the

lexical execution environment in which localstate is bound, etc.

Page 36 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

send

(define-syntax send

(syntax-rules ()

((send to from value)

(call/cc

(lambda (state)

(set! from (lambda () (state 0)))

(to value))))))

Page 37 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

with-caller

(define-syntax with-caller

(syntax-rules ()

((with-caller caller iterator body ...)

(let ((caller #f))

(letrec ((iterator

(lambda ()

body ...)))

(lambda ()

(call/cc

(lambda (caller-cont)

(set! caller caller-cont)

(iterator)))))))))

Page 38 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Tree Iterator Expansion I

(define (tree-iter-k list)

(let ((caller #f)) ; caller continuation

(letrec ((iterator

(lambda ()

(let loop ((list list))

(if list

(begin

(call/cc

(lambda (iter)

(set! iterator (lambda () (iter 0)))

(caller (car list))))

(loop (cdr list)))

(caller ’()))))))

... more

Page 39 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Tree Iterator Expansion II

...

(lambda ()

(call/cc

(lambda (caller-cont)

(set! caller caller-cont)

(iterator)))))))

Page 40 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Cooperative Multi-Threading

Page 41 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Simple Goal

Three routines:

(start-scheduling thunk)

(spawn thunk)

(yield)

� start-scheduling kicks off the threading system running thunk

� spawn may be called to create an additional thread from thunk

� yield may be called by one thread to let others run

Page 42 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Global State

(define thread-set ’())

(define scheduler-context #f)

Page 43 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

start-scheduling

(define (start-scheduling thunk)

(set! thread-set ’())

(call/cc

(lambda (scheduler)

(set! scheduler-context scheduler)

(spawn thunk)))

(if (not (empty-stack? thread-set))

(begin

((pop! thread-set))

(loop)

(display "**Scheduler exiting**."))))

Page 44 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

spawn

(define (spawn thunk)

(push! (lambda () (thunk) (scheduler-context 0))

thread-set))

Page 45 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

yield

(define (yield)

(call/cc

(lambda (this-thread)

(if (not (empty-stack? thread-set))

(let ((next-thread (pop! thread-set)))

(push! (lambda () (this-thread 0)) thread-set)

(next-thread))))))

Page 46 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Example Code

(start-scheduling

(lambda ()

(spawn (lambda ()

(display "sub-thread")

(yield)

(display "more sub-thread")

(yield)))

(display "first thread")

(yield)

(display "and more first")))

Page 47 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Example Output

first thread

sub-thread

and more first

more sub-thread

Page 48 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Homework

Can you figure out how to implement locks in this system?

Page 49 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Other Continuation-Related Functions

Look these up sometime...

� dynamic-wind

� fluid-let

Page 50 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

The End!

Page 51 Jeremy H. Brown January 7-8, 2003

