
Advanced Scheme Techniques

Advanced Scheme Techniques

Some Naughty Bits

Jeremy Brown

January 7-8, 2003

Page 1 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Acknowledgements

Jonathan Bachrach, Alan Bawden, Chris Hanson, Neel

Krishnaswami, and Greg Sullivan offered many helpful suggestions.

These slides draw on works by
Hal Abelson, Alan Bawden, Chris Hanson, Paul Graham, Oleg Kiselyov, Neel

Krishnaswami, Al Petrofsky, Jonathan Rees, Dorai Sitaram, Gerry Sussman, Julie

Sussman, and the R5RS authors group

Thanks also to Scheme Boston, the Boston-area Scheme User’s

Group.

And of course to SIPB, for organizing.

Page 2 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Scheme Macros

Page 3 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

What is a Macro?

A macro is

� a stylized code transformation...

� performed without evaluating code...

� and using no runtime information.

Suppose cond-set! is a macro:

(cond-set! (> test 4) var 15)

This expression might expand to:

(if (> test 4) (set! var 15))

Note: the expansion process does not evaluate test or var!

Page 4 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

What is a Macro?

A macro is

� a stylized code transformation...

� performed without evaluating code...

� and using no runtime information.

Suppose cond-set! is a macro:

(cond-set! (> test 4) var 15)

This expression might expand to:

(if (> test 4) (set! var 15))

Note: the expansion process does not evaluate test or var!

Page 4 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

What is a Macro?

A macro is

� a stylized code transformation...

� performed without evaluating code...

� and using no runtime information.

Suppose cond-set! is a macro:

(cond-set! (> test 4) var 15)

This expression might expand to:

(if (> test 4) (set! var 15))

Note: the expansion process does not evaluate test or var!

Page 4 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

What is a Macro?

A macro is

� a stylized code transformation...

� performed without evaluating code...

� and using no runtime information.

Suppose cond-set! is a macro:

(cond-set! (> test 4) var 15)

This expression might expand to:

(if (> test 4) (set! var 15))

Note: the expansion process does not evaluate test or var!

Page 4 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

When to Use Macros

Use macros to vary the order of evaluation

(in other words, to create new syntax/special forms).

For example:

� conditional evaluation (cond, case)

� repeated evaluation (do, named-let)

� binding (let, let*)

� un-evaluated syntactic tokens (case’s = �)

Page 5 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

When NOT to Use Macros

Any time you can avoid it!

� Don’t use them for efficiency hacks.

Let the compiler handle that.

Why not?

� Macros aren’t first-class objects

– You can’t use a macro as any sort of runtime value

– Thus, you reduce your development flexibility.

� You make debugging more difficult

Page 6 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Another Look at cond-set!

Remember our example:

(cond-set! (> test 4) var 15)

What’s wrong with making cond-set! a function? E.g:

(define (cond-set! test variable value)

(if test (set! variable value)))

The set! only mutates the parameter in the function.

The original var is unchanged.

Page 7 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Another Look at cond-set!

Remember our example:

(cond-set! (> test 4) var 15)

What’s wrong with making cond-set! a function? E.g:

(define (cond-set! test variable value)

(if test (set! variable value)))

The set! only mutates the parameter in the function.

The original var is unchanged.

Page 7 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Scheme’s Derived Special Forms

Scheme actually has very few primitive special forms:

� lambda

� if

� quote

� set!

All the other forms may be derived using macros:

� conditionals (cond, case), binding (let, let*), etc.

� sequencing (begin, and, or)

� iteration (do, named let)

Of course, they may be implemented directly by the compiler, too.

Page 8 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Scheme Macro Systems

A number of macro systems have been implemented for various

Schemes:

� Common Lisp-style defmacro

� syntax-table

� syntactic closures

� syntax-case

� syntax-rules

� ...and more!

syntax-rules is the macro system endorsed by the “Revised � Report

on the Algorithmic Language Scheme” (R5RS). syntax-rules macros

are often called “hygienic” macros.

Page 9 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Other Macro Systems You May Have Met

� m4

� tex/latex

� cpp

Page 10 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

R5RS Macro Properties

Scheme ”hygienic macros’ feature three innovations

(as enumerated by Matthias Felleisen)

� Pattern-matching syntax

� hygiene

� referential transparency

And I’ll mention a fourth:

� Macro language is decoupled from base Scheme

We will cover these topics in order.

Page 11 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Macro Expansion Overview

A brief, somewhat inaccurate view of the macro expansion process:

� Pattern-matcher discovers an invocation form with macro

keyword in operator position, e.g.

(unless (procedure? f) (display f))

� Keyword is associated with one or more pattern/template pairs

E.g.

<(when condition consequent),

(if (not condition) consequent)>

� If form matches a pattern, the corresponding template is filled in

and replaces the form.

Page 12 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Pattern Language

A basic R5RS macro pattern is pretty straightforward:

� it is a list form

� its first element is the keyword

� strings, numbers, booleans, lists, vectors represent themselves

� non-keyword symbols represent pattern variables

For a form to match a pattern:

� each number, boolean, etc. must match exactly

� each pattern variable matches a single subform

Unaddressed so far: how do we represent specific symbols?

We’ll come back to that in awhile.

Page 13 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Pattern Language Examples I

Pattern

(let1 (name value) body)

matches form

(let1 (x (read))

(if (not x) (display "you said no")))

with the pattern variables matching like this:

name = x

value = (read)

body = (if (not x) (display "you said no"))

Page 14 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Pattern Language Examples II

Pattern

(contrived #((first . rest) #(3 any)))

matches form

(contrived #((1 2 3 4 5) #(3 ’(foo))))

with the pattern variables matching like this:

first = 1

rest = (2 3 4 5)

any = ’(foo) AKA (quote (foo))

Page 15 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Template Language

A template is an arbitrary Scheme form whose interpretation

depends on the pattern it’s paired with.

� numbers, booleans, lists, vectors represent themselves

� symbols which don’t appear in the pattern represent themselves

� symbols which do appear in the pattern represent pattern

variables

Expansion replaces each pattern variable in a template with the

subform it matched in the input form.

Page 16 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Template Language Example

Pattern

(let1 (name value) body)

and template

(let ((name value)) body)

applied to form

(let1 (x (read))

(if (not x) (display "you said no")))

expands to

(let ((x (read)))

(if (not x) (display "you said no")))

Page 17 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Matching Multiple Forms at Once

A pattern variable followed by ... (an ellipsis) matches a group of

consecutive forms.

For example, if we match the pattern

(dotimes count statement ...)

against the code form

(dotimes 5 (set! x (+ x 1)) (display x))

then

statement ... = (set! x (+ x 1)) (display x))

Page 18 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Template Expansion with Ellipses I

In a template, a pattern variable followed by an ellipsis expands into

the group of forms it matched.

E.g. given this template for dotimes

(let dotimes-loop ((counter count))

(if (> counter 0)

(begin

statement ...

(dotimes-loop (- counter 1)))))

Page 19 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Template Expansion with Ellipses II

...then the expansion will look like this:

(let dotimes-loop ((counter 5))

(if (> counter 0)

(begin

(set! x (+ x 1))

(display x)

(dotimes-loop (- counter 1)))))

Page 20 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Producing Repeated Forms

Suppose we want

(thunkify 5 (* x x))

to expand to

(list (lambda () 5) (lambda () (* x x)))

This does the trick:

Pattern: (thunkify body ...)

Template: (list (lambda () body) ...)

Page 21 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Matching Repeated Forms

Suppose we want

(update-if-true!

((> x 5) x-is-big)

((zero? y) y-is-zero))

to expand to

(begin

(let ((test (> x 5)))

(if test (set! x-is-big test)))

(let ((test (zero? y)))

(if test (set! y-is-zero test))))

Page 22 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Matching Repeated Forms II

We can match a group of forms by following a form with ...

pattern variables in the form match the corresponding subforms.

This does the trick:

Pattern:

(update-if-true! (condition variable) ...)

Template:

(begin (let ((test condition))

(if test (set! variable test))) ...)

Page 23 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Nesting Ellipses

Ellipses may be nested in both patterns and templates.

A highly artificial example: we want this

(quoted-append (1 2 3) (a b c) (+ x y))

to expand into this

’(1 2 3 a b c + x y)

This does it:

Pattern: (quoted-append (guts ...) ...)

Template: (quote (guts))

This can be tricky!

Page 24 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Grouping Pattern/Template Pairs

A keyword may be associated with multiple pattern/template pairs.

The complete ruleset for a keyword is given by a syntax-rules form,

for instance this syntax-rules for and from R5RS:

(syntax-rules ()

((and) #t) ; first pair

((and test) test) ; second pair

((and test1 test2 ...) ; third pattern

(if test1 (and test2 ...) #f)))) ; third templ.

Page 25 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Notes on syntax-rules

� Patterns may contain their keyword, causing recursive

expansion!

� Forms are matched against patterns in top-down order

� and syntax-rules solves another problem for us...

Page 26 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Representing Specific Symbols in Patterns

Suppose we want

(implications (a => b) (c =>d) (e =>f))

to expand to

(begin (if a b) (if c d) (if e f))

But ”= � ” is a scheme symbol just like ”foo”; if we write

(syntax-rules ()

((implications (condition => consequent) ...)

(begin (if condition consequent) ...)))

(implications (test =. (set! testp #t))) ;typo

then “= � ” would match =., instead of the expander signaling an

error.

Page 27 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Representing Specific Symbols in Patterns II

We can specify a list of non-pattern-variable symbols as part of
syntax rules, for example

(syntax-rules (=>)

((implications (condition => consequent) ...)

(begin (if condition consequent) ...)))

Now the “= � ” in the pattern will only match the symbol “= � ”; it is no

longer a pattern variable.

Page 28 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Binding Constructs

We are now ready to use syntax-rules for real. But how?

We have three options:

� (let-syntax bindings body)

� (letrec-syntax bindings body)

�

(define-syntax symbol (syntax-rules

(top level only)

All behave in an extraordinarily obvious way.

Page 29 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Representing Specific Symbols in Patterns III

One final subtlety arises. Consider

(define-syntax implications

(syntax-rules (=>) ; body elided

))

(let ((=> 5))

(implications (foo => bar)))

In the define-syntax form, “= � ” names an implicit top-level binding.

In the implications form, “= � ” names the let binding.

Because of this, they do not match. Thus,

in this lexical context, the expansion of implications will fail.

Page 30 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Representing Specific Symbols in Patterns IV (Final)

In general:

� A literal symbol in a syntax-rules names a binding in the lexical

scope of the syntax-rules.

� A symbol in a form names a binding in the lexical scope in

which the form appears.

� A symbol in a form will only match a literal symbol in a pattern if

both symbols name the same binding.

� (A symbol which doesn’t correspond to an explicit binding is

assumed to correspond to an implicit binding in the top level.)

Page 31 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

The Pattern Keword

The keyword that starts a pattern is ignored. Some people prefer to

use in its place:

(define-syntax when

(syntax-rules ()

((_ cond consequent ...)

(if cond (begin consequent ...)))))

Thoughts on this convention:

� Visually distinguishes the beginning of a pattern

� Makes renaming a macro somewhat easier

� Yet somehow tasteless.

Page 32 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Debugging Tips

� Quote the result of an expansion that’s giving you trouble in

order to see the intermediate result.

� If MIT scheme says “Hardware trap SIGSEGV” when you define

a macro, it means you have ellipses that don’t make sense.

� MIT scheme doesn’t like ellipses in vectors, i.e. #(a ...)

buys you a SIGSEGV message.

Yes, I’ll report these bugs. RSN.

Page 33 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

10 Minute Break

Page 34 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

R5RS Macro Semantics

Page 35 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Macro Expansion: Apparent Danger

(define-syntax dotimes

(syntax-rules ()

((dotimes count body ...)

(let loop ((counter count))

(if (> counter 0)

(begin

body ...

(loop (- counter 1))))))))

(define counter 0)

(dotimes 5 (set! counter (+ counter 1)))

Does the dotimes invocation ever terminate?

Page 36 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Dotimes Expansion

(let loop ((counter 5))

(if (> counter 0)

(begin

(set! counter (+ counter 1))

(loop (- counter 1)))))

Doesn’t look good!

Appears that the let binding of counter will capture the user’s

reference to counter.

This really happens with some macro systems — but not Scheme’s.

Page 37 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Macro Hygiene

Hygienic macros cannot contaminate the lexical scope in which they

expand by introducing symbols that shadow other bindings.

Page 38 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Hygienic Dotimes Expansion

A hygienic expansion contains extra information:

(let loop ((counter 5))

(if (> counter 0)

(begin

(set! counter (+ counter 1))

(loop (- counter 1)))))

counter is not the same as counter, and therefore is not captured by

the let.

Page 39 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Substitutions Can Shadow

Using pattern-variables, macros can create bindings that shadow

lexically-enclosing bindings.

(define-syntax shadow

(syntax-rules () ((shadow used-arg body)

(let ((used-arg 5)) body))))

(define test 7)

(shadow test test))

yields

(let ((test 5)) test) ==> 5

This technique is how binding constructs are implemented.

Page 40 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Another Apparent Danger

(define-syntax dotimes

(syntax-rules ()

((dotimes count body ...)

(let loop ((counter count))

(if (> counter 0)

(begin

body ...

(loop (- counter 1))))))))

(let ((- ’minus))

(dotimes 5 (display "hello, world")

Does (- counter 1) evaluate properly?

Page 41 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Textual Expansion

(let ((- ’minus))

(let loop ((counter 5))

(if (> counter 0)

(begin

(display "hello, world")

(loop (- counter 1)))))

Fudging for clarity: the outer let, if it were implemented as a macro,

would have already expanded first.

Page 42 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Referential Transparency

Referentially-transparent macros are not contaminated by the lexical

scope in which they expand.

Identifiers introduced by the template refer to their bindings at the

point of macro definition.

Page 43 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Referentially Transparent Dotimes Expansion

(let ((- ’minus))

(let loop ((counter 5))

(if (> counter 0)

(begin

(display "hello, world")

(loop (- counter 1)))))

- is not the same as -; the macro expansion contains information

differentiating identifiers introduced by the macro template from

those bound in the expansion context.

Page 44 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Lexically-Safe Macros

hygiene and referential transparency combine to make R5RS

macros lexically safe: lexical scoping is always preserved. In

particular:

� macros don’t interfere with their expansion environments

(hygiene)

� macros aren’t interfered with by their expansion environments

(referential transparency)

� temporary names introduced by recursive/nested macros never

collide

� “Principle of least surprise”

R5RS macros are often (inaccurately) simply called “hygienic”.

Page 45 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

R5RS Macro Properties In Review

Felleisen’s three key properties:

� pattern language

� hygiene

� referential transparency

The implication:

� Hygiene combined with referential transparency guarantees

lexical scoping at all times...

� ...Even when you don’t want it to. (We’ll touch on that later.)

Page 46 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

One More Property

The R5RS macro language is decoupled from base Scheme

Most (all?) other macro systems let you use Scheme as part of the

macro expansion process, i.e.

� Some Scheme is executed at compile-time, to help produce...

� Scheme which is executed at runtime

Such macros can be exceedingly hard to read.

Page 47 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Design Idioms

Page 48 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Ordering Multiple Patterns

A form is compared against a keyword’s patterns in top-down order.

In dealing with things that process lists in order:

� The first form should match zero items

� The second should match one item

� The third should generalize for more than one item

For example, and...

Page 49 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Ordering Multiple Patterns: R5RS Example

(define-syntax and

(syntax-rules ()

((and) #t) ; zero items

((and test) test) ; one item

((and test1 test2 ...) ; two items

(if test1 (and test2 ...) #f))))

Your macros may not need all three cases.

Page 50 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Staged Expansion

Consider this pair of macros:

(define-syntax reverse-and-quote-list

(syntax-rules ()

((reverse-and-quote-list list)

(rl-helper list ()))))

(define-syntax rl-helper

(syntax-rules ()

((rl-helper () (backw ...))

’(backw ...))

((rl-helper (arg rest ...) (backw ...))

(rl-helper (rest ...) (arg backw ...)))))

(reverse-and-quote-list (1 2 3 4 5)) ==> (5 4 3 2 1)

rl-helper can’t be nested: it has ... in it

Page 51 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Staged Expansion Using Keystrings

Use “keystrings” to stage expansion without cluttering the

namespace with innumerable helper macros.

(define-syntax reverse-and-quote-list

(syntax-rules ()

((reverse-and-quote-list "helper" () (backw ...))

’(backw ...))

((reverse-and-quote-list "helper" (arg rest ...)

(backw ...))

(reverse-and-quote-list "helper" (rest ...)

(arg backw ...)))

((reverse-and-quote-list (list ...))

(reverse-and-quote-list "helper" (list ...) ()))))

“Tail recursive” strategy.

Page 52 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Macro Subroutines: “Falling-Forward”

Consider:

(let ((letrec 5)) letrec) ==> 5

The expansion process can reorganize the inner forms, so the

outermost layer of a form is always expanded first.

The next expansion doesn’t begin until the first one is completely

done.

How can an macro call another macro as a subroutine, and continue

expanding afterward?

Page 53 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Macro Subroutines

Passing the Next Macro as an Argument

To use a macro as a subroutine, we pass along the “return” as pair

of arguments to be used in a “tail-call” strategy.

� future-keyword names the macro to be applied when this one is

through.

� future-args provides initial arguments to that macro.

Example:

(define-syntax cps-quote

(syntax-rules ()

((cps-quote future-keyword (future-args ...) stuff ...)

(future-keyword future-args ... (quote stuff ...)))))

Page 54 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Terminal Macros

Some macros are “terminal” — they don’t call any more macros:

(define-syntax apply-to-result

(syntax-rules ()

((apply-to-result func list ...)

(func list ...))))

We can use this to output a quoted value:

(cps-quote apply-to-result ((lambda (x) x)) (1 2 3 4 5))

==>

(1 2 3 4 5)

Page 55 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Staged Subroutine Macros

Staged macros pass their future-arguments along until they’re done:

(define-syntax cps-reverse-list

(syntax-rules ()

((cps-reverse-list "helper" future-keyword

(future-args ...) () (backw ...))

(future-keyword future-args ... (backw ...)))

((cps-reverse-list "helper" future-keyword

future-args (arg forw ...) (backw ...))

(cps-reverse-list "helper" future-keyword

future-args (forw ...) (arg backw ...)))

((cps-reverse-list future-keyword future-args (list ...))

(cps-reverse-list "helper" future-keyword future-args

(list ...) ()))))

Page 56 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Nesting

The more “subroutines” you want to call, the longer the chain:

(cps-reverse-list

cps-quote

(apply-to-result ((lambda (x) x))) (1 2 3 4 5))

==>

(5 4 3 2 1)

Page 57 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

CPS (Continuation Passing Style)

At any point in a macro expansion series, the

future-keyword/future-args pair represent all of the expansion to

come.

We say they represent the “continuation” of the macro expansion.

The subroutining style is called Continuation Passing Style (CPS).

But we’ve only talked about macro-continuations, and macros aren’t

first-class.

Page 58 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Tomorrow:

First Class Scheme Continuations

They ain’t macros...

but first...

Page 59 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Tomorrow:

First Class Scheme Continuations

They ain’t macros...

but first...

Page 59 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

R5RS Macro Limitations...

...and Workarounds

Page 60 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

R5RS Macro Limitations...

...and Workarounds

Page 60 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Hygiene-Imposed Limitation

Suppose we want dotimes to expose a variable counter, so that a

programmer could write

(dotimes 5 (display counter))

and get “54321” as the result.

We already know that hygiene prevents this definition from working

that way:

(define-syntax dotimes

(syntax-rules ()

((dotimes count body ...)

(let loop ((counter count))

....

Page 61 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

The Workaround

We know that we can use symbols from the arguments to the macro

to create bindings, e.g. let, letrec, etc.

In fact, if the arguments contain the identifier you’re looking for (e.g.

counter) anywhere, you can dig it out and use it!

Page 62 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Petrofsky’s find-identifier

(define-syntax find-identifier

(syntax-rules ()

((_ ident (x . y) sk fk)

(find-identifier ident x sk

(find-identifier ident y sk fk)))

((_ ident #(x ...) sk fk)

(find-identifier ident (x ...) sk fk))

((_ ident form sk fk)

(let-syntax

((check

(syntax-rules (ident)

((_ ident ident* (s-f . s-args) fk_)

(s-f ident* . s-args))

((_ x y sk_ fk_) fk_))))

(check form form sk fk)))))

Page 63 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

“Hygiene-Violating” dotimes

(define-syntax dotimes

(syntax-rules ()

((dotimes count body ...)

(find-identifier counter (body ...)

(dotimes-finish count body ...)

(dotimes-finish temp count body ...)))))

(define-syntax dotimes-finish

(syntax-rules ()

((dotimes-finish counter count body ...)

(let loop ((counter count))

(if (> counter 0)

(begin

body ...

(loop (- counter 1))))))))

Page 64 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

And Sure Enough

(dotimes 5 (display counter))

prints 54321

Page 65 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

Homework Problem: Nesting Scopes

We expect this

(dotimes 5 (dotimes 5 (display counter)))

to yield

5432154321543215432154321

But actually we get

5555544444333332222211111

It can be solved...

...but it is tricky.

Page 66 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

The Other Commonly-Complained About R5RS

Limitation

You cannot synthesize symbols, and thus you cannot make a macro

(define-structure foo) which defines make-foo,

is-foo?, etc.

The workaround I’ve seen is ugly or unportable.

Page 67 Jeremy H. Brown January 7-8, 2003

Advanced Scheme Techniques

The End

But come back tomorrow for the Continuations lecture!

Page 68 Jeremy H. Brown January 7-8, 2003

