Page 1

Advanced Scheme Techniques

Advanced Scheme Technigues

Some Naughty Bits
Jeremy Brown

January 12 & 14, 2004

Jeremy H. Brown

January 12 & 14, 2003

Advanced Scheme Techniques

Acknowledgements

Jonathan Bachrach, Alan Bawden, Chris Hanson, Neel
Krishnaswami, and Greg Sullivan offered many helpful suggestions

on an earlier version of this course.

These slides draw on works by
Hal Abelson, Alan Bawden, Chris Hanson, Paul Graham, Oleg Kiselyov, Neel
Krishnaswami, Al Petrofsky, Jonathan Rees, Dorai Sitaram, Gerry Sussman, Julie

Sussman, and the R5RS authors group

Thanks also to Scheme Boston, the Boston-area Scheme User’s

Group.
And of course to SIPB, for organizing.

All errors are, of course, my fault alone.

Page 2 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Teaser

Using Macros and Continuations Together

Page 3 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Backtracking: a Teaser

The “amb” operator always picks an acceptable value:

(let ((value (anb 01 2 345 6)))
(assert (> value 2))

(assert (even? val ue))

Page 4 Jeremy H. Brown

January 12 & 14, 2003

Advanced Scheme Techniques

Backtracking: a Teaser

The “amb” operator always picks an acceptable value:

(let ((value (anb 01 2 345 6)))
(assert (> value 2))
(assert (even? val ue))
val ue)

==> 4

Page 4 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Backtracking: a Teaser

(define (three-dice sunto)
(let ((diel (amb 1 2 3 45 6))
(die2 (anb 1 2 3 45 6))
(die3 (anb 1 2 3 45 6)))
(assert (= sunto (+ diel die2 die3d)))
(list diel die2 die3)))

(initialize-anb-fail)
(three-dice 4)

Page 5 Jeremy H. Brown

January 12 & 14, 2003

Advanced Scheme Techniques

Backtracking: a Teaser

(define (three-dice sunto)
(let ((diel (amb 1 2 3 45 6))
(die2 (anb 1 2 3 45 6))
(die3 (anb 1 2 3 45 6)))
(assert (= sunto (+ diel die2 die3d)))
(list diel die2 die3)))

(initialize-anb-fail)
(three-dice 4) ==> (2 1 1)

Page 5 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Backtracking: a Teaser

(define (three-dice sunto)
(let ((diel (amb 1 2 3 45 6))
(die2 (anb 1 2 3 45 6))
(die3 (anb 1 2 3 45 6)))
(assert (= sunto (+ diel die2 die3d)))
(list diel die2 die3)))

(initialize-anb-fail)
(three-dice 4) ==> (2 1 1)

(next) ==>

Page 5 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Backtracking: a Teaser

(define (three-dice sunto)
(let ((diel (amb 1 2 3 45 6))
(die2 (anb 1 2 3 45 6))
(die3 (anb 1 2 3 45 6)))
(assert (= sunto (+ diel die2 die3d)))
(list diel die2 die3)))

(initialize-anb-fail)
(three-dice 4) ==> (2 1 1)
(next) ==>(1 2 1)

Page 5 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Backtracking: a Teaser

(define (three-dice sunto)
(let ((diel (amb 1 2 3 45 6))
(die2 (anb 1 2 3 45 6))
(die3 (anb 1 2 3 45 6)))
(assert (= sunto (+ diel die2 die3d)))
(list diel die2 die3)))

(initialize-anb-fail)
(three-dice 4) ==> (2 1 1)
(next) ==>(1 2 1)

(next) ==>

Page 5 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Backtracking: a Teaser

(define (three-dice sunto)
(let ((diel (amb 1 2 3 45 6))
(die2 (anb 1 2 3 45 6))
(die3 (anb 1 2 3 45 6)))
(assert (= sunto (+ diel die2 die3d)))
(list diel die2 die3)))

(initialize-anb-fail)

(three-dice 4) ==> (2 1 1)
(next) ==>(1 2 1)
(next) ==>(1 1 2)

Page 5 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Scheme Macros

Page 6 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

What is a Macro?

A macro is

e a stylized code transformation...

e performed without evaluating code...

e and using no runtime information.

Page 7 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

What is a Macro?
A macro is
e a stylized code transformation...
e performed without evaluating code...

e and using no runtime information.

Suppose cond-set! is a macro:

(cond-set! (> test 4) var 15)

Page 7 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

What is a Macro?
A macro is
e a stylized code transformation...
e performed without evaluating code...

e and using no runtime information.

Suppose cond-set! is a macro:

(cond-set! (> test 4) var 15)

This expression might expand to:

(if (> test 4) (set! var 15))

Page 7 Jeremy H. Brown

January 12 & 14, 2003

Advanced Scheme Techniques

What is a Macro?
A macro is
e a stylized code transformation...
e performed without evaluating code...

e and using no runtime information.

Suppose cond-set! is a macro:

(cond-set! (> test 4) var 15)

This expression might expand to:

(if (> test 4) (set! var 15))

Note: the expansion process does not evaluate test or var!

Page 7 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Macro Expansion Overview
A brief, somewhat inaccurate view of the macro expansion process:

e Pattern-matcher discovers an invocation form with macro

keyword in operator position, e.g.

(unl ess (procedure? f) (display f))

e Keyword is associated with one or more pattern/template pairs
E.gQ.
<(when condition consequent),
(1f (not condition) consequent)>

e |f form matches a pattern, the corresponding template is filled in
and replaces the form.

Page 8 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

When to Use Macros

Use macros to vary the order of evaluation

(in other words, to create new syntax/special forms).

For example:
e conditional evaluation (cond, case)
® repeated evaluation (do, named-let)
e binding (let, let*)

® un-evaluated syntactic tokens (case’s =>)

Page 9 Jeremy H. Brown

January 12 & 14, 2003

Advanced Scheme Techniques

When NOT to Use Macros

Any time you can avoid it!

e Don’t use them for efficiency hacks.
Let the compiler handle that.

Why not?

e Macros aren't first-class objects

— You can’t use a macro as any sort of runtime value

— Thus, you reduce your development flexibility.

e You make debugging more difficult

Page 10 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Another Look at cond-set!

Remember our example:

(cond-set! (> test 4) var 15)

What’'s wrong with making cond-set! a function? E.qg:

(define (cond-set! test variable val ue)

(if test (set! variable value)))

Page 11 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Another Look at cond-set!

Remember our example:
(cond-set! (> test 4) var 15)
What’'s wrong with making cond-set! a function? E.qg:

(define (cond-set! test variable val ue)

(if test (set! variable value)))

The set! only mutates the parameter in the function.

The original var is unchanged.

Page 11 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Scheme’s Derived Special Forms

Scheme actually has very few primitive special forms:
e |lambda
o f
® (uote
e set!
All the other forms may be derived using macros:
e conditionals (cond, case), binding (let, let*), etc.
e sequencing (begin, and, or)
e iteration (do, named let)

Of course, they may be implemented directly by the compiler, too.

Page 12 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Scheme Macro Systems

A number of macro systems have been implemented for various
Schemes:

e Common Lisp-style defmacro
e syntax-table

® syntactic closures

® syntax-case

® syntax-rules

® ...and more!

syntax-rules is the macro system endorsed by the “Revised’ Report

on the Algorithmic Language Scheme” (R5RS). syntax-rules macros
are often called “hygienic” macros.

Page 13 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Other Macro Systems You May Have Met

e M4

e tex/latex

® CPp

Page 14 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Key Commonalities Between Lisp-ish Macro

Systems
All of these Lisp macro systems share two commonalities.

1. A macro is guaranteed to expand to a valid lisp data structure
(typically a list).

2. The expanded form may contain objects that cannot be printed
and reparsed.

These are unique: you won’t find them in cpp, tex, m4, etc.!

1. helps in generating legal code, since all lisp code is also a valid
lisp data structure.

2. helps in avoiding accidental variable capture

Page 15 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Defmacro

Page 16 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Defmacro (Common Lisp) |

Defmacro takes
® a hame
e an argument list
e a body

Example:

(defmacro setqg-if-true (Ival condn)
‘“(let ((tnp ,condn)) (if tnp (setq ,lval tnp))))

Terminology:
The ‘(let ...) expression is a template.

Page 17 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Defmacro (Common Lisp) I

At compile time, the body is evaluated to return a lisp form.
Example:

(defvar foo0)

(setg-if-true foo 17) ==>

(let ((trmp 17))
(if tnp (setq foo 17)))

Page 18 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Defmacro: Free Variable Capture

You can unintentionally capture free variables in the arguments:

(defvar foo 0)
(setg-if-true foo 17) ==>
(let ((tnmp 17))

(if tnp (setq foo 17)))

(defvar tnp 0)
(setg-if-true tnp 17) ==>
(let ((tnp 17))

(if tnp (setq tnp 17)))

Page 19 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Defmacro: Variable Capture

You can unintentionally capture free variables in the arguments:

(def var foo{)'
(setg-if-tr oo 17) ==>
(let ((tnmp 17)

(if tnp (setq foo 17)))

(defvar tnp 0)

(setq-if-trb{rrp 17) ==>
(let ((tnp 17))

(it tnp (setg~tnp 17)))

Page 20 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Defmacro: Variable Capture

You can unintentionally capture free variables in the arguments:

(def var foo{)'
(setg-if-tr oo 17) ==>
(let ((tnmp 17)

(if tnp (setq foo 17)))

(defvar tnp 0)

(setq-if-trb{rrp 17) ==>
(let ((tnp 17))

(it tnp (setg~tnp 17)))

let changes a binding, thus introducing a new syntactic environment.
(See “Syntactic Closures”, by Alan Bawden and Jonathan Rees,
1988)

Page 20 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Syntactic Environments

A syntactic environment maps names to meanings
e identifiers map to variables

e keywords map to special syntactic constructs (lambda, macros,
etc.)

Page 21 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Syntactic Environments

A syntactic environment maps names to meanings
e identifiers map to variables

e keywords map to special syntactic constructs (lambda, macros,
etc.)

Binding constructs (lambda, let, defmacro, etc.) introduce new
syntactic environments.

Page 21 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Syntactic Environments
A syntactic environment maps names to meanings

e identifiers map to variables

e keywords map to special syntactic constructs (lambda, macros,

etc.)

Binding constructs (lambda, let, defmacro, etc.) introduce new

syntactic environments.

What code means depends on the syntactic environment in which it

IS evaluated!

Page 21 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Counting Syntactic Environments

(defmacro setqg-if-true (Ilval condn)
‘“(let ((tnp ,condn)) (if tnp (setq ,lval tnp))))

(defvar tnp 0)
(setg-if-true tnp 17) ==>
(let ((trmp 17))

(if tnp (setqg tnp 17)))

There are several syntactic environments:
1. Environments before and after the defmacro
2. Environment of (setg-if-true...)
3. Environment of (let...) in expansion

We want different occurrences of 'tmp’ evaluated in different
environments!

Page 22 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Defmacro: gensym |

Wise defmacro users extend the syntactic environment with
guaranteed-unique names (symbols):

(defmacro setqg-if-true (Ilval condn)

(let ((tnp (gensym))
“(let ((,tnmp ,condn)) (if ,tnp (setqg ,lval ,tnp)))))

gensym creates a symbol at compile-time, but makes no
string-to-symbol mapping. Thus:

e The symbol cannot be found by looking up a string name

e The symbol is thus a unique identifier across all syntactic
environments

Page 23 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Defmacro: gensym |l

(defvar tnp 0)
(setg-if-true\gnp 17) ==>

(let ((#: KXR762_9
(if #:GdQGZ (setq tnp #: G762)))

Note: This macro expansion cannot be printed and re-parsed:
a parsed version would not work with code that deliberately named
a symbol #:G2762

Page 24 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Defmacro: the Limits of gensym

gensym can'’t protect free variables in the macro template.

(defmacro push-if (condn expr)

“(if ,condn (setf stack (cons ,expr stack))))

(defvar stack ’())
(push-if (> 5 3) 7) ==>
(if (> 5 3) (setf stack (cons 7 stack)))

(let ((stack ’'(al pha beta)))

(push-if (> 5 3) 9)) ==>; fudging here
(let ((stack ’'(al pha beta)))

(if (> 5 3) (setf stack (cons 9 stack)))

Page 25 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Defmacro: the Limits of gensym

gensym can'’t protect free variables in the macro template.

(defmacro push-if (condn expr)

“(if ,condn (setf stack (cons ,expr stack))))

(defvar stack._ ())
(pUSh_i f (>%\
(if (> 5 3) (setf stack (cons 7 stack)))

(let ((stack ’'(al pha beta)))
(push-if (> 5 3) 9)) ==>; fudging here

(let ((stack.;LaLgng_EELElll-_—_g_
(if (>5 3;\Z;E??‘Stack (cons 9—stack)))

Page 26 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Syntactic Closures

Page 27 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Syntactic Closures

A syntactic closure has three components:
® A syntactic environment
® An expression

e A list of names (symbols and/or synctactic closures over
symbols)

Page 28 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Syntactic Closures

A syntactic closure has three components:
® A syntactic environment
® An expression

e A list of names (symbols and/or synctactic closures over
symbols)

A syntactic closure represents code in which

e all names in the expression are interpreted according to the
syntactic environment...

e except names in the list-of-names, which are left free.

Page 28 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Syntactic Closures

A syntactic closure has three components:
® A syntactic environment
® An expression

e A list of names (symbols and/or synctactic closures over
symbols)

A syntactic closure represents code in which

e all names in the expression are interpreted according to the
syntactic environment...

e except names in the list-of-names, which are left free.

Macros built with syntactic closures have much more control.

Page 28 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

set-if-true! with MIT Scheme Syntactic Closuress

(define-syntax set-if-true!
(sc-macro-transforner
(1 anbda (exp usage-env)
(let ((lval (cadr exp))
(condn (caddr exp)))
(let ((lval-sc

(make-syntactic-closure usage-env () lval))
(condn-sc
(make-syntactic-closure usage-env ’'() condn)))

‘“(let ((tnp ,condn-sc))
(if tnp (set! ,lval-sc tnp))))))))

Page 29 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Syntactic Closures: Expansion

These both work safely now:

(set-if-true! tnmp 17) ==>
(let ((trmp_17))
(if tnp (set! t np)))

(let ((let 7)) (set-if-true! foo 17)) ==>,; fudging
(let ((let 7))
(let ((tnmp 17))
(if tnp (set! tnp tnp))))

Page 30 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Syntactic Closures: Expansion

These both work safely now:

(set-if-true! tnmp 17) ==>
(let ((trmp_17))
(if tnp (set! t np)))

(let ((let 7)) (set-if-true! foo 17)) ==>,; fudging
(let ((let 7))
(let ((tnmp 17))
(if tnp (set! tnp tnp))))

Post-expansion, tmp and let are not symbols.
Instead, they are syntactic closures.

Page 30 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Deliberately Capturing Variables

(define-syntax this-I|anbda
(sc-macro-transforner
(1 anbda (exp usage-env)
(let ((lanbda-sc
(make-syntactic-cl osure usage-env
"(this)
‘(lanbda , @cdr exp)))))
‘“(letrec ((this ,lanbda-sc))

this)))))

Fibbonacci:

((this-1anbda (n)
(if (<=n2) 1 (+ (this (- n 1)) (this (- n 2))))) 7) ==>
13

Page 31 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Take-Home Lessons so Far
e EXxplicit destructuring of input forms is ugly.
e EXplicit management of environments is verbose.

e There are usually three syntactic environments that matter:
. Macro definition environment
. Macro usage environment

. Environments created by the macro expansion, if you want to

deliberately introduce bindings into the expansion of the

macro-user’s code.

Page 32 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

syntax-rules

Page 33 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

R5RS Macros
(AKA Hygienic Macros)

(AKA syntax-rules macros)

Scheme “hygienic macros” have four key properties:

e Hygiene: macros don't interfere with their expansion
environments

e Referential transparency: macros aren’t interfered with by their
expansion environments

e Pattern-language: specify how to destructure input forms

e Closed: the macro language is decoupled from base Scheme;
you cannot call Scheme functions as part of the expansion of a
macro

Page 34 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Macro Hygiene

Hygienic macros cannot contaminate the lexical scope in which they
expand by introducing symbols that shadow other bindings.

Page 35 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Macro Hygiene

Hygienic macros cannot contaminate the lexical scope in which they
expand by introducing symbols that shadow other bindings.

Equivalent statement:
Hygienic macros close their input forms in the syntactic environment

at the point of use.

Page 35 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Referential Transparency

Referentially-transparent macros are not contaminated by the lexical

scope in which they expand.

Free identifiers introduced by the template refer to their bindings at

the point of macro definition.

Page 36 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Referential Transparency

Referentially-transparent macros are not contaminated by the lexical

scope in which they expand.

Free identifiers introduced by the template refer to their bindings at

the point of macro definition.

Equivalent statement:
A referentially-transparent macro closes identifiers in its template in

the syntactic environment at the point of definition.

Page 36 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Pattern Language

A basic R5RS macro pattern is pretty straightforward:
e itis a list form
e its first element is the keyword
® strings, numbers, booleans, lists, vectors represent themselves
e non-keyword symbols represent pattern variables
For a form to match a pattern:
e cach number, boolean, etc. must match exactly
e cach pattern variable matches a single subform

Unaddressed so far: how do we represent specific symbols?
We’ll come back to that in awhile.

Page 37 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Pattern Language Examples |

Pattern

(letl (nane val ue) body)

matches form

(letl (x (read))
(if (not x) (display "you said no")))

with the pattern variables matching like this:

name = X
val ue = (read)
body = (if (not x) (display "you said no"))

Page 38 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Pattern Language Examples Il

Pattern

(contrived #((first . rest) #(3 any)))

matches form

(contrived #((1 2 3 4 5) #(3 '(fo0))))

with the pattern variables matching like this:

first =1
rest = (2 3 4 5)
any = ' (foo) AKA (quote (foo0))

Page 39 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Template Language

A template is an arbitrary Scheme form whose interpretation
depends on the pattern it's paired with.

® numbers, booleans, lists, vectors represent themselves
e symbols which don’t appear in the pattern represent themselves

e symbols which do appear in the pattern represent pattern

variables

Expansion replaces each pattern variable in a template with the

subform it matched in the input form.

Page 40 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Template Language Example

Pattern

(letl (nane val ue) body)

and template

(let ((nane val ue)) body)

applied to form

(letl (x (read))
(if (not x) (display "you said no")))

expands to

(let ((x (read)))
(if (not x) (display "you said no")))

Page 41 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Matching Multiple Forms at Once

A pattern variable followed by ... (an ellipsis) matches a group of
consecutive forms.

For example, if we match the pattern

(doti nes count statenent ...)

against the code form

(dotinmes 5 (set! x (+ x 1)) (display x))
then

statenent ... = (set! x (+ x 1)) (display x))

Page 42 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Template Expansion with Ellipses |

In a template, a pattern variable followed by an ellipsis expands into

the group of forms it matched.
E.g. given this template for dotimes

(let dotines-loop ((counter count))
(if (> counter 0)
(begi n
st at enmrent
(dotinmes-loop (- counter 1)))))

Page 43 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Template Expansion with Ellipses Il

...then the expansion will look like this:

(let dotines-loop ((counter 5))
(if (> counter 0)
(begi n
(set! x (+ x 1))
(di splay x)

(dotinmes-loop (- counter 1)))))

Page 44 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Producing Repeated Forms

Suppose we want
(thunkify 5 (* x X))
to expand to

(list (lambda () 5) (lanmbda () (* x x)))

This does the trick:
Pattern: (t hunki fy body ...)
Template: (11 st (| anbda () body)

Page 45 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Matching Repeated Forms

Suppose we want

(update-if-true!
((> x 5) x-is-big)

((zero? y) y-is-zero))
to expand to

(begin
(let ((test (> x 5)))
(if test (set! x-is-big test)))
(let ((test (zero? y)))
(if test (set! y-is-zero test))))

Page 46 Jeremy H. Brown

January 12 & 14, 2003

Advanced Scheme Techniques

Matching Repeated Forms Il

We can match a group of forms by following a form with ...
pattern variables in the form match the corresponding subforms.

This does the trick:
Pattern:

(update-if-true! (condition variable)

Template:

(begin (let ((test condition))

(if test (set! variable test)))

Page 47 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Nesting Ellipses

Ellipses may be nested in both patterns and templates.
A highly artificial example: we want this

(quoted-append (1 2 3) (abc) (+ xvVy))

to expand into this

'(1 23 abc+ xy)

This does it:
Pattern: (quot ed- append (guts
Template: (quote (guts))

This can be tricky!

Page 48 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Grouping Pattern/Template Pairs

A keyword may be associated with multiple pattern/template pairs.
The complete ruleset for a keyword is given by a syntax-rules form,
for instance this syntax-rules for and from R5RS:

(syntax-rules ()
((and) #t) ; first pair
((and test) test) , second pair
((and testl test2 ...) ;, third pattern
(if testl (and test2 ...) #f)))) ; third tenpl.

In MIT-Scheme terms, syntax-rules returns a macro transformer.

Page 49 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Notes on syntax-rules

e Patterns may contain their keyword, causing recursive

expansion!
e Forms are matched against patterns in top-down order

e and syntax-rules solves another problem for us...

Page 50 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Representing Specific Symbols in Patterns

Suppose we want
(tmplications (a => b) (c =>d) (e =>f))
to expand to

(begin (if ab) (if cd) (if e f))

But "=>"Is a scheme symbol just like "foo”; if we write

(syntax-rules ()
((inmplications (condition => consequent) ...

(begin (if condition consequent) ...)))

(inplications (test = (set! testp #t))) ;typo

then “=>" would match =., instead of the expander signaling an

error.

Page 51 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Representing Specific Symbols in Patterns Il

We can specify a list of non-pattern-variable symbols as part of
syntax rules, for example

(syntax-rules (=>)
((inmplications (condition => consequent)

(begin (if condition consequent) ...)))

Now the “=>"In the pattern will only match the symbol “=>"; itis no
longer a pattern variable.

Page 52 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Binding Constructs

We are now ready to use syntax-rules for real. But how?

We have three options:

o (| et-syntax bindings body)

o (| etrec-syntax bindi ngs body)

o
(defi ne-syntax synbol (syntax-rules
(top level only)

All behave in an extraordinarily obvious way.

Page 53 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Representing Specific Symbols in Patterns Il

One final subtlety arises. Consider

(define-syntax inplications
(syntax-rules (=>) ; body elided
))

(let ((=>95))
(inplications (foo => bar)))

In the define-syntax form, “=>" names an implicit top-level binding.
In the implications form, “=>" names the let binding.

Because of this, they do not match. Thus,
In this lexical context, the expansion of implications will fail.

Page 54 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Representing Specific Symbols in Patterns IV (Final)

In general:

e A literal symbol in a syntax-rules names a binding in the lexical
scope of the syntax-rules.

e A symbol in a form names a binding in the lexical scope in
which the form appears.

e A symbol in a form will only match a literal symbol in a pattern if
both symbols name the same binding.

e (A symbol which doesn’t correspond to an explicit binding is
assumed to correspond to an implicit binding in the top level.)

Page 55 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Debugging Tips

e Quote the result of an expansion that’s giving you trouble in
order to see the intermediate result.

e |f MIT scheme says “Hardware trap SIGSEGV” when you define
a macro, it means you have ellipses that don’t make sense.

e MIT scheme doesn't like ellipses in vectors, i.e. #(a
buys you a SIGSEGV message.

Page 56 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

R5RS Macro Semantics

Page 57 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Macro Expansion: Apparent Danger

(define-syntax dotines
(syntax-rules ()
((dotinmes count body ...)
(let loop ((counter count))
(if (> counter 0)
(begi n
body ...
(l'oop (- counter 1))))))))

(define counter O0)

(dotimes 5 (set! counter (+ counter 1)))

Does the dotimes invocation ever terminate?

Page 58 Jeremy H. Brown

January 12 & 14, 2003

Advanced Scheme Techniques

Hygienic Dotimes Expansion

A hygienic expansion contains the usual extra information:

(let Toop ((counter 5))
(if (> counter 0)
(begi n
(set! counter (+ counter 1))

(loop (- counter 1)))))

counter is not the same as counter

It was closed in a different syntactic environment. It is therefore not
captured by the let.

Page 59 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Substitutions Can Shadow

Using pattern-variables, macros can create bindings that shadow
lexically-enclosing bindings.

(defi ne-syntax shadow
(syntax-rules () ((shadow used-arg body)
(let ((used-arg 5)) body))))
(define test 7)

(shadow test test))

yields

(let ((test 5)) test) ==>5

This technique is how binding constructs are implemented.

Page 60 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Substitutions Can Shadow

Using pattern-variables, macros can create bindings that shadow
lexically-enclosing bindings.

(defi ne-syntax shadow
(syntax-rules () ((shadow used-arg body)
(let ((used-arg 5)) body))))
(define test 7)

(shadow test test))

yields

(let ((test 5)) test) ==>5

This technique is how binding constructs are implemented.

Syntactic closure over a binding form does the right thing!

Page 60 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Another Apparent Danger

(defi ne-syntax dotines
(syntax-rules ()
((dotinmes count body ...)
(let loop ((counter count))
(if (> counter 0)
(begi n
body ...
(l'oop (- counter 1))))))))

(let ((- ’mnus))
(dotimes 5 (display "hello, world")

Does (- counter 1) evaluate properly?

Page 61 Jeremy H. Brown

January 12 & 14, 2003

Advanced Scheme Techniques

Referentially Transparent Dotimes Expansion

(let ((- *mnus))
(let Toop ((counter 5))
(if (> counter 0)
(begin
(display "hello, world")
(loop (- counter 1)))))

- IS not the same as -; they are closed in different syntactic
environments.

Page 62 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

R5RS Macros are Lexically-Safe Macros

Hygiene and referential transparency combine to make R5RS
macros lexically safe: lexical scoping is always preserved. In
particular:

e macros don't interfere with their expansion environments
(hygiene)

macros aren’t interfered with by their expansion environments
(referential transparency)

temporary names introduced by recursive/nested macros never
collide

“Principle of least surprise”

Page 63 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

An Implication of lexical safety

The implication:

e Hygiene + referential transparency guarantees lexical scoping
at all times...

e ...even when you don’t want it to. (We’ll touch on that later.)

Page 64 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

On Not Being Scheme

The R5RS macro language is decoupled from base Scheme

Most (all?) other macro systems let you use Scheme as part of the
macro expansion process, i.e.

® Some Scheme is executed at compile-time, to help produce...
e Scheme which is executed at runtime

Such systems enable you to, e.g, generate new symbols using
string->symbol, etc. at compile-time.

Page 65 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

R5RS Design Idioms

Page 66 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Ordering Multiple Patterns

A form is compared against a keyword’s patterns in top-down order.

In dealing with things that process lists in order:
e The first form should match zero items
e The second should match one item
e The third should generalize for more than one item

For example, and...

Page 67 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Ordering Multiple Patterns: R5RS Example

(defi ne-syntax and
(syntax-rules ()
((and) #t) , Zero itens
((and test) test) ; one item
((and testl test2 ...) ; two itens
(if testl (and test2 ...) #f))))

Your macros may not need all three cases.

Page 68 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Staged Expansion

Consider this pair of macros:

(define-syntax reverse-and-quote-|i st
(syntax-rules ()
((reverse-and-quote-list |ist)

(rl-helper list ()))))

(defi ne-syntax rl-hel per
(syntax-rules ()
((rl-helper () (backw ...))
' (backw ...))
((rl-helper (arg rest ...) (backw ...))
(rl-helper (rest ...) (arg backw ...)))))

(reverse-and-quote-list (1 23 45)) =>(54321)

rl-helper can’t be nested: it has ... in it

Page 69 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Staged Expansion Using Keystrings

Use “keystrings” to stage expansion without cluttering the
namespace with innumerable helper macros.

(define-syntax reverse-and-quote-|i st
(syntax-rules ()
((reverse-and-quote-list "helper" () (backw ...))
' (backw ...))
((reverse-and-quote-list "helper" (arg rest
(backw ...))
(reverse-and-quote-list "helper" (rest ...)
(arg backw ...)))
((reverse-and-quote-list (list ...))

(reverse-and-quote-list "helper” (list ...) ()))))

“Tail recursive” strategy.

Page 70 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Macro Subroutines: “Falling-Forward”

Consider:

(let ((letrec 5)) letrec) ==> 5

The expansion process can reorganize the inner forms, so the
outermost layer of a form is always expanded first.

The next expansion doesn’t begin until the first one is completely
done.

How can an macro call another macro as a subroutine, and continue

expanding afterward?

Page 71 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Macro Subroutines

Passing the Next Macro as an Argument

To use a macro as a subroutine, we pass along the “return” as pair
of arguments to be used in a “tail-call” strategy.

e future-keyword names the macro to be applied when this one is
through.

e future-args provides initial arguments to that macro.

Example:

(defi ne-syntax cps-quote
(syntax-rules ()
((cps-quote future-keyword (future-args ...) stuff ...)

(future-keyword future-args ... (quote stuff ...)))))

Page 72 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Terminal Macros

Some macros are “terminal” — they don’t call any more macros:

(defi ne-syntax apply-to-result
(syntax-rules ()
((apply-to-result func |i st
(func list ...))))

We can use this to output a quoted value:

(cps-quote apply-to-result ((lanbda (x) x)) (1 2 3 4 5))
==>

(123 4 5)

Page 73 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Staged Subroutine Macros

Staged macros pass their future-arguments along until they’re done:

(define-syntax cps-reverse-|i st
(syntax-rules ()

((cps-reverse-list "hel per" future-keyword

(future-args ...) () (backw ...))
(future-keyword future-args ... (backw ...)))
((cps-reverse-list "hel per" future-keyword

future-args (arg forw...) (backw ...))
(cps-reverse-list "hel per" future-keyword

future-args (forw...) (arg backw ...)))
((cps-reverse-list future-keyword future-args (list ...))

(cps-reverse-list "hel per"” future-keyword future-args

(list ...) ()))))

Page 74 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Nesting

The more “subroutines” you want to call, the longer the chain:

(cps-reverse-1i st

cps- quot e

(apply-to-result ((lanmbda (x) x))) (1 2 3 4 5))
==>

(54 32 1)

Page 75 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

CPS (Continuation Passing Style)

At any point in a macro expansion series, the
future-keyword/future-args pair represent all of the expansion to
come.

We say they represent the “continuation” of the macro expansion.
The subroutining style is called Continuation Passing Style (CPS).

But we’'ve only talked about macro-continuations, and macros aren’t
first-class.

Page 76 Jeremy H. Brown January 12 & 14, 2003

Page 77

Advanced Scheme Techniques

Tomorrow:

First Class Scheme Continuations

They ain’t macros...

Jeremy H. Brown

January 12 & 14, 2003

Page 77

Advanced Scheme Techniques

Tomorrow:

First Class Scheme Continuations

They ain’t macros...

but first...

Jeremy H. Brown

January 12 & 14, 2003

Advanced Scheme Techniques

R5RS Macro Limitations...

Page 78 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

R5RS Macro Limitations...

...and Workarounds

Page 78 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Hygiene-Imposed Limitation

Suppose we want dotimes to expose a variable counter, so that a

programmer could write

(dotines 5 (display counter))

and get “54321" as the result.

We already know that hygiene prevents this definition from working

that way:

(define-syntax dotines
(syntax-rules ()
((dotinmes count body ...)

(let loop ((counter count))

Page 79 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

The Workaround

We know that we can use symbols from the arguments to the macro
to create bindings, e.g. let, letrec, etc.

In fact, If the arguments contain the identifier you're looking for (e.g.
counter) anywhere, you can dig it out and use it!

Page 80 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Petrofsky’s find-identifier

(define-syntax find-identifier
(syntax-rules ()
((_ident (x . y) sk fk)
(find-identifier ident x sk
(find-identifier ident y sk fk)))
((_ ident #(x ...) sk fk)
(find-identifier ident (x ...) sk fk))
((_ ident form sk fk)
(1 et -synt ax
((check
(syntax-rul es (ident)
((_ident ident* (s-f . s-args) fk))
(s-f ident* . s-args))
((_ xysk_fk) fk)))))
(check formformsk fk)))))

Page 81 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

“Hygiene-Violating” dotimes

(define-syntax dotines
(syntax-rules ()
((dotinmes count body ...)
(find-identifier counter (body ...)
(doti mes-finish count body ...)

(dotinmes-finish tenp count body ...)))))

(define-syntax dotinmes-finish
(syntax-rules ()
((dotinmes-finish counter count body ...
(let loop ((counter count))
(if (> counter 0)
(begi n
body ...
(l'oop (- counter 1))))))))

Page 82 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

And Sure Enough

(dotimes 5 (display counter))
prints 54321

Page 83 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

C++ Joke:

Are We Template-Metaprogramming Yet?

Page 84 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

Homework Problem: Nesting Scopes

We expect this

(dotinmes 5 (dotines 5 (display counter)))
to yield

5432154321543215432154321

But actually we get

5555544444333332222211111

It can be solved...
...but it is tricky.

Page 85 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

The Other Commonly-Complained About R5RS
Limitation

You cannot synthesize symbols, and thus you cannot make a macro

(defi ne-structure foo) which defines make-foo,
Is-foo?, etc.

The workaround I've seen is ugly or unportable.

Page 86 Jeremy H. Brown January 12 & 14, 2003

Advanced Scheme Techniques

The End

But come back tomorrow for the Continuations lecture!

Page 87 Jeremy H. Brown January 12 & 14, 2003

