
The Diffie-Hellman Key-Agreement Scheme in the Strand-Space Model∗

Jonathan C. Herzog
The MITRE Corporation
jherzog@mitre.org

Abstract

The Diffie-Hellman key exchange scheme is a standard
component of cryptographic protocols. In this paper, we
propose a way in which protocols that use this computa-
tional primitive can be verified using formal methods. In
particular, we separate the computational aspects of such
an analysis from the formal aspects. First, we use Strand
Space terminology to define a security condition that sum-
marizes the security guarantees of Diffie-Hellman. Once
this property is assumed, the analysis of a protocol is a
purely formal enterprise. (We demonstrate the applicability
and usefulness of this property by analyzing a sample pro-
tocol.) Furthermore, we show that this property is sound
in the computational setting by mapping formal attacks to
computational algorithms. We demonstrate that if there ex-
ists a formal attack that violates the formal security condi-
tion, then it maps to a computational algorithm that solves
the Diffie-Hellman problem. Hence, if the Diffie-Hellman
problem is hard, the security condition holds globally.

1 Introduction

Consider this simplified version of the TLS [5] protocol:

1. C −→ S : C

2. S −→ C : S [gx]KS

3. C −→ S : [gy]KC {|T1 C S|}K′

4. S −→ C : {|T2 C S|}K′

where

• T1, T2 are fixed tags to distinguish the third message
from the fourth,

• [M]KX is the messageM together with a signature
that can be verified using the public keyKX ,

∗This work supported by the National Security Agency. Appears in
Proceedings, 16th IEEE Computer Security Foundations Workshop, IEEE
CS Press, June 2003.

• {|M |}K′ is the messageM encrypted with the symmet-
ric keyK ′,

• g is a generator for some large groupG,

• x, y are randomly chosen elements of{1, 2, . . . |G|},
and

• K ′ is a symmetric key created by hashing the value
gxy.

Informally, we note that the security of this protocol
must depend on the secrecy ofgxy and recall the widely-
knownDiffie-Hellman problem:

Given a groupG, a generatorg, gx andgy for
x,y picked randomly from{1, 2, . . . |G|}, calcu-
late the valuegxy.

Although the complexity of the Diffie-Hellman problem is
not known, there exist groups over which it is widely be-
lieved to be unsolvable (even on average) by any efficient
algorithm.

However, the hardness of the Diffie-Hellman problem
does not guarantee the security of this protocol. What is
required is a proof, made using the assumptions and proof
techniques of some model. One such model would be that
of computational cryptography: the study of cryptography
using the tools of complexity theory. A proof in this model
would begin by assuming that there exists an adversary (i.e.,
an efficient algorithm) that can break the security of the pro-
tocol. It would then show that if such an adversary exists,
there must also exist a second adversary1 that can either
forge a signature, break symmetric encryption, or solve the
Diffie-Hellman problem.

Since the formal definition of the Diffie-Hellman prob-
lem (given in Section 2) is complexity-theoretic in nature,
this model might be the most natural one to apply. Unfor-
tunately, natural models are not necessarily the easiest to
use. Although the computational model is sound and proofs
in that model are strong, it is difficult to work in. A sim-
pler and more intuitive framework is theDolev-Yaomodel

1Typically using the first adversary as a component.

[6], which grew out of the formal methods community. In-
stead of considering all possible adversaries (as in the pre-
vious case) this model typically considers only a restricted
class. In particular, the adversaries of this model operate by
choosing — non-deterministically and repeatedly — from a
small and explicitly enumerated set of operations. A proof
of security in this model is generally a demonstration that
all combinations of those operations (together with the op-
erations performed by the honest participants) are ‘safe’.

We would prefer to use the Dolev-Yao model to perform
analyses. It is simple to use, and can be automated. Even
when used manually, powerful general theorems allow indi-
vidual protocols to be proven secure in a quick and straight-
forward way. However, since the Diffie-Hellman problem
is computational in nature, it is not yet clear how to incor-
porate it into a formal approach.

In this paper we will propose one such incorporation. In
particular, we attempt to separate the formal aspects of a
protocol analysis from the computational ones. We do this
in two steps:

1. We propose a security property which reflects (in the
formal setting) the difficulty of the Diffie-Hellman
problem. That is, we propose a condition which states
(informally) that if honest participants use a shared se-
cret such asgxy only in certain ways, the adversary can
never learn it. This property is natural and simple. It
applies to a large class of real-world protocols, and is
extremely useful in their analysis. (We demonstrate its
use on the protocol that begins this paper.) Thus, once
this property is assumed, the analysis of the protocol is
firmly in the domain of formal methods.

2. However, we also show that this property can be justi-
fied using the techniques of the computational model.
To this end, we give a mapping from formal attacks
to computational algorithms. We show that any attack
which violates the global property results in an effi-
cient algorithm that solves the Diffie-Hellman prob-
lem. Hence, if Diffie-Hellman is hard, then no for-
mal attack violates the property, and thus the property
holds globally.

The paper is structured as follows. We begin by dis-
cussing some background material on the Diffie-Hellman
problem (Section 2). We extend the Dolev-Yao model, as
represented by the Strand Space method [12], to include
language appropriate to the Diffie-Hellman problem (Sec-
tion 3). We then introduce our security condition via an
informal discussion (Section 4). We demonstrate the appli-
cability of this security condition by using it to analyze the
protocol that begins this paper (Section 5). We then jus-
tify the property by giving a mapping from formal attacks
to computational algorithms (Section 6.1), and showing that

any formal attack that violates the property results in a com-
putational algorithm that solves Diffie-Hellman efficiently
(Section 6.2). We finish with a discussion of related results
and possible future work (Section 7).

2 The Diffie-Hellman Problem

In the simplest form of the Diffie-Hellman scheme, ev-
eryone is assumed to know a large cyclic groupG and a
generatorg. If two entitiesA andB wish to agree on a
secret random value, then

• A chooses a random elementx ∈ {1 . . . |G|} and sends
toB the valuegx, and

• B chooses a random elementy ∈ {1 . . . |G|} and
sends toA the valuegy.

The random value upon which they have agreed isgxy,
which both can calculate:

• A can calculategxy from x andgy via (gy)x = gxy

and

• B can calculategxy from y andgx via (gx)y = gxy.

Note that the scheme provides no authentication. Al-
thoughA can be sure that the secret valuegxy is known
only to A herself and the entity that generatedy, A can-
not tell who that entity is. Authentication and identification
must be ensured by some other mechanism.

The scheme is, however, assumed to providesecrecyin
the sense that no agent other thanA andB is able to learn
the valuegxy. This the Diffie-Hellman problem, given in-
formally in the introduction. TheDiffie-Hellman assump-
tion is that the Diffie-Hellman problem is intractable for
certain families of groups. More formally:2 A group family
is a set of finite cyclic groupsG = {Gp} wherep ranges
over an infinite index set. The parameterp encodes the
group parameters. We assume that there exists an efficient
(polynomial-time) algorithm that, givenp and two elements
of Gp, outputs the sum of the elements. Aninstance gen-
erator for G = {Gp} is a randomized algorithmIG which,
when given a natural numberη (represented in unary), runs
in time polynomial inη and outputs〈p, g〉 wherep is a ran-
dom index andg is a generator forGp. The parameterη is
known as thesecruity parameter. It is assumed that ifGp is
a group generated byIG(1η), then every element ofGp can
be represented with a number of bits polynomial inη. Note
that for a givenη, IG(1η) induces a distribution on the set
of indices.

2Most of this exposition is taken from [4].

2

Definition 1 The computational3 Diffie-Hellman assump-
tion is that no adversary can maintain a polynomial chance
of producinggxy from randomly chosengx andgy asη in-
creases:

∃G. ∀ PPT algorithmsA. ∀c > 0. ∀ sufficiently largeη

Pr[〈p, g〉 ← IG(1η);
x, y ← {1, 2, . . . , |Gp|} ;
qz ← A(p, g, gx, gy) :
gz = gxy] ≤ 1

ηc

(The notation “∀ sufficiently largeη” is equivalent to
∃η0.∀η ≥ η0. The notationPr[A;B : C] is equivalent
to Pr[C|A,B] whereA andB are experiments run in se-
quence. The notationx ← D means thex is drawn from
the distributionD. If D is a probabilistic algorithm,4 then
x is drawn from the distribution created by running that al-
gorithm with random ‘coin flips’. IfD is a set, then the
uniform distribution is assumed.)

The Diffie-Hellman problem and its applications have
been well-studied in the world of computational cryptog-
raphy. It has even gained acceptance in applied cryptog-
raphy, and is used for key-agreement in such widespread
protocols as SSH [13] and TLS [5]. Note, however, that the
Diffie-Hellman assumption is a statement about the asymp-
totic nature of probabilities, and hence is inherently compu-
tational in nature. The main purpose of this work is to show
how such computational statements and assumptions can be
incorporated into the formal setting.

3 Strand Spaces

Rather than consider all formal protocol analysis meth-
ods, we will focus upon the Strand Space method. The
standard model is described in [11, 12]; here, we focus
on the extensions necessary to examine the Diffie-Hellman
scheme. The extensions fall into two broad categories: ex-
tensions to the algebra and extensions to the adversary.

3.1 Extensions to the Algebra

We will extend and modify the algebra of previous strand
space work in three ways.

First, we add an additional typeD for Diffie-Hellman
exchanges. We will used1, d2 . . . as elements ofD, and
we assume there exists an operation

DH : D ×D → D
3As opposed to thedecisionalDiffie-Hellman assumption, which is the

much stronger assumption that it is hard to distinguish the Diffie-Hellman
valuegxy from a random group elementgz . For the rest of this paper, the
“Diffie-Hellman problem” refers to the computational version.

4Meaning one that has access to a tape of random bits.

to represent the Diffie-Hellman operation. We denote the
range ofDH byDDH . In the literature and in practice, the
notationgx may be used as both a computational and for-
mal variable, andgxy used instead of the admittedly cum-
bersomeDH(d1, d2). In contexts where the model is clear,
this overloading of notation presents no difficulty. In this
work, however, we are interested in the exact relationship
between the formal and computational models. Hence, we
distinguish between the two by using the notationd1, d2

andDH(d1, d2) for the formal model, and the notationgx,
gy andgxy for the computational model.

Also, one of our ultimate goals is to enable the analysis
of protocols like TLS, SSH, and the one at the beginning
of this paper. These protocols use signatures and hashing,
requiring us to add these two operations to the Strand Space
algebra.5 Signing a term is not assumed to hide the message
in any fashion. Hashing a term is assumed to result in a key
appropriate for symmetric encryption. We will assume that
keys for symmetric encryption, signature generation, and
signature verification are mutually disjoint, and that sym-
metric encryption keys created through hashing are disjoint
from those created directly.

Lastly, we will later require that each element of the
Strand Space algebra have a unique encoding into bit-
strings. Many encryption and signature schemes, how-
ever, are inherently probabilistic. An encryption might have
many different bit-string representations, and the one cho-
sen depends on the random bits used in the encryption pro-
cess. To represent this, we will add an additional type of
atomic term called arandomness(R). The formal encryp-
tion operator will continue to be injective, but now take ran-
domness as an additional operator. We will also allow ran-
domness to be in the plaintext of encryptions, filling the role
of nonces in protocols.6

To combine and formalize these modifications:

Definition 2 The set of termsA is (now) assumed to be
freely generated from four disjoint sets:

• T ⊆ A, which contains predictable texts,

• R ⊆ A, which contains unpredictable random values,

• K ⊆ A, which contains keys, and

• D ⊆ A, which contains Diffie-Hellman values.

The set of keys (K) is divided into three disjoint sets:

• signature keys (KSig),

• verification keys (KVer), and
5We will not consider asymmetric encryption in this work, though we

hope that it is clear how to incorporate it.
6Previously, we defined nonces to be a particular sub-type of texts (T).

Now, due to their special use in encryptions, we will distinguish nonces
and texts.

3

• keys for symmetric encryption (KSym).

Compound terms are built by five operations:

• hash : A → KSym , representing hashing into keys.
We will denote the range ofhash byKhash .

• encr : KSym ×A×R → A, which represents encryp-
tion. We denote the range ofencr byE .

• sig : KSig ×A×R → A, which represents signing a
message. We denote the range ofsig byS.

• join : A×A → A, which represents concatenation of
terms.

• DH : D×D → D, which represents the Diffie-Hellman
operation. (As mentioned previously, We denote the
range ofDH byDDH .)

We will now write encr(K,M, r) as{|M |}rK . We will also
write sig(K,M, r) as[M]rK .

To use the machinery of the Strand Space model, we
must define the subterm relation. The subterm relation
in previous Strand Space work, denoted@, denoted what
could be learned from a message. That is,M @ N iff M
could be derived fromN through repeated separations and
decryptions:

Definition 3 We say thatM is a subtermof N , written
M @ N , if:

• M = N , or

• if N = N ′N ′′, thenM @ N ′ or M @ N ′′,

• if N = {|N ′|}rK , thenM @ N ′,

• if N = [N ′]rK , thenM @ N ′.

In particular, it is assumed that symmetric encryption would
not reveal the key used to encrypt, soK 6@ {|M |}rK unless
K @M .

In this work, we use a new operation,�, to mean not
only what could be learned from a term but also what must
be used in its creation. To distinguish this new relation from
the standard subterm relation, we use a different name:

Definition 4 We say thatM is an ingredientofN , written
M � N , if :

• M = N , or

• if N = hash (N ′) ∈ Khash , thenM � N ′,

• if N = DH(d1, d2), thenM � d1 or M � d2,

• if N = {|N ′|}rK , thenM � N ′ or M � K,

• if N = [N ′]rK , thenM � N ′ or M � K.

Note that it is not necessarily the case thatr � {|M |}rK .
While we assume that no one can produce an encryption
without knowing the plaintext and key, we cannot make this
same assumption about the randomness used in the encryp-
tion process.7

Similarly to origination, we can define the first time that
a value is used on a strand:

Definition 5 A term t ariseson a noden iff n is an entry
point to the setI = {t′ : t � t′}.

3.2 Extending the Adversary

The next step in the extension of Strand Spaces is to give
additional powers to the adversary. The usual way this is
done in the formal methods approach is to give to the ad-
versary some small number of unavoidable operations and
to assume that the underlying cryptography ensures that no
other operations are available. This is, in fact, the approach
we will take with regard to the new signature and hashing
operations. Regardless of the actual algorithms, the adver-
sary can always:

• Make any predictable text,

• Make fresh random values, which we represent by al-
lowing it to produce whatever it wants from a distin-
guished setRAdv ⊆ R,

• Sign any value it knows with any signature key it
knows,

• Extract the “plaintext” from a signed message, and

• Hash any values it knows.

Similarly, there are operations that the adversary will al-
ways be able to apply to Diffie-Hellman values:

• The adversary can always generate new Diffie-
Hellman values. Hence, we distinguish the setDP ⊆
D and allow the adversary to generate any value in that
set. (We assume thatDP andDDH are disjoint.)

• Also, the adversary can always be able to perform the
group operation efficiently, and hence can perform ex-
ponentiation.

Should we assume that these are the only operations avail-
able to the adversary? The answer to this question depends
on whether one wishes to prove security or find flaws. If one
wishes to find flaws, it makes sense to assume a limited ad-
versary (albeit one that might have more powers than listed
above). Any flaw available to such an adversary will remain

7Indeed, in a deterministic encryption scheme the ciphertext is com-
pletely independent of the random “input.”

4

available to the unlimited one, and limiting the adversary’s
powers can make it easier to automate a flaw-finding tech-
nique. (This is the approach taken, for example, in [10].)

In this paper, however, we wish to focus on proofs of se-
curity. Hence, we wish to avoid any assumptions regarding
the powers of the adversary that we cannot justify. For this
reason, we will give the adversary the power to perform any
efficient calculation. In keeping with the Dolev-Yao model,
we assume that the underlying encryption scheme is strong
enough to enforce the limited ability of the adversary to pro-
duce and manipulate ciphertexts and hashes. (Recent work
[2, 1, 8, 9] has begun to justify these assumptions in terms of
computational complexity.) However, the only assumption
we can make about the underlying Diffie-Hellman group is
that the Diffie-Hellman problem is hard. Hence, the adver-
sary has the power to make general computations that result
in Diffie-Hellman values, so long as those computations are
efficient:

Definition 6 A function f is computable in probabilis-
tic polynomial time if there exists a probabilistic turing
machineM so that for some polynomialq, for all in-
put x, M(x) terminates in time polynomial in|x| and
Pr [M(x) = f(x)] ≥ 1

q(|x|) .

We give to the adversary a strand for every probabilis-
tic polynomial time-computable function from messages to
group elements. The efficiency of a given function will de-
pend upon the exact mapping from messages to bit-strings;
we assume that the encoding has been fixed and that the
adversary has access to every function that remains proba-
bilistic polynomial time-calculable.

Definition 7 A adversary strandis one of the following:

M. Text message:〈+t〉 wheret ∈ T

R. Fresh randomness:〈+r〉 wherer ∈ RAdv

C. Concatenation:〈−g, −h, +g h〉

S. Separation into components:〈−g h, +g, +h〉

K. Key: 〈+K〉 whereK ∈ KP .

E. Encryption:〈−K, −h, −r, +{|h|}rK〉, where
K ∈ KSym

D. Decryption:〈−K, −{|h|}rK , +h〉, whereK ∈ KSym

σ. Signing:〈−K, −h, −r + [h]rK〉, whereK ∈ KSig

X. Extraction of plaintext from signatures:〈− [h]rK , +h〉.

H. Hashing:〈−g,+hash (g)〉

F. Fresh Diffie-Hellman value:〈+d〉 whered ∈ DP

f . Computation of a functionf :
〈−M1,−M2,−M3, . . . ,−Mn,+d〉, where
dn = f(M1,M2, . . .Mn) andf is computable in
probabilistic polynomial time.

Although the other strands represent efficient operations,
they are not subsumed by thef -strands. Thef -strands only
produce Diffie-Hellman values, while the other strands (ex-
cept theF strand) produce terms of other types.

4 Derivation of the Security Property

With the preliminaries out of the way, we are now pre-
pared to incorporate the Diffie-Hellman assumption into
Strand Spaces. In particular, we will define a global con-
dition over all bundles which represents the security guar-
antees provided by the Diffie-Hellman assumption. In this
section, we present an informal derivation of this condition.
(A more formal consideration can be found in Section 6.)

We derive our global property via the following steps:

• We propose a formal adversary “goal” which repre-
sents the act of solving the Diffie-Hellman problem.

• We argue that any attack the formal adversary can
launch that accomplishes the goal without the help of
honest participants will translate to an algorithm that
solves the Diffie-Hellman problem. As a result, if the
Diffie-Hellman problem is hard, then the formal adver-
sary can never accomplish this goal on its own.

• We then consider the assistance that honest partici-
pants might give to the formal adversary. We provide a
pair of simple and natural syntactic restrictions on hon-
est participants, and show they ensure that the honest
participants do not help the adversary achieve its goal.

We finish with the global property: if all honest partici-
pants obey the two restrictions, then the adversary can never
achieve the goal.

In particular, the “goal” of our informal discussion will
be

Form a bundle whered1, d2 arise only on regu-
lar strands andDH(d1, d2) arises on a adversary
node.

Intuitively, this goal corresponds to the situation wherex
and y are chosen by honest participants and kept secret.
They communicate onlygx and gy, and the adversary is
somehow able to calculategxy.

Suppose that there is a bundle where the adversary is able
to accomplish this goal without the help of honest partici-
pants. Without loss of generality, assume that the bundle ac-
complishes this goal with only two regular strands:〈+d1〉

5

and 〈+d2〉. All other strands in the bundle are adversary
strands. Each adversary strand represents one calculation,
and each such calculation can be performed efficiently. The
termsd1, d2, andDH(d1, d2) represent the distributions of
gx, gy, andgxy respectively (for randomly chosenx and
y). Thus, the bundle represents an algorithm that takes in
gx andgy at the two regular nodes and outputsgxy at the
node containingDH(d1, d2). By composing these calcula-
tions represented by the strands in the order given by the
structure of the bundle, one forms an algorithm that solves
the Diffie-Hellman problem. Hence, if the Diffie-Hellman
problem is hard, then there exists no bundle that achieves
the above goal without the use of regular strands.

What about bundles thatdo use regular strands? These
may prove to be problematic. There is no restriction on the
form of regular strands, after all, and so there is no prohibi-
tion against the strand (for example):

〈−d1,−d2, f(DH(d1, d2))〉

wheref is some easily invertible permutation on the un-
derlying group. AlthoughDH(d1, d2) does not originate
on this regular strand, the strand allows it to originate on
a adversary strand (namely, the strand that represents the
computation off−1).

If regular strands can be of arbitrary form then it is pos-
sible for them to release secrets in several ways. More im-
portantly, they can represent the computation of intractable
functions. There is no reason to assume that the Diffie-
Hellman problem remains hard if the adversary has access
to secrets or oracles that perform inefficient calculations.
Hence, it may be possible for the adversary to achieve the
goal of solving Diffie-Hellman if it is assisted by (unre-
stricted) honest participants.

To surmount this difficulty, it is necessary to restrict our
attention to those regular strands that do not provide assis-
tance to the adversary. Intuitively, an honest participant is
simulatable8 [7] if any message the adversary receives from
that participant is indistinguishable from one that the ad-
versary could generate itself.9 Hence, a simulatable honest
participant is one that gives no assistance to the adversary:
any help it could give would be already available.

Thus, what is required is a natural and useful class of
simulatable regular strands. There are many classes from
which to choose; we choose ours based on such protocols
as TLS [5], SSH [13], and the one at the beginning of this
paper. These protocols share two natural conditions:

8“Simulatability” here means something different than that intended by
“bisimulation”.

9Two probability distributionsD1 andDs are indistinguishable if (in-
formally) the output distribution of an efficient (probabilistic polynomial-
time) algorithmA does not noticeably depend on whether the input was
drawn fromD1 orD2. Thus, an honest strand is simulatable if the adver-
sary can produce a distribution indistinguishable from that of the honest
participant’s output, but does so without any of the honest participant’s
secrets or internal state.

1. Regular participants never calculategxy unless they
know eitherx or y, and

2. Regular participants never actually saygxy, but only
use it as a source of key material.

More formally:

Definition 8 A protocol is conservativewith regard to
Diffie-Hellman if, whenever a termDH(da, db) arises on a
regular node, eitherda or db arises only on regular nodes.

It would be possible to insist on a stronger connection be-
tween strands on whichgxy arise and the strands on which
gx andgy arise, but it is not necessary for our purposes.

Also:

Definition 9 We say that a protocol issilentwith respect to
Diffie-Hellman if no element ofDDH originates on a regu-
lar node.

Here, we do mean “originate” and not “arise”. The defi-
nition allows elements ofDDH to arise on regular nodes
so long as they do not originate there. That is, a proto-
col is silent with respect to Diffie-Hellman if, whenevergxy

arises, is it as an ingredient of a symmetric key.
Both of these properties are purely syntactic, and easy

to verify. Together, they ensure simulatability (as we will
show in Section 6.2.) Thus, as long as regular strands meet
these two properties, the adversary has no noticeable chance
of achieving the original goal. We formalize this in a global
property:

Definition 10 (Security PropertyDH) Suppose thatB is
a bundle over a protocol both silent and conservative with
respect to Diffie-Hellman. Ifda, db ∈ D arise only on regu-
lar strands inB, thenDH(da, db) never originates inB.

We demonstrate the utility of this condition by analyzing
the protocol that began this paper.

5 An Example Analysis

First, we re-visit some useful definitions and results from
previous Strand Space papers, and update them for the ex-
tended algebra and adversary of Definitions 2 and 7.

Definition 11 A setI ⊆ A is honestif all adversary entry
points toI are onM, R, K, F, or f strands.

Definition 12 Let k ⊆ KSym . Then ak-ideal ofA is a set
I ⊆ A such that for allh ∈ I, g ∈ A, K ∈ k, r ∈ R, and
Ks ∈ KSig :

• g h ∈ I andh g ∈ I,

• {|h|}rK ∈ I, and

6

• [h]rKs ∈ I.

We will denote the smallestk-ideal that containsS as
Ik [S].

Theorem 1 Suppose thatS ⊆ A andk ⊆ KSym are such
that

• (KSym ∪ Khash) ⊆ S ∪ k,

• S ∩ E = ∅,

• S ∩ S = ∅,

• if g h ∈ S, theng ∈ S or h ∈ S,

• if hash(h) ∈ S, thenh ∈ S,

ThenIk [S] is honest.

Proof sketch: A case analysis on the types of adversary
strands shows that entry points toIk [S] cannot be on any
adversary strand but those allowed by Definition 11. (A
fuller example of an analagous proof is that of Theorem
6.11 in [12].)

Theorem 2 If K ∈ KSym is never the term of a node in
B, then for anyh ∈ A the term{|h|}rK must originate on a
regular strand.

Proof: Suppose that{|h|}rK originates on a adversary
strand. By examining the forms of adversary strands, we
see that the only strand on which it can originate is aE
strand. But in that case, there is a previous node on that
strand withK as its term, a contradiction.

Theorem 3 If K ∈ Khash is never the term of a node in
B, then for anyh ∈ A the term{|h|}rK must originate on a
regular strand.

Proof: The same as that of Theorem 2.

Theorem 4 If Ks ∈ KSig is never the term of a node in
B, then for anyh ∈ A the term[h]rK must originate on a
regular strand.

Proof: Suppose that[h]rKs originates on a adversary
strand. By examining the forms of adversary strands, we see
that the only strand on which it can originate is aσ strand.
But in that case, there is a previous node on that strand with
Ks as its term, a contradiction.

Now that we have general theorems, we can apply these
to the protocol from the beginning of the paper:

Definition 13 Let Cl[C,S, d1, d2] be the set of strands of
the form:

〈 + C,

− S [d1]r1KS ,

+ [d2]r2KC {|T1 C S|}r3K′
− {|T2 C S|}r4K′

for somer1, r2, r3, r4 ∈ R, where
K ′ = hash (DH(d1, d2))

Definition 14 Let Sv[C,S, d1, d2] be Cl[C,S, d1, d2] with
all the signs reversed.

First we prove that authentication from server to client
is assured. That is, we show that if a client terminates its
execution of the protocol successfully (the bundle has an
entireCl[C,S, d1, d2] strand) then the server finishes a cor-
responding run of the protocol (the bundle has contains an
entireSv[C,S, d1, d2] strand):

Theorem 5 Let B be a bundle containing the strands of
Definitions 7, 13 and 14. Suppose thatd1, d2 6∈ DP and
uniquely arise, thatKs, K ′ 6∈ KP , and that the Diffie-
Hellman problem is hard. Then ifB contains some strand
in Cl[C,S, d1, d2] of height 4,B must also contain some
strand inSv[C,S, d1, d2] of height 4.

Proof: SinceKs 6∈ KP and no member ofKSig origi-
nate on regular strands,d1 must originate on a regular strand
(Theorem 4). Hence, bothd1 andd2 uniquely arise on reg-
ular strands. Since the protocol of Definitions 13 and 14 is
both silent and conservative,DH(1d1, d2) never originates
in B (Theorem 9). SinceK ′ = hash (DH(d1, d2)) 6∈ KP ,
K ′ is never the term of a node inB, and so{|T2 C S|}r4K′
must originate on a regular strand (Theorem 2). By inspec-
tion, it must be node 4 ofSv[C,S, d1, d2].

Now we show the corresponding theorem: that if the
server finished a run of the protocol (the bundle has con-
tains an entireSv[C,S, d1, d2] strand) then the client must
have finished almost all of a corresponding run (the bun-
dle has almost an entireCl[C,S, d1, d2] strand). We cannot
guarantee that the client finishes the run since the server has
no way of knowing that the last message of the protocol
actually arrives:

Theorem 6 Let B be a bundle containing the strands of
Definitions 7, 13, and 13. Suppose thatd1, d2 6∈ DP and
uniquely arise, thatKc, K ′ 6∈ KP , and that the Diffie-
Hellman problem is hard. Then ifB contains some strand
in Sv[C,S, d1, d2] of height 4,B must also contain some
strand inCl[C,S, d1, d2] of height 3.

Proof: SinceKc 6∈ KP and no member ofKSig origi-
nate on regular strands,d2 must originate on a regular strand
(Theorem 4). Hence, bothd1 andd2 uniquely arise on reg-
ular strands. Since the protocol of Definitions 13 and 14 is
both silent and conservative,DH(1d1, d2) never originates
in B (Theorem 9). SinceK ′ = hash (DH(d1, d2)) 6∈ KP ,
K ′ is never the term of a node inB, and so{|T1 C S|}r3K′
must originate on a regular strand (Theorem 2). By inspec-
tion, it must be node 3 ofCl[C,S, d1, d2].

7

As can be seen, the global property of Definition 10 leads
to very short and simple proofs for a natural class of pro-
tocols. In the next section, we give the promised formal
justification of this property.

6 Diffie-Hellman in Strand Spaces, Formally

The main idea behind our justification is that there is a
natural conversion from attacks in the formal setting (bun-
dles, in particular) to computational algorithms. We give
this conversion in this section, and show that if the bun-
dle violates the global property then the resulting algorithm
solves the Diffie-Hellman problem.

This is not enough, however. To violate the Diffie-
Hellman assumption, we need an algorithm that both solves
the Diffie-Hellman problem and isefficient. Since our con-
version makes no assumptions about the forms of regular
strands, there are no guarantees about the complexity of the
resulting algorithm. In the next section, we show that if the
regular strands are silent and conservative, then the result-
ing algorithm will be efficient. (Or rather, a slight variant
of the resulting algorithm thatsimulatesthe regular strands
will be efficient.)

6.1 Relating Bundles and Computational Algo-
rithms

A word about how the mapping from bundles to algo-
rithms will proceed: the resulting algorithm will calculate
(and store in a table) a value for each node in the bundle by
recursing on both the structure of the bundle and the struc-
ture of each term. The recursion along the bundle structure
is relatively straightforward: early nodes are calculated be-
fore later ones. The recursion along message structure, on
the other hand, presents an interesting issue: how should the
algorithm build values for compound messages from those
for atomic ones?

The algorithm will use, as black boxes, computational
algorithms for encryption, signing, and hashing. (These al-
gorithms are defined in Appendix A.) The mapping itself
assumes no properties about these sub-algorithms, meaning
we are free to choose these sub-algorithms arbitrarily. How-
ever, this freedom is short-lived: for efficiency conditions,
we will later (Section 6.2) need to assume that one of these
algorithms meets a standard definition of security.

Given a formal bundleB, we will map it onto an algo-
rithm AB in the following way:

Definition 15 Let (Ge,E,D) be an encryption scheme,
(Gs,S,V) be a signature scheme, and(Gh,H) be a hash
scheme. LetB be a bundle overA. ThenAB(1η) is the
following algorithm:

• First, a tableT is created to map elements ofA to bit-
strings. We assume that this mapping to be consistent
over the entire bundle. For example, every instance of
K ∈ K that occurs inB is intended to “represent” the
same bit-string throughout the strand. At the beginning
of the execution, this table is empty.

• A group Gp ← IG(1η) is generated for Diffie-
Hellman.

• A hash functionh← Gh(1η) is generated for hashing.

• Each node in the bundle is then replaced with a bit-
string value, starting with minimal nodes and working
forward. That is, a noden is replaced with a bit-string
valuevn only after everyn′ ≤B n. The exact manner
in which a bit-string is chosen forn depends on the
sign ofn and the type of strand on which it lies:

• Suppose thatn is a positive node+dk ∈ D and it lies
upon anf strand. Then:

– f is a PPT-computable function, and

– By inductive hypothesis, valuesv1, v2, . . . vk−1

have already been chosen for the nodes−d1,
−d2, . . . −dk−1 previous on the strand.

The value vn for +dk is chosen by running
Mf (〈v1, v2, . . . vk−1〉) and returning the output. Ad-
ditionally, this value is stored fordk in the tableT if
no value fordk is already present there.

• If n is a positive node+M and it lies upon any kind
of strand other than anf strand, then there are two
cases:

– If there exists a bit-stringm in the tableT as the
value forM , thenm is the value returned.

– If M is not in the tableT , it generates a value
v for M . The valuev is then stored inT and
returned. The valuev is generated by recursing
on the structure ofM :

∗ If M is an atomic message, then the value
v is chosen in some appropriate way. For
keys (which are not inKhash) the appro-
priate key generation algorithm is run. For
randomness, random strings of lengthQ(η)
are chosen uniformly from{0, 1}Q(η). (The
polynomialQ here is the same as that in Ap-
pendix A.) Diffie-Hellman values (inD \
DDH) are created by choosing a random el-
ementx← {1, . . . |Gp|} and calculatinggx.
Texts are converted into bit-strings in some

8

arbitrary way.10 The value is put into the ta-
ble T as the value forM and returned. (In
the case of signature keys, both the signing
and verfication keys are stored inT .)

∗ If M = hash(M ′) then the algorithm re-
cursively gets a valuem′ for M ′. It then
setsv = Ge(1η, h(m′)). (Note that we are
now consideringGe to be a deterministic al-
gorithm of two inputs, and using the output
of the hash as the second, random, input.)

∗ If M = M1M2, then the algorithm recur-
sively gets valuesm1 for M1 and m2 for
M2. It returnsv = 〈m1,m1〉.
∗ If M = {|M ′|}RK or [M ′]RK , then the al-

gorithm recursively gets valuesm′ for M ′,
r for R and k for K. It then calculates
v = E(m′, r, k) or v = S(m′, k′r), respec-
tively.

∗ If M = DH(d1, d2) then the algorithm re-
cursively gets valuesgx for d1 andgy for d2.
It calculatesv = gxy. (Again, we note that
calculatinggxy from gx andgy may not be
efficiently computable, but delay discussion
of this issue until the next section.)

• If n is a negative node−M (on a strands) then there
exists in the bundle a node+M so that+M → −M .
By assumption, a valuem′ has already be assigned to
the node+M , which means that a valuev has been
assigned toM in T . We acceptv for −M also.

The above algorithm converts each node of the bundleB
into a bit-string. We now define what it means for it to have
performed the conversion correctly:

Definition 16 Let B be a bundle andAB be the algorithm
derived fromB as per Definition 15. Then an execution
of AB is “correct” when, for everyf strand in the bundle
and every execution ofMf , if Mf is run on〈x1, x2, . . . xn〉 it
outputsf(x1, x2, . . . xn).

Theorem 7 If B is a bundle, then

Pr [AB(η) computes properly] ≥ 1
q(η)

for some polynomialq.

Proof: If every execution ofMf properly calculatesf (for
everyf strand in the bundle) then the algorithmAB properly
executes. What are the odds that each execution ofMf (x)

10So long as the mapping from formal texts to finite bit-strings is effi-
ciently computable and deterministic, it does not matter how the translation
is actually done.

properly calculatesf(x)? By definition, the probability of
a successful calculation is polynomial in|x|. During the ex-
ecution ofAB, Mf will only be executed on the encodings
of terms. Encodings of atomic terms are of length polyno-
mial in η by definition, or are generated by algorithms that
run in time polynomial inη. Furthermore, the encoding of
a compound term is generated by a polynomial time algo-
rithm running on the encodings of terms. Since the “depth”
(or structure) of a term is constant with respect toη, it must
be that all encodings of terms have length polynomial inη.

Lastly, we assume that the random coinflips for each ex-
ecution ofMf are independent, and note that the number of
f strands inB is constant with respect toη. Hence, the odds
that all executions ofMf properly calculatef (and hence that
AB executes properly) is the product of a constant number
of probabilities, all of which are larger than a polynomial in
η. Hence, the probability thatAB executes properly is larger
than some polynomial inη.

We note that this result is independent of the choices
for encryption, signature, and hash algorithms. This is be-
cause the operations available to the adversary with regards
to these schemes are deterministic (once the random input
is fixed). The only probability comes in the form off -
strands, and each of those are assumed to be computable
in PPT time. Hence, any bundle can be computed with non-
negligible probability.

Theorem 8 SupposeAB correctly executes, and letT be
the table at the end of the execution. For alld1, d2 ∈ D, if
T (d1) = gx andT (d2) = gy, thenT (DH(d1, d2)) = gxy.

Proof: Consider where in the bundle the value
DH(d1, d2) arise. If it only arises on regular strands,
then it will be assigned the valuegxy. If it arises on anf
strand, then

DH(d1, d2) = f(M1,M2, . . .Mn)

where eachMi is some message. It may be thatMi = di
for somedi ∈ D, which may also arise on anf ′ strand.
Hence, it may be that

DH(d1, d2) = f(M1, . . . , f
′(N1, . . . Nm) . . . ,Mn)

and so on. But the tableT may not contain the correct
evaluations off , f ′ and so on. The values inT are cre-
ated by running the machinesMf , Mf ′ and so on. But if
the algorithm correctly executes then each run of the ma-
chineMf correctly evaluatesf , and the same forMf ′ and
so on. Hence, if everyf strand is calculated correctly, then
the value forDH(d1, d2) in T will be evaluated correctly,
which gives it the value ofgxy.

Hence, if a bundle usesDH(d1, d2) at any point, then
the algorithm can be used to solve the Diffie-Hellman prob-
lem. However, the algorithmAB may not be computable

9

in probabilistic polynomial time. The algorithm as de-
scribed requires that the Diffie-Hellman problem be solved
for each termDH(d1, d2) in the bundle that doesn’t arise on
an f -strand. That is, if the bundle contains an instance of
DH(d1, d2) that arises on a regular strand, the resulting al-
gorithm may be forced to solve Diffie-Hellman. In the next
section, we discuss a way around this difficulty.

6.2 Efficiency Concerns and Simulation

Assume that there exists a bundle where the regular
strands are silent and conservative and which violates se-
curity propertyDH. As shown in the previous section, this
bundle maps to an algorithm that solves the Diffie-Hellman
problem. However, the algorithm may not be efficient. In
particular, the algorithm assigns the valuegxy to the for-
mal termDH(d1, d2) (when it also assignsgx to d1 andgy

to d2). This may require the algorithm to solve the Diffie-
Hellman problem directly — an operation we are explicitly
assuming to be inefficient.

However, all adversary strandsare efficiently com-
putable; the algorithm would only need to solve Diffie-
Hellman when calculating the values on regular strands.
Furthermore, we now assume that all of the regular strands
are conservative, and hence Diffie-Hellman values are only
used on regular strands to make keys. Since we assume that
making a key from a Diffie-Hellman value involves hashing
it first, we can use this to avoid an infeasible computation.

The central idea is that a hash algorithm can be simulated
by a random function. In particular, we assume that the hash
function is pseudorandom:

Definition 17 Let {Rη} be a family of function families
with the following two properties:

1. ∀r ∈ Rη, r is a function from{0, 1}∗ to {0, 1}Q(η)

2. ∀η ∈ Parameter, ∀s ∈ {0, 1}∗, ∀t ∈ {0, 1}Q(η),

Pr [r ← Rη : r(s) = t] = 2−Q(η)

Then{Rη} is a random function family.

Definition 18 A hash function ispseudorandomif for all
PPT distinguishersA, for all polynomialsq, and for all suf-
ficiently largeη:∣∣∣Pr

[
r ← Rη : Ar(·)(1η) = 1

]
−

Pr
[
h← Gh(1η) : Ah(·)(1η) = 1

]∣∣∣ ≤ 1
q(η)

That is, a hash algorithm scheme is pseudo-random if a
randomly-chosen hash operation is indistinguishable from

a random function. Hence, if we assume that regular par-
ticipants make keys from Diffie-Hellman values by hash-
ing them with a randomly-chosen hash operation, we can
simply choose random values instead. If this modification
changes the output distribution of the resulting algorithm,
then the hash algorithm is not, in fact, pseudorandom. (The
fact that the regular strands are silent is essential here, as we
will see later in the proof.)

Theorem 9 Suppose that the protocolΠ is both silent and
conservative with respect to Diffie-Hellman. Suppose that
exists a pseudorandom hash algorithm(Gh,H) and all func-
tions f with f -strands inB are probabilistic polynomial
time-computable with respect to(Gh,H). If there exists a
bundleB over aΠ which violates the formal Diffie-Hellman
propertyDH, then the computational Diffie-Hellman as-
sumption is false.

Proof: By assumption,B violates security propertyDH.
Then:

• d1 andd2 arise only on regular strands inB,

• DH(d1, d2) never originates on a regular node, and

• DH(d1, d2) originates inB.

Let n be aminimal origination point ofDH(d1, d2) in B.
Note that all origination points ofDH(d1, d2) are on ad-
versary strands, includingn. By inspection of the form of
adversary strands, it must be that the term ofn is in fact
DH(d1, d2) itself. (If it containedDH(d1, d2) as a subterm,
thenDH(d1, d2) must be a subterm of a previous node on
that strand, andn would not be an origination point.)

Let B|n be the set of all nodes inB which are “before”
n. That is, let

B|n = {n′|n′ ≤B n}

We construct an adversaryA that breaks the compu-
tational Diffie-Hellman assumption in the following way:
A(p, g, gx, gy) simulatesAB|n , with the following important
exceptions:

1. Instead of generating its own groupGp ← IG(η), A
will use the group specified by its first inputp and use
its second inputg as a generator.

2. Instead of the tableT being empty at initialization, it
contains an entry mappingd1 to gx and an entry map-
pingd2 to gy.

3. WhenAB|n calculates a value forDH(da, db), it seems
to need to solve the Diffie-Hellman problem in order to
do so. However, we can avoid this calculation by con-
sidering the kinds of nodes which would causeAB|n to
calculate a value forDH(da, db).

10

• It could be anf strand, in which caseA simulates
Mf asAB|n would.

• If could be a regular strand, in which case we
know that DH(da, db) is not a subterm of the
node in question. (If it were, then it would have
originated there.) Let the node in question be
+M . Since it is an ingredient of the term but
not a subterm, we can see by examining the term
structure thatDH(da, db) � hash(N) � M .
Therefore, we only need to calculate a Diffie-
Hellman value as part of computing a hash. Since
the hash is pseudorandom, we employ a trick: in-
stead of calculating the hash, we return a random
value instead. That is, instead of calculatingM
normally,A choosesn′ ← {0, 1}q(η). It returns
n′ for hash(N), and storen′ in the tableT as
the value forhash(N). It does not calculate a
value forN or any of its ingredients (including
DH(da, db)) as part of the calculation of a value
for M .

When finished simulatingAB|n , the adversaryA selects
the valuegz calculated for the noden, and returnsgz

as its output.

What is the likelihood that the new algorithmA will out-
put the correct value?

Let us revisit the original algorithmAB|n . We know from
Theorem 7 that for some polynomialq:

Pr
[
AB|n(η) computes properly

]
≥ 1
q(η)

.

Note that we can modifyAB|n to take the group, the gen-
erator, and the values ford1 andd2 as inputs. In that case,
running the new algorithm on random inputs is exactly the
same as running it before the modifications:

Pr[〈p, g〉 ← IG(1η);
x, y ← {1, 2, . . . , |Gp|} :
AB|n(p, g, gx, gy) computes properly] ≥ 1

q(η)

We can also modifyAB|n to outputgz, where〈gz〉 is the
value computed for noden. Due to the definition of proper
computation:

Pr[〈p, g〉 ← IG(1η);
x, y ← {1, 2, . . . , |Gp|} ;
gz ← AB|n(p, g, gx, gy) :
gxy = gz] ≥ 1

q(η)

That is, the original algorithmAB|n can calculate the Diffie-
Hellman valuegxy with some polynomial probability. But
we are runningA, not AB|n . Will the new algorithm have

the same advantage? It is not clear:A uses random val-
ues for hashing, while the original algorithmAB|n calculates
the values by application of the hash algorithm. However,
suppose that the probability of success forA were negligi-
ble while the probability of success forAB|n is non non-
negligible. That is, letP η1 be the probability:

Pr[〈p, g〉 ← IG(1n);
x, y ← {1, 2, . . . , |Gp|} ;
gz ← AB|n(p, g, gx, gy) :
gxy = gz]

andP η2 be the probability:

Pr[〈p, g〉 ← IG(1n);
x, y ← {1, 2, . . . , |Gp|} ;
gz ← A(p, g, gx, gy) :
gxy = gz]

If P1 is non-negligible andP2 is negligible, then

P η1 − P
η
2 = |P η1 − P

η
2 | ≥

1
q′(η)

Note that the only difference between the two experiments
is in how hashes are calculated. InP η1 , hashes are calculated
by actually calculating the pre-image of the hash, then tak-
ing the hash under a randomly chosen hash function. In the
second probabilityP η2 , hashes are taken by returning ran-
dom values. If these probabilities are non-negligibly differ-
ent, then we can distinguish the hash scheme from a random
function family. Let the distinguisher be:

Dg(·)(η) =

1. Choose random〈p, g〉 ← IG(1n) and x,
y ← {1, 2, . . . , |Gp|}.

2. SimulateA(p, g, gx, gy) with one difference:
instead of calculating hash values by any
calculation, use the oracleg(·). Note that
now the algorithmD knows the exponents
of gx and gy, and so knows the exponent
for every Diffie-Hellman value that arises
on a regular strand. Since the protocol is
conservative, wheneverD needs to calculate
a value forDH(da, db) it is the case that
either da or db arises on a regular strand.
Hence, wheneverD needs to perform the
Diffie-Hellman operation as part of the sim-
ulation, it knows one of the two relevant ex-
ponents and the calculation is easy.

3. When the simulation returnsgz, test to see
if gz = gxy. (SinceD chosex andy, it can
perform this test.) If it does, return 1. Oth-
erwise return0.

11

In other words, this algorithm also creates a value for each
node inB|n. However, since it knows the exponent for ev-
ery Diffie-Hellman valued, it can calculate the value for
DH(d, d′) efficiently.

Since this distinguisher returns 1 with probabilityP η1 if
g is a random function and with probabilityP η1 if g is a ran-
domly chosen hash function, this can distinguish the hash
from random. Since the hash family is pseudorandom, we
know this cannot be.

Hence, the advantage of the original algorithmABn and
the advantage of the new algorithmA cannot differ by a
polynomial fraction. That is, for all polynomialsq′, for suf-
ficiently largeη,

|P η1 − P
η
2 | ≤

1
q′(η)

.

Hence, for all polynomialsq′, for sufficiently largeη,

P η2 ≥
1
q(η)

− 1
q′(η)

or by lettingq′ = 2q,

P η2 ≥
1

2q(η)
.

In other words, suppose that the hash function is pseudo-
random, and that the adversary strands are all polynomial-
time computable over the choices of hash, encryption, and
signature functions. Then if there exists a bundle over a
conservative, silent protocol that violates the security prop-
ertyDH in Definition 10, the computational Diffie-Hellman
assumption is false over the group family in question. Con-
versely, if the Diffie-Hellman problem is hard over the
group, then there can be no silent and conservative bundle
which violates the security conditionDH.

7 Conclusion

The primary purpose of this work is two-fold:

1. To allow the Strand Space method to analyze protocols
that use the Diffie-Hellman key exchange, and

2. To show how the computational model can be used to
define and/or justify new security assumptions in the
formal model.

To this end, we have formalized a security condition that
summarizes — in a form appropriate for Strand Spaces —
the security provided by the Diffie-Hellman assumption. To
justify this condition, we provided a method for transform-
ing bundles into computational algorithms. Under reason-
able assumptions on the form of the protocol and the un-
derlying cryptography, our condition can be violated only if
the computation Diffie-Hellman assumption is false.

We believe this represents a new step in the develop-
ment of formal cryptographic analysis. In particular, we
believe this to be the first effort to use the computational
model to incorporate Diffie-Hellman into the formal model.
Previous work on protocols that use Diffie-Hellman [10]
have focused on finding attacks rather than proving secu-
rity. Hence, they have made simplifying assumptions on
the powers of the adversary and the nature of possible at-
tacks. (In particular, they assume that the only way to solve
the Diffie-Hellman problem is to solve the corresponding
Discrete Log problem — a simplifying assumption much
like those made about encryption.) Our work is focused on
proofs of security, and so we assume only what can be justi-
fied in terms of computational cryptography. Hence, proofs
in our framework will be as strong as the Diffie-Hellman
assumption. (Note, however, our work is not as widely ap-
plicable as that in [10]: we cannot yet consider common
group-keying protocols, for example.)

On the other hand, there have been many interesting pa-
pers that connect the formal (i. e. Dolev-Yao) model with
the computational approach[1, 2, 3, 8, 9]. However, these
papers focus on long-standing simplifications and abstrac-
tions Our work is novel in that it used the computational
approach to derive and justifynewabstractions.

We would like to see this work continue in two ways.
First, we would like to see our security condition translated
to settings other than Strand Spaces. Furthermore, we hope
that the security condition can be used to analyze real-world
protocols, or even be used to help design new ones.

Second, we would like to see if the assumptions of this
paper can be weakened. Our assumptions regarding the un-
derlying cryptography are quite weak: only that the hashing
is pseudorandom. However, this weakness on the cryptog-
raphy is balanced by the strength of the formal assumptions
(Definitions 8 and 9). Because these assumptions are so
strong, there are very likely secure protocols which cannot
yet be proven secure in our framework. We would be in-
terested to see if these conditions could be weakened. Al-
ternately, there may be other conditions which guarantee
the simulatability of the regular strands. If so, we would
be interested in seeing them, and would be particularly in-
terested in knowing if there are necessary and/or sufficient
conditions for simulatability.

Lastly, we believe that the main technique of this paper
to be novel and highly applicable. We would very much
like to see it used to incorporate other primitives into formal
models.

A Computational Primitives

Here, we define the computational algorithms used in the
mapping of Section 6. First, some helper sets:

12

Definition 19 We use the following definitions:

• Parameter = N

• Coins : Parameter→ P({0, 1}∗)

• String = {0, 1}∗

We defineCoins, the set of random strings to be a func-
tion of the security parameter because the number of coin-
flips used by the cryptographic primitives grow with the se-
curity parameter. In general, we will assume that for all
η ∈ Parameter,

Coins(η) = {0, 1}Q(η)

for some polynomialQ.

Definition 20 An symmetric encryption scheme [7] is a
triple of algorithms(Ge,E,D):

• Ge : Parameter×Coins→ SymmetricKey is the (ran-
domized) key generation algorithm,

• E : Plaintext× Coins× SymmetricKey→ Ciphertext
is the (randomized) encryption algorithm, and

• D : String × SymmetricKey → Plaintext ∪ {⊥} is
the decryption algorithm, which we assume returns⊥
whenever the input string is not a valid encryption un-
der the given key.

SymmetricKey, Plaintext andCiphertext vary between en-
cryption algorithms and implicitly depend on the parameter.
It is required that for any message lengthi, Plaintext con-
tains either all messages of lengthi or none of them. Also,
it is required that for allr ∈ Coins(η), all k generated by
Ge(1η, r), and allm ∈ Plaintext(η),

D(E(m, r, k), k) = m.

Definition 21 A digital signature schemeis a triple of al-
gorithms:(Gs,S,V):

• Gs : Parameter × Coins → SignatureKeys ×
VerificationKeys is the (randomized) key generation
algorithm,

• S : String × Coins × SignatureKeys → Signatures is
the (randomized) signature algorithm, and

• V : String × Signatures× VerificationKeys → {0, 1}
is the verification algorithm

It is required that for allr ∈ Coins(η), all
〈
k, k−1

〉
gener-

ated byGs(1η, r), and allm ∈ String(η),

V(m,S(m, r, k), k−1) = 1.

Definition 22 A hash algorithmis a pair of algorithms
(Gh,H), where:

• Gh : Parameter × Coins → HashFunctions generates
hash functions (and is randomized), and

• H : HashFunctions × String → String evaluates the
hash function.

For every random stringr ∈ Coins(η), all strings s ∈
{0, 1}∗, H(Gh(1η, r), s) will be a string of lengthQ(η).

We will write Gh(1η) for the probability distribution in-
duced byGh(1η, r) wherer is chosen randomly (uniformly)
from Coins(η).

References

[1] Martı́n Abadi and Jan J̈urjens. Formal eavesdropping
and its computational interpretation.Lecture Notes in
Computer Science, 2215:82ff., 2001.

[2] Martı́n Abadi and Phillip Rogaway. Reconciling
two views of cryptography (the computational sound-
ness of formal encryption).Journal of Cryptology,
15(2):103–127, 2002.

[3] Michael Backes, Birgit Pfitzmann, and
Michael Waidner. A universally compos-
able cryptographic library. Available at
http://eprint.iacr.org/2003/015/ ,
January 2003.

[4] Dan Boneh. The decision Diffie–Hellman problem. In
Proceedings of the Third Algorithmic Number Theory
Symposium, number 1423 in Lecture Notes in Com-
puter Science, pages 48–63. Springer–Verlag, 1998.

[5] T. Dierks and C. Allen. The TLS protocol. RFC 2246,
January 1999.

[6] Daniel Dolev and Andrew Yao. On the security of
public-key protocols.IEEE Transactions on Informa-
tion Theory, 29:198–208, 1983.

[7] Shafi Goldwasser and Mihir Bellare. Lec-
ture notes on cryptography. Avaliable at
http://www.cs.ucsd.edu/users/mihir/papers/gb.html,
August 1999.

[8] Joshua D. Guttman, F. Javier Thayer, and Lenore D.
Zuck. The faithfulness of abstract protocol analysis:
Message authentication.Journal of Computer Secu-
rity, 2003. Forthcoming.

[9] Jonathan Herzog. Computational soundness of formal
adversaries. Master’s thesis, Massachusetts Institute
of Technology, 2002.

13

[10] Olivier Pereira and Jean-Jacques Quisquater. A secu-
rity analysis of the cliques protocols suites. In14th
IEEE Computer Security Foundations Workshop —
CSFW’01, pages 73–81, Cape Breton, Canada, 11–13
June 2001. IEEE Computer Society Press.

[11] F. Javier THAYER Fábrega, Jonathan C. Herzog, and
Joshua D. Guttman. Mixed strand spaces. InProceed-
ings of the 12th IEEE Computer Security Foundations
Workshop. IEEE Computer Society Press, June 1999.

[12] F. Javier THAYER Fábrega, Jonathan C. Herzog, and
Joshua D. Guttman. Strand spaces: Proving secu-
rity protocols correct.Journal of Computer Security,
7(2/3):191–230, 1999.

[13] T. Ylonen, T. Kivinen, and M. Saarinen. SSH transport
layer prototcol. Internet draft, November 1997. Also
named draft-ietf-secsh-transport-01.txt.

14

