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Abstract. We show how to combine trust management theories with
nonce-based cryptographic protocols. The strand space framework for
protocol analysis is extended by associating formulas from a trust man-
agement logic with the transmit and receive actions of the protocol prin-
cipals. The formula on a transmission is a guarantee; the sender must
ensure that this formula is true before sending the message. The formula
on a receive event is an assumption that the recipient may rely on in
deducing future guarantee formulas. The strand space framework allows
us to prove that a protocol is sound, in the sense that when a principal
relies on a formula, another principal has previously guaranteed it. We
explain the ideas in reference to a simple new electronic commerce pro-
tocol, in which a customer obtains a money order from a bank to pay a
merchant to ship some goods.

Cryptographic protocol analysis has aimed primarily to determine what mes-
sages another principal must have sent or received, when one principal is known
to have sent or received certain messages. However, other questions are also im-
portant: what does a principal commit herself to when she executes a protocol?
What assumptions must she accept, on the basis of her peers’ assertions, to be
willing to execute a protocol to the end? Answers to these questions spell out
the trust assumptions of a protocol. We introduce here a method for reasoning
about trust assumptions. The method clarifies the goals and consequences of
engaging in a protocol, and the trust required to complete a protocol run.

Trust management allows principals to make access control decisions using
a local policy to combine assertions made by their peers [18, 5]. The same local
access control policy also controls the action of making assertions (including
requests) to other principals. Cryptographic methods such as digital signatures
are used to determine which principal uttered each assertion. A central advantage
of trust management is that it handles naturally different principals who trust
each other for some kinds of assertions, but not all. A major subtrend is logical
trust management [18, 2, 19]. Here the local policy is a logical theory held by the
principal, so that access control is decided by logical derivation.
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Despite sophisticated academic work, trust management has seen limited up-
take. It imposes a substantial security management burden on organizations that
would use it. This burden is exacerbated by problems with key management and
revocation. If the cryptographic secrets on which the method depends are poorly
protected, then the likelihood of achieving benefits appears too low to offset the
effort. From this point of view, Trusted Platform Modules (TPMs) [4], create
an opportunity. These inexpensive cryptographic chips, now available in com-
mercial personal computers, provide secure storage, on-chip cryptographic oper-
ations, and facilities to report securely on the system’s software state. The TPM
is organized around nonce-based protocols,1 so remote principals receive fresh-
ness guarantees with the information they retrieve from TPM-equipped devices.
Thus, the TPM is a promising platform for trust management [16], assuming
trust management can effectively exploit nonce-based protocols.

Goal of this paper Here we aim to resolve one underlying theoretical question
needed to provide a rigorous basis for using the TPM as a platform for trust
management. That is, what forms of reasoning can soundly combine information
from nonce-based protocols and trust management theories?

Our answer uses the well-developed strand space theory. Strand spaces allow
us to determine what security goals a cryptographic protocol achieves [12, 24];
to decide when different cryptographic protocols may safely be combined [11];
to study interactions between protocols and the cryptography or message for-
matting used to implement them [13, 15]; and to guide protocol design [10, 23].

We now augment strand spaces with a rely-guarantee method [17]. The for-
mulas are borrowed from a trust management logic, the choice of which is not
tightly constrained by our method. The designer of a protocol annotates the be-
haviors of the principals with formulas. The formula associated with a message
transmission must be guaranteed by the sender. Before sending the message, a
principal obeying the protocol ensures the truth of the formula, presumably by
combining reliable locally available data with guarantees offered earlier by other
principals, using deduction in the local policy theory. The sender asserts the
formula when sending the message. When another principal receives a message,
that principal may rely on the fact that the sender has asserted the formula.
The receiving principal can use the assertion in later deductions.

A protocol annotated with rely and guarantee formulas is sound if in every
execution, whenever a principal receives a message and relies on a formula, there
were corresponding message transmissions, guaranteeing assertions that are at
least as strong. The existing methods of the strand space theory may be used
to prove annotated protocols sound. They may also be used to prove that the
guaranteeing message transmissions occurred recently, rather than involving time
scales on which revocation or key compromise are realistic threats.

Section 1 introduces a simple illustrative protocol, based on money orders.
Section 2 codifies the essential ingredients of logical trust management. The rely-
1 A nonce is a randomly chosen bitstring, used in protocols to ensure freshness and

avoid replay attacks.
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guarantee method itself is in Section 3. Section 4 defines soundness and proves
soundness for the example. Related work is in Section 5.
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Fig. 1. EPMO with Money Order mo = [[ hash(C ˆNc ˆNb ˆNm ˆ price) ]]B

1 Example: Electronic Purchase using Money Orders

The new protocol EPMO (Figure 1) borrows ideas from [22, 21], using the au-
thentication tests as a design principle [10]. Variables Np range over nonces;
[[ t ]]P is the message t signed by P ; {|t|}P is t encrypted using P ’s public key;
and hash(t) is a cryptographic hash of t.

A customer and a merchant want to agree on a purchase, transferring pay-
ment with the aid of a bank. Here goods is a description of the items requested;
price is the proposed price. Nm serves as a transaction number. After obtaining
a quote from the merchant, the customer obtains a “money order” containing
Nb from the bank to cover the purchase, and delivers it to the merchant. The
merchant “endorses” it by combining Nb with Nm, and delivers the endorse-
ment to the bank. At the end of the protocol, the bank transfers the funds, and
the merchant ships the goods; otherwise, the principals engage in a resolution
protocol not specified here. B does not learn goods, and learns M only if the
transaction completes. Although B does not transfer funds until M cashes the
money order, B may put a “hold” on money in C’s account. If the money order is
not redeemed within an implementation-defined timeout period, then it expires
and B releases the hold on C’s account.

EPMO is designed not to disclose which principals are interacting, nor the
goods or price. It does not protect against denial of service. An adversary can
encrypt messages, using B’s public key, to cause holds on all the money in C’s
account. Although a more complex protocol would prevent this attack, EPMO
illustrates a more interesting interplay between protocols and trust.
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2 Tenets of Logical Trust Management

A trust management logic consists of two ingredients, a language L and a con-
sequence relation −→. The language L is a set of formulas, some of which are
assertions that we present in the form “P says φ,” where φ ∈ L. There may be
other operators such as P authorizes φ. A formula is an assertion if it is of the
form t says φ. Logical trust management is based on four underlying tenets.

1. Each principal P holds some set of statements as its theory ThP . P de-
rives conclusions within ThP using other principals’ utterances P ′ says φ as
additional premises. P may utter P says φ after deriving φ.

2. Some assertions are self-certifying, namely P ’s statements about P ’s own
utterances or desires. If P utters P says φ, then P has said something true.
If P says P authorizes φ, then P has authorized it.

3. A principal P may have reliable knowledge of particular states of affairs.
P draws only true conclusions about them, because P uses data available
locally and sound inferences. For instance, a human resources department
may reliably know the members of each department. It deduces that a person
is an employee if there exists a department of which she is a member.
Reliable knowledge is not a matter of logical form, however. Instead, a prin-
cipal P1 makes trust assumptions about other principals P2. P1 may believe
that P2 says φ implies φ. This implication expresses P1’s trust assumption
that P2 knows reliably about φ, and will speak truthfully.
ThP (from Tenet 1) includes both P ’s reliable knowledge and P ’s local policy
for inferring conclusions.

4. A principal P1 may control a resource r. P1 takes an action φ(r, P2) against
r on behalf of another principal P2, whenever P1 derives a statement such
as “P2 requests φ(r, P2) and P2 should be permitted φ(r, P2).” Taking an
action as a consequence of an inference is reminiscent of Aristotle’s practical
syllogism [3, Bekker 1144a31].

The derivations in Tenet 1 proceed according to the rules of inference of some
underlying logic. In some recent work [19], these logics are simple, e.g. sublogics of
Datalog. This has the advantage of a complete terminating deduction procedure,
and some questions about trust between principals are efficiently decidable [20].
We adopt here the far stronger logic of [2], with syntactic sugar distinguishing
“requests” and “authorizes” from “says”.

3 A Rely-Guarantee Method for Strand Spaces

The rely-guarantee method was invented for reasoning about shared state paral-
lel programs [17]. We adapt it here, with simplifications, for the case in which the
“parallel program” or distributed system is a cryptographic protocol in which
each regular (i.e. uncompromised) participant makes decisions according to a
trust management theory. In this case, the shared state is the set of messages
that have been sent and the set of formulas derived by each participant.
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3.1 Annotated Protocols

A protocol designer must complete two successive steps, namely defining the
protocol itself and then annotating the protocol.

Defining the Protocol A protocol is a finite set of parameterized strands [13];
see Appendix A for definitions. Each strand contains a number of nodes. Each
node transmits or receives a message ±t, where the message t may depend on
the parameters. The forms of the strands are given by a set {Sj [X]}j∈J ; the
indices j are called the roles of the protocol. The behavior of the role j is like
a template, containing parameters X = X1, . . . , Xk. We regard this template as
determining, for each assignment of values to the parameters, a set of strands;
any two strands in this set transmit and receive the same values. We use the
notation Sj [X1, . . . , Xk] both to refer to the template itself, and also, when values
are assigned to the parameters X, to refer to the set of concrete strands whose
behavior is to send and receive messages with these parameters.

Each parameterized strand S[X] has a distinguished parameter Xp which
is the principal executing this strand. We write prin(S[X1, . . . , Xk]) = Xp and
prin(n) = Xp if n is a node lying on this strand.

In the case of EPMO, the roles are Bank, Customer, and Merchant, each
containing the send and receive events shown in the corresponding column of
Figure 1. Letting p, g stand for the price and goods, the parameters to the roles
and their distinguished parameters are:

sb ∈ Bank[B,C,M, p,Nm, Nb] prin(sb) = B
sc ∈ Cust[B,C,M, p, g,Nc, Nm, Nb] prin(sc) = C
sm ∈ Merch[B,C,M, p, g,Nc, Nm, Nb] prin(sm) = M

Each of these is a set of strands, i.e. all strands s such that tr(s) is the sequence
of sends and receives shown in one column of Figure 1, for the given values of
the parameters.

Annotating the protocol Having defined a parametrized strand S[X] for each
role, the protocol designer annotates them, attaching a formula to each node n.

If n is a positive (transmission) node, then the formula represents a guarantee
that prin(n) asserts to its peers; we write these formulas as γn to emphasize
their role as guarantees. If, for n positive, prin(n) = P and P holds theory
ThP , then the intended behavior of P at n is to attempt to derive γn within
ThP . Success means that P may continue the protocol and transmit term(n), in
accord with Tenet 1; failure means that P must terminate executing this strand.
Thus transmission of term(n) indicates that prin(n) says γn.

If n is a negative (reception) node, then prin(n) will rely on the formula
associated with n, which we write ρn. Typically stating that other principals have
made certain assertions, ρn is a premise that prin(n) can use in future deductions.
In deriving γm for a later node m, P works from ThP ∪ {ρn : n⇒+ m}, i.e. the
original theory augmented by rely statements ρn for earlier nodes on the strand.

The formulas γn and ρn may involve the parameters, so that the actual
formula in a run involving values v = v1, . . . , vj is γi[v/X] or ρi[v/X].
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Definition 1. An annotated protocol Π consists of a set of parameterized reg-
ular strands {Sj [X]}j∈J together with a pair of functions γ and ρ from nodes
of these strands to formulas of L, such that γ is defined on positive nodes and ρ
is defined on negative nodes.

The strand space ΣΠ over Π consists of all instances of the parametric
strands Sj [X] together with all penetrator strands from Definition 8. The bun-
dles over ΣΠ are determined by Definition 7.

Some earlier work [1, 18] defines protocols whose messages contain formulas like
the γn. However, protocols can work properly without embedded formulas, and
can fail even with them. The approach does not allow sharing different informa-
tion with different peers, as C shares goods with M but not with B. We thus
associate the guarantee with the sending node, not with the message itself.

3.2 EPMO Annotated

In the example of EPMO, there are four non-trivial guarantees, and four non-
trivial rely formulas (Table 1). We write them in terms of the predicates:

transfer(B, p,M,N) B transfers p to M in reference to N
ship(M, g,C) M ships g to C

The guarantee or rely formula associated with node np,i is γp,i or ρp,i respectively.
Any node not shown in Table 1 has the trivially true formula True.

Bank:
γb,2 ∀PM if C authorizes transfer(B, price, PM , Nm), and

PM requests transfer(B, price, PM , Nm),
then transfer(B, price, PM , Nm).

ρb,3 C says γc,5, and M says M requests transfer(B, price,M,Nm).

Customer:
ρc,2 M says γm,2.

ρc,4 B says γb,2.

γc,5 C authorizes transfer(B, price,M,Nm).

Merchant:
γm,2 ∀PB if transfer(PB , price,M,Nm), then ship(M, goods, C).

ρm,3 B says γb,2, and C says γc,5.

γm,4 M requests transfer(B, price,M,Nm), and ship(M, goods, C).

Table 1. Guarantee and Rely formulas for EPMO

Bank Behavior The bank guarantees a quantified implication γb,2 on its second
node nb,2. The universally quantified payee makes the money order an instrument
payable to the bearer. Its rely statement ρb,3 notes that C says C authorizes
payment. Since “authorizes” is self-certifying (Tenet 2), this implies C does
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authorize payment. Formula ρb,3 also notes M ’s statement M says M requests
price. B instantiates PM with M , inferring that it should transfer price from C
to M , as in Tenet 4. By Tenet 2, the bank does not need to trust either C or M .

Customer Behavior The customer makes no guarantee on nc,1. It relies on M ’s
offer γm,2 on nc,2, and B’s assertion γb,2 on nc,4.

The self-certifying guarantee γc,5 is crucial for the protocol, as it authorizes
the transfer. C utters γc,5 only if the transfer is acceptable. There are two trust
decisions here (Tenet 3), whether to accept the implications

(B says γb,2) ⊃ γb,2 and (M says γm,2) ⊃ γm,2.

C presumably accepts the former, having already decided to establish an account
with B. C’s decision whether to trust M for γm,2, uses previous experience or
data from the Better Business Bureau, as encoded in C’s trust management
theory ThC . If C accepts the implication and derives γc,5, and if M requests
price, then by γb,2 and γm,2, M will ship the goods.

Merchant Behavior The merchant, upon receiving the first message, considers
whether to sell goods for price to customer C. Deducing γm,2 from ThM signals
acceptance. In γm,2, the bank is universally quantified; the premise that the
money will be transferred ensures M can reject an untrustworthy bank later.

On nm,3, M relies on the self-certifying γc,5, as well as B says γb,2. M ’s
criterion for trusting B for γb,2 is encoded in ThM ; possibly M checks a list of
reputable banks. If M infers γb,2, it follows that B will transfer the funds upon
request. If M makes the request, it must also ship the goods.

An affirmative decision is recorded in γm,4. The first conjunct is needed by
B to justify the transfer. The second half, by Tenet 4, may have a side-effect,
such as transmitting a shipping order to the shipping department.

4 Execution Semantics for Annotated Protocols

We now give a semantics for protocols by defining, given an assignment of theo-
ries to principals, what bundles can occur, namely the permissible bundles. We
also define soundness, meaning that rely formulas always follow from previously
asserted guarantees.

Definition 2. Let Π be an annotated protocol, let B be a bundle over ΣΠ ,
and let each principal P hold theory ThP . B is permissible if, for each positive
regular n ∈ B with prin(n) = P , γn is derivable from {ρm : m⇒+ n} in ThP .

Only permissible bundles can really occur, assuming that regular principals play
by the rules and do not transmit a message without deducing the corresponding
guarantee γn. There is no assumption that the penetrator deduces anything, as
no formulas are associated with any penetrator node.
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4.1 Sound Protocols

We next introduce a property of annotated protocols themselves, not concerned
with individual bundles and principal theories. A protocol is sound if the formulas
ρn on which principals rely are always true, in the sense that other principals
have in fact made the assertions that ρn says they have made. A “soundness”
attack on a protocol is a bundle B in which a regular principal relies on ρn, but
without nodes m ∈ B whose guarantees γm would justify ρn. We give an example
of unsoundness in Section 4.4.

Soundness is achievable only when certain nonces are unpredictable and cer-
tain keys are uncompromised. By a security value for a parameterized strand
Sj [X], we mean a function f(X). In practice f is always either a projection
taking value Xi for some i or else an associated key such as K−1

Xi
. A security

value assignment for a protocol Π is a pair of finite functions unique, non, each
giving a set of security values for each role. An example appears in Table 2. If
s ∈ Sj [v] is a strand and B is a bundle s intersects, then B respects unique, non
for s if f ∈ unique(Sj) implies f(v) is uniquely originating in B, and f ∈ non(Sj)
implies f(v) is non-originating in B. B respects unique, non if it respects it for
every regular s such that B intersects s.

Definition 3. Soundness. Bundle B supports a negative node n ∈ B iff ρn is
a logical consequence of the set of formulas {prin(m) says γm : m ≺B n}.

Let Π be an annotated protocol, and let unique, non be a security value
assignment for Π. Π is sound for unique, non if, whenever B is a bundle over Π
that respects unique, non, for every negative n ∈ B, B supports n.

Typically, each rely formula ρn is a conjunction of assertions P says φ. Each con-
junct is of the form prin(m) says γm, or, if γm is itself a conjunction φ1∧ . . .∧φk,
alternatively prin(m) says φi.2 Thus, one need only show there is such an m ≺B
n. The rely formulas of Table 1 were chosen in this way. For instance, ρc,2
will be true as long as there is a merchant strand whose second node oc-
curred previously and agrees with nc,2 on the variables occurring in ρc,2, namely
C,M, goods, price, Nm. Parameters not occurring in ρc,2 are unconstrained in the
corresponding node. For instance, Nc is relevant to the working of the protocol,
but does not occur in ρc,2.

Soundness is a horizontal condition: it concerns the message communication
arrows that tie different strands together. By contrast, permissibility is a vertical
condition: it concerns the local behaviors on the individual regular strands in a
bundle. All the reasoning on our framework occurs locally on individual strands,
while soundness ensures that the protocol coordinates assumptions with earlier
conclusions on other strands.

4.2 Recent Soundness

Assertions do not last forever. A money order becomes stale, and the issuing
bank will no longer redeem it. Goods are no longer worth the price, or are no
2 Following [2], P says (φ ∧ ψ) implies P says φ ∧ P says ψ.
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longer be available at a quoted price. Principals want to ensure that they rely
only on recently made statements. We write first(s) to refer to the first node on
a strand s and last(s) to refer to the last, and we define [10]:

Definition 4. Recency A node m is recent for n in bundle B if there exists a
strand s such that first(s) �B m and n �B last(s).

When m is recent for n, strand s that “measures” the delay between them. Sup-
pose there is a timeout value b, and all regular strands are implemented to time
out before the total elapsed time between first node and last node reaches b. Then
recency bounds the total elapsed time between m and n by b. The incoming and
outgoing authentication tests establish recency (Appendix A, Propositions 4–5).

Definition 5. Recent Soundness. Bundle B recently supports a negative node
n ∈ B iff ρn is a logical consequence of the set of formulas

{prin(m) says γm : m ≺B n ∧m is recent for n}.

Π is recent-sound for unique, non if, whenever B is a bundle over Π that respects
unique, non, for every negative n ∈ B, B recently supports n.

Organizations have various techniques to allow themselves to ensure assertions
will remain true for the near future, the next b time units. In EPMO, B puts a
hold on the amount price in C’s account, so that when M redeems the money
order, B will still be willing to transfer this amount of money.

4.3 Recent Soundness of EPMO

We now establish the soundness of EPMO, using the security value assignment
in Table 2. We let K−1

P be P ’s private decryption key, and let K−1
P,sig be P ’s pri-

Role non unique

Bank {K−1
C ,K−1

B,sig,K
−1
M,sig} {Nm, Nb, Nc}

Cust {K−1
C ,K−1

M ,K−1
B } {Nc}

Merch {K−1
C ,K−1

B,sig} {Nm, Nb, Nc}

Table 2. Security Value Assignment for EPMO

vate signature key. The notation S[v1, ∗, v3] means
⋃
X2
S[v1, X2, v3]. We assume

tacitly that hashes are uninvertible, which could be formalized (Appendix A) as
a non-origination assumption.

Because the M ’s rely statement ρm,3 is a conjunction, M must be assured
that there are matching bank and customer nodes nb,2 and nc,4. They must agree
with nm,3 at least for the variables B,C, p,Nm and B,C,M, p,Nm, respectively.
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Proposition 1. Suppose: m ∈ Merch[B,C,M, p, g,Nc, Nm, Nb]; nm,3 ∈ B; B
respects unique, non for m; and Nc 6= Nm. Then nb,2, nc,5 ∈ B for some b ∈
Bank[B,C, ∗, p,Nc, Nm, Nb] and c ∈ Cust[B,C,M, p, g,Nc, Nm, Nb]; moreover
nb,2, nc,5 are recent for nm,3.

Proof. Node nb,2 follows by an incoming test on test value Nm. The message
sent on nb,2 takes the form [[ hash(C ˆNb ˆNm ˆ price) ]]B ˆ {|N ˆNb|}C for some
N . To establish nc,5, observe that Nb is uniquely originating on nb,2; K−1

C ∈ safe,
and hash( ) is uninvertible. Hence nodes nb,2 and nm,3 form an outgoing test.
Thus there is a customer strand transforming t ˆ {|N ′ ˆ Nb|}C′ ⇒+ t ˆ Nb. By
the protocol definition, t is a money order containing bank nonce Nb. Because
Nb is uniquely originating, and a money order is always a point of origination
for its bank nonce, t = [[ hash(C ˆ Nc ˆ Nb ˆ Nm ˆ price) ]]B . Finally, to see that
c agrees on p, observe that nm,2 ⇒ nm,3 is also an outgoing test. Thus, there
is a customer strand c′ with parameters C,M, p, g,Nc, Nm; c′ = c because Nc
originates uniquely, but originates on both customer strands.

For recency, observe that Nm @ term(nb,2) and Nm @ term(nc,3), while Nm
originates uniquely at nm,2; thus, m measures the delay since nb,2 and nc,3. �

We show next that B gives guarantees for the rely formula ρb,3, i.e. it contains
nodes nc,5 and nm,4. Nodes nc,5 and nm,4 must agree with ρb,3 on the parameters
B,C,M, price, Nm occurring in γc,5 and in the first conjunct of γm,4.

Proposition 2. Suppose that b ∈ Bank[B,C,M, p,Nc, Nm, Nb], where Nc 6=
Nb 6= Nm; suppose B respects unique, non for b; and suppose nb,3 ∈ B. Then
nm,4, nc,5 ∈ B for some

m ∈ Merch[B,C,M, p, ∗, Nm, Nb] and c ∈ Cust[B,C,M, p, ∗, ∗, Nm, Nb].

Nodes nm,4, nc,5 are recent for nb,3.

Proof. By the incoming test principle (Proposition 5), there is a regular node
between nb,2 and nb,3 emitting [[ hash(B ˆ Nb ˆ Nm) ]]M . By pattern matching,
this is node nm,4 of a merchant strand with parameters B,M,Nb, Nm. Hence,
it was preceded by a node receiving mo′ = [[ hash(C ′ ˆ Nb ˆ Nm ˆ p′) ]]B ; by
unique origination of Nb and because the protocol emits mo′ only at a point of
origination for Nb, mo′ = mo. Thus, C ′ = C and p′ = p. Hence, by Proposition 1,
the required customer strand exists. �

Customer rely formulas may be justified similarly.

4.4 An Unsound Protocol

An unsound variant of EPMO, in the spirit of the original Needham-Schroeder
protocol [22], replaces message 2 from M to C by {|Nc ˆ Nm ˆ price|}C . As
M ’s name is absent, we can then mount a Lowe-like attack [21]. When, in ρm,3,
M relies on C says C authorizes transfer(B, price,M,Nm), there is no matching
guarantee. Instead, C has authorized transfer(B, price,M ′, Nm) for some different
M ′. Therefore, soundness is false.
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M ′ can use the attack, e.g. to arbitrage for his own advantage some discount
that C can obtain from M . Suppose that C contacts M ′, when the latter knows
C could have got a discounted price from M . M ′ contacts M purporting to be
C and requesting a larger amount of goods to make up the expected price. The
remainder of the exchange occurs as expected, except that M ′ skims off the
additional goods and delivers the expected shipment to C.

5 Conclusion

This paper appears to be the first offering a rigorous method for reasoning about
trust management in the context of nonce-based cryptographic protocols, rather
than using certificates with expiration dates, as in [18] and much other work.
We have illustrated our method with an electronic commerce protocol. We are
also using it to make TPMs a basis for access control via trust management [16].

Related Work A large literature applies logics to reasoning about cryptographic
protocols, stretching from [6] to [8]. However, the logics determine what authen-
tication goals a protocol achieves. By contrast, we use the non-logical strand
space framework to determine authentication. We cash in those authentication
results using soundness (Definition 3), obtaining rely formulas that coordinate
the local per-strand trust management reasoning of the distributed principals.

There is a well-entrenched tendency to regard protocol actions as assertions,
reflecting the principal’s beliefs and goals, and its appraisals of assertions by
others. Generally, however, one has regarded the messages as statements, which
may lead to confusion about who is drawing conclusions from the statements,
and which masks whether the statement was made by the expected peer. Hence,
we have attached the formulas to purely local transmission and reception events.
The key notion of protocol soundness allows us to decide whether statements
were uttered by the expected peer. A sound protocol is a reliable coordination
mechanism for deduction carried out by separate principals.

Taking protocol actions as assertions animates Abadi and Needham’s advice
for protocol design [1]. Our interpretation of the assertions as associated with
actions rather than with messages is compatible with much of what they say,
and could lead to a more precise treatment. For instance, they write:

Principle 1. Every message should say what it means: the interpretation
of the message should depend only on its contents.

If the “interpretation” is the guarantee offered by the sender, then this princi-
ple recommends that for each message t, there should be a single guarantee γ
asserted on every regular node on which t is sent. All parameters in γ should
occur in t. Similarly:

Principle 2. The conditions for a message to be acted upon should be
clearly set out so that someone reviewing a design may see whether they
are acceptable or not.
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To act on a message means to continue the protocol and send the next message.
Our trust management framework “clearly sets out” the condition for this in the
guarantee and rely statements. To decide whether to act on a message received,
P uses its rely statement, trying to deduce the next guarantee.

Future Work An important question suggested by our work is how to determine
the possible shapes that the bundles of a protocol may have. By a shape, we mean
a set of parametric regular strands with a partial ordering �, and a maximum
node nf that all other nodes precede. To be a shape, there must be a bundle,
containing precisely the given regular strands, which is normal and efficient in
the sense of [12]. In some protocols there is only one possible shape; a bundle for
EPMO that contains nf = nb,3 has the shape shown in Figure 1. Other protocols
(Otway-Rees, for instance) have more than one shape for a given nf .

Shape analysis allows the protocol designer to explain, when P1 draws some
conclusion, exactly which other principals may have made guarantees contribut-
ing to P1’s conclusion. For instance, suppose that P1 trusts P2’s local informa-
tion, so P1 would like to accept P2 says φ ⊃ φ. However, P1 may want to know
that there is no execution in which P2, when deducing φ, relied on another prin-
cipal’s assertions. A shape analysis tells us whether a strand of some P3 may
have preceded P2’s message transmission, in which case it may have contributed
a guarantee on which P2 relied. This is a novel protocol design criterion.

The ideas here also suggest an appealing implementation strategy, in which
protocol principals are constructed using a trust management engine [19], to-
gether with tabular information describing the structure of the possible strands.

We would also like to know how this method relates to well-developed frame-
works for reasoning about knowledge [9, 14]. Can the elements of a trust struc-
ture [7] replace the formulas used here? Computational aspects of logic must
also eventually be considered; our framework suggests new properties for which
tractability would be desirable [19, 20].

Conclusion In this paper, we have developed a rely-guarantee method that can
be used to combine trust management logics with nonce-based protocols. The
key technical idea was soundness, which provides a criterion for whether the
protocol is adequate to support the trust reasoning of the principals. We believe
that the resulting theory can be useful as a mechanism for cross-organization
access control, particularly when supported by hardware such as the TPM that
provides reliable security services.
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A Strand Spaces

A set A contains the messages (“terms”) to be exchanged. They are freely gener-
ated from a set of atoms including texts and keys by concatenation and encryp-
tion, in which the second argument is a key. We formalize hashing as encryption
with an asymmetric key of which no principal knows the inverse. Message trans-
mission has positive sign, and reception has a negative sign.

Definition 6. A signed term is a pair 〈σ, a〉 with a ∈ A and σ one of the
symbols +,−. We will write a signed term as +t or −t. (±A)∗ is the set of finite
sequences of signed terms. A strand space over A is a set Σ with a trace mapping
tr : Σ → (±A)∗. Fix a strand space Σ:

1. The subterm relation @ is defined inductively, as the smallest relation such
that a @ a; a @ {|g|}K if a @ g; and a @ g ˆ h if a @ g or a @ h.
By this definition, for K ∈ K, we have K @ {|g|}K only if K @ g already.

2. Suppose I is a set of terms. The node n ∈ N is an entry point for I iff
term(n) = +t for some t ∈ I, and whenever n′ ⇒+ n, term(n′) 6∈ I.

3. An term t originates on n ∈ N iff n is an entry point for I = {t′ : t @ t′}.
4. An term t is uniquely originating in S ⊂ N iff there is a unique n ∈ S such

that t originates on n, and non-originating if there is no such n ∈ S.

If a term t originates uniquely in a suitable set of nodes, then it can play the
role of a nonce or session key. If it is non-originating, it can serve as a long-term
secret, such as a shared symmetric key or a private asymmetric key. N together
with both sets of edges n1 → n2 (message transmission) and n1 ⇒ n2 (succession
on the same strand) is a directed graph 〈N , (→ ∪ ⇒)〉. A bundle is a subgraph
of 〈N , (→ ∪ ⇒)〉 for which the edges express causal dependencies of the nodes.
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Definition 7. Suppose →B ⊂ →; suppose ⇒B ⊂ ⇒; and let B = 〈NB, (→B
∪ ⇒B)〉 be a finite acyclic subgraph of 〈N , (→ ∪ ⇒)〉. B is a bundle if:

1. If n2 ∈ NB and term(n2) is negative, then there is a unique n1 such that
n1 →B n2.

2. If n2 ∈ NB and n1 ⇒ n2 then n1 ⇒B n2.

A node n is in a bundle B = 〈NB,→B ∪ ⇒B〉, written n ∈ B, if n ∈ NB. The
B-height of a strand s is the largest i such that 〈s, i〉 ∈ B. If S is a set of edges,
i.e. S ⊂→ ∪ ⇒, then ≺S is the transitive closure of S, and �S is the reflexive,
transitive closure of S.

Proposition 3. If B is a bundle, �B is a partial order. Every non-empty subset
of the nodes in B has �B-minimal members.

Definition 8. A penetrator trace is one of the following:
Mt: 〈+t〉 where t ∈text KK : 〈+K〉
Cg,h: 〈−g, −h, +g ˆ h〉 Sg,h: 〈−g ˆ h, +g, +h〉
Eh,K : 〈−K, −h, +{|h|}K〉 Dh,K : 〈−K−1, −{|h|}K , +h〉.

We write safe for safe keys, i.e. keys that the penetrator can never learn or
use [12]. Since long term shared keys and private asymmetric keys are never
transmitted in reasonable protocols, these keys are safe unless compromised be-
fore execution of the protocol. Session keys are safe if transmitted only protected
by keys K with K−1 ∈ safe.

When S is a set of terms, t0 occurs only within S in t if, regarding t as an
abstract syntax tree, every branch from the root to an occurrence of t0 traverses
some occurrence of a t1 ∈ S before reaching t0. It occurs outside S in t if t0 @ t
but t0 does not occur only within S in t. A term t0 occurs safely in t if it occurs
only within S = {{|h|}K : K−1 ∈ safe} in t.

Proposition 4 (Outgoing Authentication Test). Suppose B is a bundle in
which a originates uniquely at n0; a occurs only within S in term(n0) and a
occurs safely in S; and n1 ∈ B is negative and a occurs outside S in term(n1).

There are regular m0,m1 ∈ B such that m0 ⇒+ m1, where m1 is positive, a
occurs only within S in term(m0), and a occurs outside S in term(m1). More-
over, n0 � m0 ≺ m1 ≺ n1.

Proposition 5 (Unsolicited, Incoming Test Principles). Suppose n1 ∈ B
is negative, {|h|}K @ term(n1), and K ∈ safe. (Unsolicited test:) There exists a
regular m1 ≺ n1 such that {|h|}K originates at m1. (Incoming test:) If in addition
a @ h originates uniquely on n0 6= m1, then n0 ≺ m0 ⇒+ m1 ≺ n1.


