Incorporating Diffie-Hellman
Into Strand Spaces

Jonathan Herzog
The MITRE Corporation

This work supported by the National Security Agency
The TLS-DH Protocol (Simplified)

Three components:
1. A handshake
2. Authenticated Diffie-Hellman
 - \([M]_{K_X}\) is \(M\) signed with \(X\)’s private key,
3. Confirmation, using a hash of \(g^{xy}\) as the key
Incorporating Diffie-Hellman

Standard Dolev-Yao model doesn’t consider Diffie-Hellman:
– How to incorporate?

One approach [PQ ’01, BB ’03, MS ’03]:
– Give adversary specific additional abilities
 ◦ Multiplication, inverses, etc.
– Prove secrets not deducible
Good for finding flaws
However, lack of flaws does not imply security
– “Real” adversary may have additional powers
– May be undiscovered attacks
Proving Security

Focus on proofs of security rather than flaws
Want proof method that captures all attacks
Tempting to use “computational” model
 – Everything is an algorithm
 – Messages are bit-strings drawn from distributions
 – Proofs use reductions
 ◦ “If an adversary can break the protocol, an adversary can break the underlying encryption”
 – Relies upon intractability assumptions
 ◦ Actual form of Diffie-Hellman assumption
Present Work

Computational proofs extremely meaningful
– Grounded in complexity theory
However, lacks benefits of Dolev-Yao model:
– High level of abstraction
– Simplicity
– Automation
– Re-use of general theorems

This talk: best of both worlds
– High-level security proofs for protocols like TLS
– Existence of computational proofs guaranteed
General Approach

Increase expressiveness of model
- New operators
- New adversary powers
Assume Diffie-Hellman is hard
- Translate Diffie-Hellman into formal terminology
- (Introduce some strand space vocabulary)
Analyze TLS
- Assuming Diffie-Hellman to be hard
Demonstrate translation accuracy
- Show: if translation is false, Diffie-Hellman
New Operators

Randomized encryption
Signatures, also randomized
Hashing
 – Turns any message into a key
Formal, free algebra abstraction of group operations
 – Atomic Diffie-Hellman elements: \(d_a, d_b \in D \)
 ◦ Analogous to \(g^x, g^y \)
 – Formal Diffie-Hellman operation: \(DH(d_a, d_b) \)
 ◦ Analogous to \(g^{xy} \)
 ◦ Produces compound messages
 – Will reserve \(g^x, g^y, g^{xy} \) for the computational
Extending the Adversary

What additional powers to give to adversary? Want to prove security against any efficient adversary. Might as well give the adversary all reasonable powers — Adversary can perform every tractable function:

\[f : A^* \rightarrow D \]

(A is any message)

Other techniques free to consider smaller sets
Strand Space Terminology

Regular Participant: One who follows the protocol
As opposed to adversary
Strand Space Terminology

Strand: Sequence of messages sent, received
- Regular strand: trace of one particular execution
- Adversary strand: single operation
 - Link together to form more complex operations
Strand Space Terminology

Client \quad C \quad Server

\[S \ [g^x]_{K_S} \]

\[[g^y]_{K_C} \{|T_1 C S|\}_{hash(g^{xy})} \]

\[\{|T_2 C S|\}_{hash(g^{xy})} \]

Bundle: Collection of communicating strands
Who says what to who
Global view of all conversations
Could be different from intended conversations
Strand Space Terminology

Origination: Strand utters value it never heard “First” time value is used
No origination → secret
Note: value does not originate when used as key

$S [g^x]_{KS}$
$[g^y]_{KC} \{T_1 C S\}_{hash(g^{xy})}$
$\{T_2 C S\}_{hash(g^{xy})}$
Formal Diffie-Hellman Condition

If
1. g^x and g^y are created only by honest participants
 d_a and d_b originate only on regular strands
2. g^{xy} is not uttered by honest participants
 $DH(d_a, d_b)$ does not originate on regular strands

Then
g^{xy} is not emitted by adversary either
$DH(d_a, d_b)$ does not originate at all
Proof Sketch of Security

Assumption: d_a, d_b originate only on regular strands.
No value $DH(d_1, d_2)$ originates on regular node.
Therefore $DH(d_a, d_b)$ does not originate:
- secrecy

Thus $hash(DH(d_a, d_b))$ does not originate
Encrypted with secret key → emitted by regular strands:
- authentication
Deriving the Diffie-Hellman Condition

How to justify such a condition?
- Does it diminish the computational soundness of the model?

Derivation:

1. Give computational semantics to Strand Spaces

2. Then show:
 “If a bundle violates the formal Diffie-Hellman condition, it maps to an efficient algorithm that solves Diffie-Hellman”
Derivation Sketch

Give bit-string value to every message in bundle

Every atomic term represents random variable
 – Atomic terms given random value
 – Compound terms built up from atomic ones

Adversary strands all tractable functions
Regular strands may not be
 – Regular participants unconstrained
 – Might represent intractable computations
Tractable and Intractable Regular Strands

Tractable regular strand

Intractable regular strand
Tractable Regular Strands

Want to avoid intractable strands
Details highly strand-specific
– Also specialized for TLS

General idea:
– Invoke traits of protocols like TLS
 ◦ Real participants know secret exponents
 ◦ Don’t utter secret values, but hash into
– Together, make regular strands tractable

Details in paper
Deriving Formal Diffie-Hellman conditions

Suppose some bundle violates security property

- \(d_a, d_b\) originate on regular nodes
- \(DH(d_a, d_b)\) originates only on adversary node
- Regular strands tractable

Turn it into algorithm

- \(g^x, g^y\) given as inputs, assign to \(d_a, d_b\)
- Choose values for all other atomic messages
- Each strand easy to compute
- Compose individual computations according to bundle structure
- Node for \(DH(d_a, d_b)\) now has value for \(g^{xy}\)
- Case analysis: \(g^{xy}\) appears unencrypted
Conclusion

Diffie-Hellman incorporated into Strand Spaces

– Does not diminish computational soundness

Probably can be used by automated Strand Space tools

Areas for generalization:

– “Common protocol traits” based on TLS
 ◦ Group key protocols likely have other traits
– Approach possibly applicable to other formalisms
– Also probably applicable to other primitives
Backup slides
Randomized Encryption

Encryption explicitly takes randomness as argument:

\[Enc : A \times Key \times Rand \rightarrow A \]

\[Enc(M, K, r) = \{|M|\}_K^r \]

Signatures similar
Common Protocol Traits

Real protocol participants don’t solve Diffie-Hellman problem
– Won’t calculate g^{xy} unless they know x or y
– Presumably, regular participants choose g^x by first picking x.
– Def: regular strands are *conservative* if they never use $DH(d_1, d_2)$ unless d_1 or d_2 originates on regular node

Also, honest participants don’t commonly “say” g^{xy}:
– Def: regular strands are *silent* if no $DH(d_1, d_2)$ originates on regular strands
– Still allows regular strands to use $DH(d_1, d_2)$ as a key
– All such keys are produced by hashing
Side-stepping Diffie-Hellman

If hashing is strong, a hash of $DH(d_1, d_2)$ has the same distribution as random value.

Hence, no need to calculate pre-image to hashes:

- Pick random values instead
- If this changes anything, then hashing is not strong.

Proof uses conservatism of regular strands.

No longer need to solve Diffie-Hellman to calculate regular strands.

All strands efficiently computable.
Computational Soundness of Dolev-Yao

Work in progress
Backes, Pfitzmann, Waidner
 – Universally Composable Cryptographic Library
Lincoln, Mitchell, Mitchell, Scedrov
 – Incorporating poly-time indistinguishability into process calculi
More direct approaches
 – Abadi and Rogaway
 – Bogdan
 – Myself
Probably will be settled in next five years
Comparison with Millen, Shmatikov

<table>
<thead>
<tr>
<th>Them</th>
<th>Me</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finds flaws</td>
<td>Produces proofs</td>
</tr>
<tr>
<td>May not find all flaws</td>
<td>May not produce proofs for all correct protocols</td>
</tr>
<tr>
<td>Untyped</td>
<td>Typed</td>
</tr>
<tr>
<td>Limited adversary powers</td>
<td>Unlimited adversary powers w.r.t. Diffie-Hellman</td>
</tr>
<tr>
<td>w.r.t. Diffie-Hellman</td>
<td></td>
</tr>
<tr>
<td>Decision procedure</td>
<td>Pretty sure result can be incorporated into other tools</td>
</tr>
</tbody>
</table>