Red Cryptography
(Formal Analysis of Cryptographic Protocols)

Jonathan Herzog
9 March 2001
Introduction

- Rogoway described two “worlds” of cryptographic protocol analysis
 - Blue: computational view
 - Red: formal methods view
- Blue world is probably well-known in CIS
- Red world may be less so
- In this talk: introduction to the formal methods approach

- Goals:
 - No new material
 - Give background on class of problems
 - Stimulate interest
Overview of Talk

- Scope of problem: abstracted authentication and mission protocols
- Formal methods approaches (at least one)
 - Model checkers
 - Specialized logics
 - Theorem provers
- Open problems
Protocols

- More limited definition than usually used
- Sequence of messages between small number (2 or 3) principals
 - No conditionals (except to abort)
- Abstract cryptographic primitives (encryption, signatures)
- Achieve authentication and/or key transmission
Needham–Schroeder Public Key Protocol

1. $A \rightarrow B$: $\{N_a \ A\}^{K_B}$
2. $B \rightarrow A$: $\{N_a \ N_b\}^{K_A}$
3. $A \rightarrow B$: $\{N_b\}^{K_B}$

- First published in 1978
- A, B assumed to know each other’s public
- N_a, N_b are “fresh” nonces
- K_A, K_B: public keys
- Designed to provide mutual authentication and secrecy of N_a, N_b
Message Algebra

- Messages are elements of an “algebra” \mathcal{A}
- 2 disjoint sets of atomic messages:
 - Texts (\mathcal{T})
 - Keys (\mathcal{K})
- 2 operators:
 - $\text{enc} : \mathcal{K} \times \mathcal{A} \rightarrow \mathcal{A}$ (Range: \mathcal{E})
 - $\text{concat} : \mathcal{A} \times \mathcal{A} \rightarrow \mathcal{A}$ (Range: \mathcal{C})
Message Algebra (cont.)

- Message algebra is “free”
 - Unique representation of terms
 - *Exactly* one way to build elements from atomics, operations
- \(K, T, E, C \) mutually disjoint
- For all \(M_1, M_2, M_3, M_4 \in A, k_1, k_2 \in K, T \in T \)
 - \(M_1 M_2 \neq M_3 M_4 \), unless \(M_1 = M_3, M_2 = M_4 \)
 - \(\{M_1\}_{k_1} \neq \{M_2\}_{k_2} \) unless \(M_1 = M_2, k_1 = k_2 \)

- Justification: looking for flaws that do not depend on properties of encryption scheme
Adversary

- Adversary has complete control over the network
 - Can intercept, delete, delay, replay messages
- Unbounded time, but limited in available cryptographic operations
 - Separate, concatenate known messages
 - Decrypt with known key
 - Encrypt with known key
 - Sign with known key
 - Create fresh values, keys
 - Use public values, keys
- May be regular participant, also
 - Presumed to start knowing some set of keys
Needham-Schroeder Goals

• *Initiator*, *Responder* are *roles* instantiated here as *A* and *B*

• For every *Initiator*, there should be a corresponding *Responder* that agrees on the values in question

• For every *Responder*, there should be a corresponding *Initiator* that agrees on the values in question
Needham-Schroeder: Flawed!

\[A \rightarrow \{N_1 A\}_{K_M} \rightarrow M \]

\[\{N_2\}_{K_M} \rightarrow M \rightarrow \{N_2\}_{K_B} \]

\[\{N_1 N_2\}_{K_A} \]

- Due to Gavin Lowe (1995)
- Note that flaw exists independently of underlying
Formal Methods

- One view of problem:
 - Communicating sequential processes
 - Communicating through malicious (noisy) channels
 - High level of abstraction
 - Goals expressible as safety properties
- Standard formal methods problem
- Attacked using standard formal methods tools
Model Checking

- Describe system as state machine
 - Security properties can be described as statements about executions
 - Algorithms, tools exist that exhaustively search executions to verify properties.
- Regular participants simple to describe as state machine
- Modeling the adversary more complex
Model Checking: Adversary

- State of adversary described by set of “known” terms I
- Presumed to start with some initial set I
- If M is sent by regular participant, can move into state where $I' = I \cup \{M\}$
- If $(M_1, M_2) \in I$, then can move into state where $\{M_1\}, I' = I \cup \{M_2\}$
- If $\{M\}_k, k^{-1} \in I$, can move into state where $I' = I \cup \{M\}$
- If $M, k \in I$, then can move into state where $I' = I \cup \{\{M\}_k\}$
- Can send any message in set of known terms to any regular participant
Model Checking: Security Conditions

- Security conditions can be expressed as safety properties

$$\{N_1 A\}_B$$

$$\{N_1 N_2\}_A$$

$$\{N_2\}_B$$

- System should never reach state where \(N_1, N_2\) in adversary set
- \(Init[A, B, N_1, N_2].3 \Rightarrow Respond[B, A, N_1, N_2].2\)
- \(Respond[B, A, N_1, N_2].3 \Rightarrow Init[A, B, N_1, N_2].3\)
Model Checking: Pros and Cons

- **Pros**
 - Conceptually simple
 - Exhaustive search of all possible adversary tactics

- **Cons**
 - State space explosion
 - Infinite number of adversary states
 - Some attacks use multiple initiators, responders
 - Impossible (in general) to catch all possible attacks
Needham–Schroeder Lowe Protocol

- Proven correct
 1. If an attack exists on any system, an attack exists on a system with one initiator, one responder (pencil and paper)
 2. No attacks exist on that system (model checker)
- Statement (1) shown for restricted class of protocols
- Open problem: similar result for larger class?
BAN Logic (1989)

- Named after Burrows, Abadi, Needham
- "Many sorted modal logic" of belief
- Turn protocol messages into logical statements
- Apply inference rules
- Arrive at desired goals
BAN Logic: Operators

- $P \models X$ \hspace{1cm} P \text{ believes } X
- $P \mathrel{\triangleleft} X$ \hspace{1cm} P \text{ sees } X
- $P \xrightarrow{K} Q$ \hspace{1cm} P, Q \text{ can use shared key } K \text{ to communicate}
- $P \Rightarrow X$ \hspace{1cm} P \text{ has jurisdiction over } X
- $P \sim X$ \hspace{1cm} P \text{ once said } X
- $\#(X)$ \hspace{1cm} X \text{ is fresh}
BAN Logic: Deductions

\[
\begin{align*}
P \models Q \Rightarrow X & \quad P \models Q \models X \\
\hline
P \models X
\end{align*}
\]

\[
\begin{align*}
P \models \#(X) & \quad P \models Q \leadsto X \\
\hline
P \models Q \models X
\end{align*}
\]

\[
\begin{align*}
P \models Q \xleftarrow{K} P & \quad P \triangleleft \{X\}_K \\
\hline
P \models Q \leadsto X
\end{align*}
\]
Otway-Rees Protocol

1. $A \rightarrow B$: $M A B \{N_a M A B\} K_{as}$
2. $B \rightarrow S$: $M A B \{N_a M A B\} K_{as} N_b \{M A B\} K_{bs}$
3. $S \rightarrow B$: $M \{N_a K_{ab}\} K_{as} \{N_b K_{ab}\} K_{bs}$
4. $B \rightarrow A$: $M \{N_a K_{ab}\} K_{as}$

- S: Distinguished session key server
- K_{as}, K_{bs}: Long term shared, symmetric keys
- M: Public session identifier
BAN Logic: Idealization

- This:

 \[A \rightarrow B : \quad M \ A \ B \ \{N_a \ M \ A \ B\}_K_{as} \]

 \[B \rightarrow S : \quad M \ A \ B \ \{N_a \ M \ A \ B\}_K_{as} \ N_b \ \{M \ A \ B\}_K_{bs} \]

 \[S \rightarrow B : \quad M \ \{N_a \ K_{ab}\}_K_{as} \ \{N_b \ K_{ab}\}_K_{bs} \]

 \[B \rightarrow A : \quad M \ \{N_a \ K_{ab}\}_K_{as} \]

- Becomes:

 \[A \rightarrow B : \quad \{M \ A \ B \ N_a\}_K_{as} \]

 \[B \rightarrow S : \quad \{M \ A \ B \ N_a\}_K_{as} \ N_b \ \{M \ A \ B\}_K_{bs} \]

 \[S \rightarrow B : \quad \{N_a, (A \overset{K_{ab}}{\leftrightarrow} B), (B \rightsquigarrow M \ A \ B)\}_K_{as} \]

 \[\quad \{N_b, (A \overset{K_{ab}}{\leftrightarrow} B), (A \rightsquigarrow M \ A \ B)\}_K_{bs} \]

 \[B \rightarrow A : \quad \{N_a, (A \overset{K_{ab}}{\leftrightarrow} B), (B \rightsquigarrow M \ A \ B)\}_K_{as} \]
BAN Logic: Starting Assumptions

\[
\begin{align*}
A & \models A \xleftarrow{K_{as}} S \\
A & \models (S \Rightarrow A \xleftarrow{K_{ab}} B) \\
A & \models (S \Rightarrow (B \rightsquigarrow X)) \\
A & \models \#(N_a) \\
A & \models \#(N_b) \\
B & \models B \xleftarrow{K_{bs}} S \\
B & \models (S \Rightarrow A \xleftarrow{K_{ab}} B) \\
B & \models (S \Rightarrow (A \rightsquigarrow X)) \\
B & \models \#(N_b)
\end{align*}
\]
BAN Logic: Conclusions

\[A \models A \xleftrightarrow{K_{ab}} B \]
\[A \models B \models (M A B) \]
\[B \models A \xrightarrow{K_{ab}} B \]
\[B \models A \leadsto (M A B) \]
BAN Logic: Flawed!

- Assume C has $\{M'\ C\ B\}_K_{bs}$ from previous run

\[
\begin{align*}
C(A) & \rightarrow B : \quad M\ A\ B \ \{N_c \ M' \ C \ B\}_K_{cs} \\
B & \rightarrow C(S) : \quad M\ A\ B \ \{N_c \ M\ A\ B\}_K_{cs} \ N_b \ \{M\ A\ B\} \\
C & \rightarrow S : \quad M'\ C\ B \ \{N_c \ M' \ C \ B\}_K_{bs} \ N_b \ \{M'\ C\ B\} \\
S & \rightarrow C(B) : \quad M' \ \{N_c \ K_{cb}\}_K_{as} \ \{N_b \ K_{cb}\}_K_{bs} \\
C(S) & \rightarrow B : \quad M \ \{N_c \ K_{cb}\}_K_{cs} \ \{N_b \ K_{cb}\}_K_{bs} \\
B & \rightarrow C(A) : \quad M \ \{N_c \ K_{cb}\}_K_{cs}
\end{align*}
\]
BAN Logic: Source of Flaws

- Idealization process translates informal to formal
 - Cannot easily be done formally
 - Informal idealization as fallible as human judgment

(In specification) \(\{ N_b, K_{ab} \}^{K_{bs}} \)

(Idealized as) \(\{ N_b, (A \xleftarrow{K_{ab}} B), (A \leadsto M \, A \, B) \}^{K_{bs}} \)

(Should be) \(\{ N_b, (A \xleftarrow{K_{ab}} B), (A \leadsto M' \, A \, B) \}^{K_{bs}} \)
BAN Logic: Pros and Cons

● Pros
 – Relatively simple
 – Catches *most* errors
 – Usually decidable
 ● Can often be automated efficiently
 ● Seconds to generate proof

● Cons
 – Idealization process a source of errors
 – Semantics difficult
 – No concept of confidentiality
 – Assumes replay protection
Theorem Provers

- For this talk: Paulson (1998)
- Heavy use of theorem prover (Isabelle)
 - Proof checker
 - Requires every step of a proof to be spelled out and verified
 - Can build up lemmas for use in bigger proofs
 - Proof automator
 - Can automatically perform some proofs
 - Can automate large parts of others
 - Often requires some human guidance
Specifying the Protocol

- **Create** (disjoint) sets of abstract data types
 - Agents, Nonces, Numbers
 - Keys
 - Encryptions \((\text{Crypt } K \ X)\)
 - Concatenations \(\langle X, X' \rangle\)

- **Create** events
 - Says A B X
 - Notes A X
Specifying the Protocol (cont.)

- Model protocol runs as *traces*
 - Finite sequences of events
- Valid traces defined inductively
 - $[]$ is a trace
 - Multiple rules of the form:

 “If x is a valid trace satisfying $P(x)$, then $e\#x$ is a valid trace”
Honest Participants: Otway–Rees

\[A \rightarrow B : \ M A B \{\{N_a M A B\}\} K_{as} \]

- If \(ev \) is a trace, \(N_a \) a fresh nonce, \(A \neq B \) and \(B \neq S \), then
 \[
 (\text{Says} \ A \ B \langle M A B \{\{N_a A B\}\} K_{as}\rangle) \parallel ev
 \]
 is also a valid trace

\[B \rightarrow S : \ M A B \{\{N_a M A B\}\} K_{as} N_b \{\{M A B\}\} K_{bs} \]

- If \(ev \) is a trace containing \((\text{Says} \ A' \ B \langle M A B X \rangle) \) fresh, and \(B \neq S \), then
 \[
 \text{Says} \ B \ S \langle M A B X N_b \{\{M A B\}\} K_{bs}\rangle \parallel ev
 \]
 is also a valid trace
Modeling the Adversary

- Need some additional operators
 - analz H is the set of terms the adversary can learn from H:
 $H \subseteq \text{analz } H$
 $\langle X, Y \rangle \in \text{analz } H \Rightarrow X \in \text{analz } H \land Y \in \text{analz } H$
 $\{X\}_K \in \text{analz } H \land K^{-1} \in \text{analz } H \Rightarrow X \in \text{analz } H$
 - synth H is the set of what the adversary can make from H:
 $X \in \text{synth } H \land Y \in \text{synth } H \Rightarrow \langle X, Y \rangle \in \text{synth } H$
 $X \in \text{synth } H \land K \in \text{synth } H \Rightarrow \{X\}_K \in \text{synth } H$
Modeling the Adversary (cont).

- Let ev be a valid trace. Let spies ev contain
 - All messages from all Says events in ev
 - Adversary’s initial state ($advInit$)
 - Long term keys of agents in bad
 - Any messages in Notes $A \times X$ events in ev, where $A \in bad$

- Then if $X \in \text{synth(analz (spies ev))}$, then

 Says Spy B $X \# ev$

 is also a valid trace.
Theorem Prover Use

- Give to theorem prover:
 - Data types,
 - Operations (definitions, laws)
 - Trace extension rules for honest participants
 - Trace extension rules for adversary
 - 110 intermediate lemmas regarding operations

- Get from theorem prover
 - Environment in which to prove security properties
 - Assistance in doing so
Security Goals

- **Secrecy of session keys**: For every valid trace ev, if
 \[\text{Says } S \ B \ \langle M \ A \ B \ \{ \{ N_a \ K \} \}_{K_{as}} \ \{ \{ N_b \ K \} \}_{K_{bs}} \rangle \in ev \]
 then $K \not\in \text{analz (spies } ev)$

- **Authentication condition**: For every valid trace ev,
 \[\text{Says } A \ B \ \langle M \ A \ B \ \{ \{ N_a \ \} \}_{K_{as}} \ \{ \{ N_{b} \ \} \}_{K_{bs}} \rangle \in ev \]
 and
 \[\text{Says } B' \ A \ \langle M \ \{ \{ N_a \ \} \}_{K_{as}} \rangle \in ev \]
 then
 \[\text{Says } S \ B'' \ \langle M \ \{ \{ N_a \ \} \}_{K_{as}} \ \{ \{ N^{'}_b \ K \} \}_{K_{bs}} \rangle \in ev \]
Theorem Provers: Pros and Cons

- **Pros:**
 - Finds all errors
 - High degree of certainty

- **Cons:**
 - Difficult!
 - Theorem provers hard to use
 - Weeks to write/debug specification
 - Hours to verify proofs
 - Proofs very often give no intuition
 - Better than pencil and paper?

- Next time: Strand Space method
Open Problems

- Non-free algebras
 - Exclusive-or
 - Exponentiation (Diffie–Hellman)
- Unifying with blue world
 - Specifying/weakening assumptions on underlying primitives
 - Incorporating probabilistic reasoning
- Minimal systems that contain attacks
- Denial of service