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Abstract

We analyze the expected risk of linear classi-
fiers for a fixed weight vector in the “min-
imax” setting. That is, we analyze the
worst-case risk among all data distribu-
tions with a given mean and covariance.
We provide a simpler proof of the tight
polynomial-tail bound for general random
variables. For sub-Gaussian random vari-
ables, we derive a novel tight exponential-
tail bound. We also provide new PAC-Bayes
finite-sample guarantees when training data
is available. Our “minimax” generalization
bounds are dimensionality-independent and
O(
√

1/m) for m samples.

1 Introduction

Linear classifiers are the cornerstone of several applica-
tions in machine learning. The generalization ability of
classifiers have been long studied both in the statisti-
cal and computational learning theory. Several general
frameworks have been applied in order to analyze the
generalization error of generic classifiers (some do not
apply to linear classifiers), such as empirical risk mini-
mization, structural risk minimization, VC dimension,
covering numbers and Rademacher complexity. Ad-
ditionally, several notions of stability that guarantee
generalization were introduced in [5, 18, 20, 21]. We
refer the interested reader to the survey article [4] for
additional information.

For linear classifiers, sharp margin bounds are pro-
vided in [2] using Rademacher complexity, and [15, 17]
using the PAC-Bayes theorem. Later, [11] provided

Appearing in Proceedings of the 17th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2014, Reykjavik, Iceland. JMLR: W&CP volume 33. Copy-
right 2014 by the authors.

sharp bounds for Rademacher and Gaussian complex-
ities of (constrained) linear classes, which led to sev-
eral generalization bounds, such as margin bounds,
PAC-Bayes bounds and risk bounds for vectors with
bounded norm. More recently, [8] generalized the
KL divergence in the PAC-Bayes theorem to arbitrary
convex functions; and [10] provided dimensionality-
dependent PAC-Bayes margin bounds. In a different
line of work, [19] proved generalization of sparse linear
classifiers (under `1-regularization) by using covering
number bounds in [23].

Let f̂ be a classifier learnt from m available train-
ing samples (drawn from some arbitrary data dis-
tribution). Let f∗ be the optimal classifier in the
asymptotic setting (intuitively speaking, when infinite
amount of data is available). Generalization bounds
are usually termed as a uniform convergence statement
that holds for all classifiers (See [11] for instance). Al-
ternatively, by using a symmetrization argument and
by optimality of the empirical minimizer, we can state
that with probability at least 1− δ:

R(f̂) ≤ R(f∗) + g(m, δ) (1)

where R(f) is the expected risk of the classifier f
with respect to the data distribution (and with re-
spect to the posterior for PAC-Bayes), and g(m, δ)
is a function that decreases with respect to m and
δ. Very often, we have that g(m, δ) ∈ O(

√
1/m) and

g(m, δ) ∈ O(
√

log 1/δ) but other rates are also possible
[4]. Generalization bounds are stated as in eq.(1) with
respect to the unknown quantity R(f∗). In this pa-
per, we are interested in developing a tight bound for
the expected risk R(f) of a linear classifier f . This al-
lows us to find a closed form expression for the bound
of R(f∗) and also study the behavior of R(f̂) when
training data is available.

We study the expected risk of linear classifiers un-
der two scenarios: general random variables and sub-
Gaussian variates. Many features used in real-world
classification problems follow sub-Gaussianity assump-
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tions. For instance, in the computer vision literature,
histogram features are used for object classification as
in [6, 22]. The class of sub-Gaussian variates includes
for instance Gaussian variables, any bounded random
variable (e.g. Bernoulli, multinomial, uniform), any
random variable with strictly log-concave density, and
any finite mixture of sub-Gaussian variables. Stronger
assumptions have been previously used for the analysis
of linear classifiers. In the generalization bound analy-
sis of [11], the authors assumed boundedness; while in
the active learning analysis of [1] the authors assumed
a log-concave distribution.

In this paper, we provide tight bounds for the expected
risk of linear classifiers. Interestingly, the Fisher linear
discriminant objective function appears in the differ-
ent scenarios under our analysis, although our results
apply to any linear classifier. In our tightness proof,
we construct a family of data distributions where the
expected risk bound holds with equality. Our con-
structions do not rely on conditional distributions of x
given the class y (i.e. P (x|y = −1) and P (x|y = +1))
that are Gaussian or that have equal covariances. This
implies that there is a whole family of non-trivial dis-
tributions in which the Fisher discriminant is asymp-
totically as good as any other linear classifier.

When training data is available, we provide
novel “minimax” generalization bounds that are
dimensionality-independent and O(

√
1/m) for m sam-

ples. From a technical point of view, we do not re-
quire boundedness of the input data as in [11], but
note that we analyze a new problem. As part of
our analysis, we derive novel PAC-Bayes bounds for
not-everywhere-bounded functions. Additionally, while
PAC-Bayes bounds usually depend on the Kullback-
Leibler divergence (which is natural for our analysis
of sub-Gaussian variates), we provide bounds that de-
pend on the Chi-squared divergence (which we believe
is natural for our analysis of general random variables).

2 Preliminaries

Consider a binary classification problem with n − 1
features. That is, each sample is a pair (x, y) contain-
ing a class label y ∈ {−1,+1} and a vector of features
x ∈ Rn−1. Let Z be the probability distribution of
(x, y). That is, (x, y) ∼ Z.

A linear classifier f with weight vector w ∈ Rn has
the following decision function:

f(x|w) = sgn(wT
[
x
1

]
) (2)

The linear classifier f makes a mistake whenever the
sign of y does not match the sign of f(x|w), or equiv-

alently, whenever:

ywT
[
x
1

]
≤ 0 (3)

In this paper, we analyze the probability of the above
expression with respect to the data distribution. That
is, we analyze the expected risk of a linear classifier.

Without loss of generality, let z = y
[
x
1

]
. Clearly, eq.(3)

holds if and only if wTz ≤ 0. We assume that z
has mean µ and positive definite covariance matrix
Σ. That is:

µ ≡ E[z] and Σ ≡ E[(z− µ)(z− µ)
T

] (4)

With some abuse of notation, we write z ∼ Z ≡
Z(µ,Σ) in order to denote that the distribution Z of
z has mean µ and covariance Σ. Additionally, we de-
fine Ω(µ,Σ) to be the family of all distributions with
mean µ and covariance Σ. Thus, Z ∈ Ω(µ,Σ) is an
equivalent way to denote that the distribution Z has
mean µ and covariance Σ.

Next, we introduce the following Fisher function of the
weight vector w, given the mean µ and covariance Σ
of the data distribution:

F(w|µ,Σ) ≡ (wTµ)2

wTΣw
(5)

The above expression is indeed the objective function
of the Fisher linear discriminant, and it appears in the
different scenarios under our analysis (cf. Theorems 1
and 4).

3 Bounds for the Expected Risk

The following “minimax” result was found by [16] and
rediscovered by [3]. Proofs in both papers are more
complex than the ones we provide here, and their main
result is stated as follows. Let Ω(µ,Σ) be the family
of all distributions with mean µ and covariance Σ. For
a fixed weight vector w such that wTµ > 0, we have:

sup
Z∈Ω(µ,Σ)

Pz∼Z [wTz ≤ 0] =
1

1 + F(w|µ,Σ)
(6)

(See Appendix A for the relationship between this spe-
cific expression and the results in [3, 16].)

The “minimax” expression in eq.(6) motivated the de-
velopment of “minimax probability machines” [13, 14],
which only need access to the means and covariances
for training. The learning algorithm in [13, 14] uses
this bound for each class separately. That is, [13, 14]
use the bound in eq.(6) with x (separately for class
y = −1 and for class y = +1) instead of with z, as in
our setting. Note that [12, 14] also propose a learn-
ing algorithm called “single-class minimax probability
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machine”, mainly motivated for the quantile estima-
tion problem. For our consistency analysis, the use of
a single bound with z, allows us to provide closed form
expressions of the upper bound of the expected risk.

Note that the “minimax” bound in eq.(6) provides an
upper bound for every distribution Z and it shows that
the bound is tight. In Theorems 1 and 2, we reproduce
the same polynomial-tail bounds by following a sim-
pler approach compared to semidefinite optimization
[3] and multivariate constructions [16]. Our bound
and tightness analysis relies on the analysis on a re-
lated univariate problem. In Theorems 4 and 5, we use
a similar approach as we followed for the general ran-
dom variables, and derive novel exponential-tail bounds
for sub-Gaussian variates.

3.1 General Random Variables

First, we provide a bound of the expected risk of a
fixed linear classifier for general random variables.

Theorem 1. Let z = y
[
x
1

]
be a random variable with

mean µ and covariance Σ. The expected risk of a lin-
ear classifier with weight vector w such that wTµ > 0,
is upper-bounded as follows:

Pz∼Z(µ,Σ)[w
Tz ≤ 0] ≤ 1

1 + F(w|µ,Σ)
(7)

Proof. Define the random variable s = wTz. It is
easy to verify that µs ≡ E[s] = wTµ > 0 and σ2

s ≡
E[(s− µs)2] = wTΣw. By the one-sided Chebyshev’s
inequality for ε = µs > 0, we have:

P[wTz ≤ 0] = P[s ≤ 0]

= P[µs − s ≥ ε]
≤ 1

1+(ε/σs)2

= 1
1+(µs/σs)2 (8)

By replacing µs and σs, we prove our claim.

Next, we show that the above bound is tight. That
is, there is a data distribution and weight vector for
which equality holds.

Theorem 2. The upper bound provided in Theorem
1 is tight. That is, given an arbitrary mean µ and
covariance Σ, there is a distribution Z with mean µ
and covariance Σ, and a weight vector w for which the
bound holds with equality. More formally:(
∃Z ∈ Ω(µ,Σ)
∃w ∈ Rn

)
Pz∼Z [wTz ≤ 0] =

1

1 + F(w|µ,Σ)
(9)

where Ω(µ,Σ) is the family of all distributions with
mean µ and covariance Σ.

Proof. We show that given some arbitrary mean µ and
covariance Σ, we can construct a distribution Z(µ,Σ)
and a weight vector w such that the provided bound
holds with equality. We prove this by providing a spe-
cific univariate “three-points” distribution which we
later use for constructing a multivariate “three-planes”
distribution.

First, we focus on the bound for a single scalar variable
s in eq.(8). Our goal is to construct a “three-points”
distribution where P[µs−s ≥ ε] = 1

1+(ε/σs)2 . Thus, we

want to show that the one-sided Chebyshev’s inequal-
ity is tight. In fact, equality holds for the following
distribution. Let q(ε) = 1

4ε(ε+
√
ε2 + 8) for some con-

stant ε ∈ (0,
√

1/3) and β > 0, let s be distributed as
follows:

s =


β − 1, with probability q(ε)

β, with probability 1− 2q(ε)

β + 1, with probability q(ε)

(10)

Note that µs ≡ E[s] = β > 0 and σ2
s ≡ E[(s− µs)2] =

2q(ε).

Second, we construct a canonical “three-planes” dis-
tribution. Consider a distribution V of random vec-
tors v, where v1 = (s + β)/

√
2q(ε) and (v2, . . . , vn)

follows a distribution with mean 0 and covariance I.
Since v1 has zero mean and unit variance, as well as
it is independent of (v2, . . . , vn), we have E[v] = 0
and E[vvT] = I. Let α = (

√
2q(ε), 0, . . . , 0), we have

αTv + β = s and therefore αTv + β is distributed as
in eq.(10).

Finally, we construct a general “three-planes” distri-
bution. For a given mean µ and covariance Σ, we
construct a random variable z with the required mean
and covariance, from v as follows. Define the ran-
dom variable z = Σ

1/2v + µ. It is easy to verify that
E[v] = 0 and E[vvT] = I if and only if E[z] = µ and

E[(z − µ)(z− µ)
T

] = Σ. Note that αTv + β = wTz
for w = Σ−

1/2α and β = wTµ = αTΣ−
1/2µ > 0. For

ε = µs > 0, we have:

P[wTz ≤ 0] = P[αTv + β ≤ 0]

= P[s ≤ 0]

= P[µs − s ≥ ε]
= 1

1+(ε/σs)2

and we prove our claim.

3.2 Sub-Gaussian Random Variables

In this paper, we make use of the following definition
of sub-Gaussianity of vectors by [7, 9].

Definition 3. A random vector z ∼ Z is sub-
Gaussian if for all w ∈ Rn, the random variable
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s = wTz with mean µs = Ez∼Z [wTz] and variance
σ2
s = Ez∼Z [(wTz− µs)2] is sub-Gaussian with param-

eter σs. That is:

(∀w ∈ Rn) Ez∼Z [ew
Tz−µs ] ≤ e 1

2σ
2
s (11)

First, we provide a bound of the expected risk of a fixed
linear classifier for sub-Gaussian random variables.

Theorem 4. Let z = y
[
x
1

]
be a random variable

with mean µ and covariance Σ. Assume z is a sub-
Gaussian vector. The expected risk of a linear classi-
fier with weight vector w such that wTµ > 0, is upper-
bounded as follows:

Pz∼Z(µ,Σ)[w
Tz ≤ 0] ≤ e− 1

2F(w|µ,Σ) (12)

Proof. Define the random variable s = wTz. It is
easy to verify that µs ≡ E[s] = wTµ > 0 and σ2

s ≡
E[(s− µs)2] = wTΣw. Furthermore, by Definition 3,
the random variable s is sub-Gaussian with parameter
σs. By the one-sided Chernoff bound for sub-Gaussian
variables and ε = µs > 0, we have:

P[wTz ≤ 0] = P[s ≤ 0]

= P[µs − s ≥ ε]

≤ e− 1
2 (ε/σs)2

= e−
1
2 (µs/σs)2 (13)

By replacing µs and σs, we prove our claim.

Next, we show that the above bound is tight. That
is, there is a data distribution and weight vector for
which equality holds.

Theorem 5. The upper bound provided in Theorem
4 is tight. That is, given an arbitrary mean µ and
covariance Σ, there is a distribution Z with mean µ
and covariance Σ, and a weight vector w for which the
bound holds with equality. More formally:(
∃Z ∈ Ω(µ,Σ)
∃w ∈ Rn

)
Pz∼Z [wTz ≤ 0] = e−

1
2F(w|µ,Σ)

(14)
where Ω(µ,Σ) is the family of all distributions with
mean µ and covariance Σ.

Proof. A minor change to the “three-points” argu-
ment in Theorem 2 is needed. That is, we focus on
the bound for a single scalar variable s in eq.(13).
Let W(a) be the Lambert function. That is, W(a)
is the solution t of the equation a = tet. Our goal
is to construct a “three-points” distribution where
P[µs − s ≥ ε] = e−

1
2 (ε/σs)2 . Thus, we want to show

that the one-sided Chernoff bound is tight. In fact,
equality holds for the following distribution. Let

q(ε) = eW(−ε2/4) for some constant ε ∈ (0,
√

2/e) and
let s be distributed as in eq.(10). Recall that bounded
variables, such as the specifically constructed s, are
sub-Gaussian. The rest of the proof follows as in The-
orem 2 with the additional assumption that v is a sub-
Gaussian vector.

4 PAC-Bayes Finite-Sample Bounds

In this section, we provide finite-sample guarantees
for our previously derived asymptotic bounds. Our
“minimax” generalization bounds are dimensionality-
independent and O(

√
1/m) for m samples, for both

general and sub-Gaussian random variables.

First, we provide a brief introduction to the PAC-
Bayes framework in the context of linear classifiers.
Let H be a set of linear classifiers. That is, H is a set
of weight vectors w. After observing a training set, the
task of the learner is to choose a posterior distribution
of weight vectors Q of support H, such that the Bayes
classifier has the smallest possible risk. The Bayes lin-
ear classifier f has the following decision function:

f(x|Q) = sgn
(
Ew∼Q[wT

[
x
1

]
]
)

(15)

The output of the (deterministic) Bayes classifier is
closely related to the output of the (stochastic) Gibbs
classifier. The Gibbs linear classifier chooses randomly
a (deterministic) classifier w according toQ in order to
classify x. The expected risk of the Gibbs linear clas-
sifier is thus given by the probability of eq.(3), with
respect to the data distribution and the posterior dis-
tribution Q.

PAC-Bayes guarantees are given with respect to a prior
distribution of weight vectors P, also of support H,
and mostly focus on the analysis of the Gibbs classifier.
As noted in [8], the expected risk of the Bayes classifier
is at most twice the expected risk of the Gibbs clas-
sifier. Thus, any upper bound of the latter provides
an upper bound of the former. The factor of 2 can
sometimes be reduced to 1 + ε, as shown in [15].

In our analysis, we chose a specific n-dimensional el-
lipsoid as the support:

H = {w | wT(Σ + µµT)w = 1} (16)

The latter is for convenience. Since the Fisher func-
tion uses only linear and quadratic terms, any distri-
bution of support Rn can be reparametrized with re-
spect toH and produce the same results. For instance,
the Fisher function is scale-independent with respect
to w. Intuitively speaking, the reparametrization can
be performed by integrating the mass of the distribu-
tion of support Rn over every direction independently.
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Indeed, the distributions P and Q could also be de-
scribed with respect to angles. Fortunately, we do not
need such a reparamerization for our analysis.

Next, we introduce the following Gibbs-Fisher func-
tion of weight vectors w sampled from a distribution
Q, given the mean µ and covariance Σ of the data
distribution:

F(Q|µ,Σ)≡ (Ew∼Q[wTµ])2

Ew∼Q[wT(Σ+µµT)w]−(Ew∼Q[wTµ])2

(17)

The above expression appears in the bound of the ex-
pected risk of the Gibbs linear classifier, in the different
scenarios under our analysis (cf. Theorems 6 and 11).

Our exponential-tail bounds for sub-Gaussian vari-
ates depend on the Kullback-Leibler divergence, while
our polynomial-tail bounds for general random vari-
ables depend on the Chi-squared divergence. Given
two distributions P and Q, the Kullback-Leibler and
Chi-squared divergences are defined as KL(Q||P) =

Ew∼Q[log q(w)
p(w) ] and χ2(Q||P) = Ew∼Q[ q(w)

p(w) ] − 1, re-

spectively.

Our proof strategy is to first show concentration of
the projected mean and variance, and then use those
results in order to show concentration of the Gibbs-
Fisher function.

4.1 General Random Variables

First, we provide a bound of the expected risk of the
Gibbs linear classifier for general random variables.

Theorem 6. Let z = y
[
x
1

]
be a random variable with

mean µ and covariance Σ. Let Q be the probability
distribution of the random weight vector w. The ex-
pected risk of a linear classifier drawn from Q such
that Ew∼Q[wTµ] > 0, is upper-bounded as follows:

Pw∼Q,z∼Z(µ,Σ)[w
Tz ≤ 0] ≤ 1

1 + F(Q|µ,Σ)
(18)

Proof. Define the random variable s = wTz. It is easy
to verify that µs ≡ Ew∼Q,z∼Z [s] = Ew∼Q[wTµ] > 0
and σ2

s ≡ Ew∼Q,z∼Z [(s − µs)
2] = Ew∼Q[wT(Σ +

µµT)w] − (Ew∼Q[wTµ])2. The rest of the proof fol-
lows as in Theorem 1.

Next, we show PAC-Bayes concentration of the pro-
jected mean for general random variables.

Lemma 7. Let z(1), . . . , z(m) be m samples indepen-
dently drawn from Z(µ,Σ), an arbitrary distribution
with mean µ and covariance Σ. Let µ̂ be the empirical
mean computed from those samples. For any prior dis-
tribution P of support H as in eq.(16), with probability

at least 1− δ:

(∀Q)
∣∣Ew∼Q[wT(µ̂− µ)]

∣∣ ≤√ 1

mδ
(χ2(Q||P) + 1)

(19)

Proof. Note that the random variable
Ew∼P [(wT(µ̂− µ))2] is non-negative. By Markov’s
inequality, with probability at least 1− δ:

Ew∼P [(wT(µ̂− µ))2]

≤ 1

δ
Ez(1)...z(m)∼ZEw∼P [(wT(µ̂− µ))2] (20)

Define the random variable s = wT(z− µ). It is easy
to verify that Ez∼Z [s] = 0 and Ez∼Z [s2] = wTΣw ≤
wT(Σ + µµT)w = 1 in the support H as in eq.(16).

Note that wT(µ̂ − µ) = 1
m

∑m
i=1 s

(i). Furthermore,

s(1), . . . , s(m) are independent since z(1), . . . , z(m) are
independent. Thus, we can upper-bound the expected
value in the right-hand side of eq.(20) as follows:

Ez(1)...z(m)∼ZEw∼P [(wT(µ̂− µ))2]

= Ew∼PEz(1)...z(m)∼Z

[(
1
m

∑m
i=1 s

(i)
)2]

= Ew∼PEz(1)...z(m)∼Z

[
1
m2

(∑m
i=1 s

(i)2
+
∑
i 6=j s

(i)s(j)
)]

= Ew∼PEz∼Z
[
s2/m

]
≤ 1/m

By putting everything together, we have:

Ew∼P [(wT(µ̂− µ))2] ≤ 1/(mδ) (21)

By Jensen’s and Cauchy-Schwarz inequalities, we have:

(∀Q)
∣∣Ew∼Q[wT(µ̂− µ)]

∣∣
≤ Ew∼Q[

∣∣wT(µ̂− µ)
∣∣]

= Ew∼Q

[(√
p(w)
q(w)

∣∣wT(µ̂− µ)
∣∣)√ q(w)

p(w)

]
≤
√

Ew∼Q

[
p(w)
q(w) (wT(µ̂− µ))2

]
Ew∼Q

[
q(w)
p(w)

]
=
√
Ew∼P [(wT(µ̂− µ))2] (χ2(Q||P) + 1)

By using our bound in eq.(21), we prove our claim.

In what follows, we show PAC-Bayes concentration of
the projected variance for general random variables.

Lemma 8. Let z(1), . . . , z(m) be m samples indepen-
dently drawn from Z(µ,Σ), an arbitrary distribution

with mean µ and covariance Σ. Let µ̂ and Σ̂ be the
empirical mean and covariance computed from those
samples. Assume z has bounded fourth order moment,

that is E[(zT(Σ + µµT)
−1

z)2] ≤ K. For any prior
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distribution P of support H as in eq.(16), with proba-
bility at least 1− δ:

(∀Q)
∣∣∣Ew∼Q[wT(Σ̂ + µ̂µ̂T)w − 1]

∣∣∣
≤
√
K − 1

mδ
(χ2(Q||P) + 1) (22)

Proof. Note that the random variable
Ew∼P [(wT(Σ̂ + µ̂µ̂T)w − 1)2] is non-negative.
By Markov’s inequality, with probability at least
1− δ:

Ew∼P [(wT(Σ̂ + µ̂µ̂T)w − 1)2]

≤ 1

δ
Ez(1)...z(m)∼ZEw∼P [(wT(Σ̂ + µ̂µ̂T)w − 1)2] (23)

Define the random variable s = (wTz)2−1. Note that
in the support H as in eq.(16), we have Ez∼Z [s] =
wT(Σ + µµT)w − 1 = 0. Additionally, let S = Σ +
µµT and by our assumption of bounded fourth order
moment, we have:

Ez∼Z [s2] = Ez∼Z [(wTz)4]− 1

= Ez∼Z [((S
1/2w)

T
S−

1/2z)4]

≤ ‖S1/2w‖42 Ez∼Z [‖S−1/2z‖42]− 1

= (wTSw)2 Ez∼Z [(zTS−1z)2]− 1

≤ K − 1

Note that wT(Σ̂ + µ̂µ̂T)w − 1 = 1
m

∑m
i=1 s

(i).

Furthermore, s(1), . . . , s(m) are independent since
z(1), . . . , z(m) are independent. Thus, we can upper-
bound the expected value in the right-hand side of
eq.(23). The rest of the proof follows similarly as in
Lemma 7.

Finally, we show PAC-Bayes concentration of the
Gibbs-Fisher function for general random vari-
ables. Our “minimax” generalization bound is
dimensionality-independent and O(

√
1/m) for m sam-

ples.

Theorem 9. Let z(1), . . . , z(m) be m samples indepen-
dently drawn from Z(µ,Σ), an arbitrary distribution

with mean µ and covariance Σ. Let µ̂ and Σ̂ be the
empirical mean and covariance computed from those
samples. Assume z has bounded fourth order moment,

that is E[(zT(Σ + µµT)
−1

z)2] ≤ K. For any prior
distribution P of support H as in eq.(16), with proba-
bility at least 1− δ:

(∀Q)

∣∣∣∣∣ 1

1 + F(Q|µ̂, Σ̂)
− 1

1 + F(Q|µ,Σ)

∣∣∣∣∣
≤
√

18 max (1,K − 1)

mδ
(χ2(Q||P) + 1) +O

(
1

m

)
(24)

Proof. In order to obtain concentration of the pro-
jected mean and variance simultaneously, we ap-
ply the union bound to Lemmas 7 and 8. That
is, with probability at least 1 − δ, let ε =√

2 max (1,K−1)
mδ (χ2(Q||P) + 1), we have:

(∀Q)
∣∣Ew∼Q[wT(µ̂− µ)]

∣∣ ≤ ε
(∀Q)

∣∣∣Ew∼Q[wT(Σ̂ + µ̂µ̂T)w − 1]
∣∣∣ ≤ ε (25)

With some algebra, we can prove that for any Q, µ,
Σ and S = Σ + µµT, we have:

1

1 + F(Q|µ,Σ)
= 1− (Ew∼Q[wTµ])2

Ew∼Q[wTSw]
(26)

Let Ŝ = Σ̂+ µ̂µ̂T, α = Ew∼Q[wTµ], α̂ = Ew∼Q[wTµ̂]

and β̂ = Ew∼Q[wTŜw]. The concentration results in

eq.(25) are equivalent to |α̂− α| ≤ ε and |β̂ − 1| ≤ ε.
Additionally by eq.(26), the left-hand side of eq.(24)

is equivalent to |α̂2/β̂ − α2|.

For any Q, µ, Σ and S = Σ + µµT, by positive
semidefiniteness of Σ, we have:

(∀w) 0 ≤ wTΣw⇒ 0 ≤ Ew∼Q[wTΣw]

⇒ 0 ≤ Ew∼Q[wT(S− µµT)w]

⇒ Ew∼Q[(wTµ)2] ≤ Ew∼Q[wTSw]

⇒ Ew∼Q[(wTµ)2]/Ew∼Q[wTSw] ≤ 1

Note that 0 ≤ (Ew∼Q[wTµ])2 ≤ Ew∼Q[(wTµ)2] and

therefore α̂2/β̂ ∈ [0, 1] and α2 ∈ [0, 1]. Since |α̂−α| ≤
ε and α ≤ 1, we have:

α̂2 − α2 = 2α(α̂− α) + (α̂− α)2

≤ 2ε+ ε2

Similarly:

α2 − α̂2 = 2α̂(α− α̂) + (α− α̂)2

≤ 2(α+ ε)ε+ ε2

≤ 2(1 + ε)ε+ ε2

= 2ε+ 3ε2

Therefore, |α̂2−α2| ≤ 2ε+3ε2. Finally, since |α̂− α| ≤
ε, |β̂ − 1| ≤ ε and α̂2/β̂ ≤ 1, we have:

|α̂2/β̂ − α2| ≤ |α̂2/β̂ − α̂2|+ |α̂2 − α2|

= α̂2/β̂|1− β̂|+ |α̂2 − α2|
≤ ε+ 2ε+ 3ε2

= 3ε+O(1/m)

and we prove our claim.
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4.2 Sub-Gaussian Random Variables

In this paper, we introduce the following definition of
sub-Gaussianity of vectors.

Definition 10. Let H be a bounded set. A random
vector z ∼ Z is H-sub-Gaussian if for all distributions
Q of support H and w ∼ Q, the random variable s =
wTz with mean µs = Ew∼Q,z∼Z [wTz] and variance
σ2
s = Ew∼Q,z∼Z [(wTz − µs)

2] is sub-Gaussian with
parameter σs. That is:

(∀Q) Ew∼Q,z∼Z [ew
Tz−µs ] ≤ e 1

2σ
2
s (27)

First, we provide a bound of the expected risk of the
Gibbs linear classifier for sub-Gaussian random vari-
ables.

Theorem 11. Let z = y
[
x
1

]
be a random variable with

mean µ and covariance Σ. Let Q be the probability
distribution of the random weight vector w of support
H. Assume z is an H-sub-Gaussian vector. The ex-
pected risk of a linear classifier drawn from Q such
that Ew∼Q[wTµ] > 0, is upper-bounded as follows:

Pw∼Q,z∼Z(µ,Σ)[w
Tz ≤ 0] ≤ e− 1

2F(Q|µ,Σ) (28)

Proof. Define the random variable s = wTz. It is easy
to verify that µs ≡ Ew∼Q,z∼Z [s] = Ew∼Q[wTµ] > 0
and σ2

s ≡ Ew∼Q,z∼Z [(s − µs)
2] = Ew∼Q[wT(Σ +

µµT)w]−(Ew∼Q[wTµ])2. Furthermore, by Definition
10, the random variable s is sub-Gaussian with param-
eter σs. The rest of the proof follows as in Theorem
4.

Next, we show PAC-Bayes concentration of the pro-
jected mean for sub-Gaussian random variables. In
the following lemma, while we concentrate on upper-
bounding Ew∼Q[wT(µ̂−µ)] for all Q, a similar argu-
ment also bounds Ew∼Q[wT(µ− µ̂)].

Lemma 12. Let z(1), . . . , z(m) be m samples indepen-
dently drawn from Z(µ,Σ), an arbitrary distribution
with mean µ and covariance Σ. Let µ̂ be the empiri-
cal mean computed from those samples. Assume z is a
sub-Gaussian vector. For any prior distribution P of
support H as in eq.(16), with probability at least 1− δ:

(∀Q) Ew∼Q[wT(µ̂−µ)] ≤
√

1

m

(
KL(Q||P) + log

e
1/2

δ

)
(29)

Proof. Let t ∈ R be a constant. Note that the ran-
dom variable Ew∼P [etw

T(µ̂−µ)] is non-negative. By
Markov’s inequality, with probability at least 1− δ:

Ew∼P [etw
T(µ̂−µ)] ≤ 1

δ
Ez(1)...z(m)∼ZEw∼P [etw

T(µ̂−µ)]

(30)

Define the random variable s = wT(z−µ). It is easy to
verify that Ez∼Z [s] = 0. As we argued in Theorem 4,
the variable s is sub-Gaussian with parameter σs where
σ2
s = wTΣw. Furthermore, σ2

s ≤ wT(Σ+µµT)w = 1
in the support H as in eq.(16).

Note that wT(µ̂ − µ) = 1
m

∑m
i=1 s

(i). Furthermore,

s(1), . . . , s(m) are independent since z(1), . . . , z(m) are
independent. Thus, we can upper-bound the expected
value in the right-hand side of eq.(30) as follows:

Ez(1)...z(m)∼ZEw∼P [etw
T(µ̂−µ)]

= Ew∼PEz(1)...z(m)∼Z [e
t
m

∑m
i=1 s

(i)

]

= Ew∼P
∏m
i=1 Ez∼Z [e

t
m s]

≤ Ew∼P
∏m
i=1 e

t2

2m2

= e
t2

2m

By taking the logarithm on each side of eq.(30) and

since Ew∼P [f(w)] = Ew∼Q[p(w)
q(w)f(w)] for every distri-

bution Q and function f : Rn → R, we have:

(∀Q) logEw∼Q

[
p(w)
q(w)e

twT(µ̂−µ)
]

≤ log
(

1
δEz(1)...z(m)∼ZEw∼P [etw

T(µ̂−µ)]
)

By using Jensen’s inequality, we can lower-bound the
left-hand side of the above expression:

(∀Q) logEw∼Q

[
p(w)
q(w)e

twT(µ̂−µ)
]

≥ Ew∼Q

[
log
(
p(w)
q(w)e

twT(µ̂−µ)
)]

= −KL(Q||P) + t Ew∼Q[wT(µ̂− µ)]

By putting everything together, we have:

(∀Q) Ew∼Q[wT(µ̂− µ)] ≤ 1
t

(
KL(Q||P) + log e

t2

2m

δ

)
By setting t =

√
m, we prove our claim.

In what follows, we show PAC-Bayes concentration of
the projected variance for sub-Gaussian random vari-
ables. In the following lemma, while we concentrate
on upper-bounding Ew∼Q[wT(Σ̂ + µ̂µ̂T)w − 1]
for all Q, a similar argument also bounds
Ew∼Q[1−wT(Σ̂ + µ̂µ̂T)w].

Lemma 13. Let z(1), . . . , z(m) be m ≥ 16 samples in-
dependently drawn from Z(µ,Σ), an arbitrary distri-

bution with mean µ and covariance Σ. Let µ̂ and Σ̂
be the empirical mean and covariance computed from
those samples. Assume z is a sub-Gaussian vector.
For any prior distribution P of support H as in eq.(16),
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with probability at least 1− δ:

(∀Q) Ew∼Q[wT(Σ̂ + µ̂µ̂T)w − 1]

≤
√

1

m

(
KL(Q||P) + log

e16

δ

)
(31)

Proof. Let t ∈ R be a constant. Note that the random

variable Ew∼P [et(w
T(Σ̂+µ̂µ̂T)w−1)] is non-negative. By

Markov’s inequality, with probability at least 1− δ:

Ew∼P [et(w
T(Σ̂+µ̂µ̂T)w−1)]

≤ 1

δ
Ez(1)...z(m)∼ZEw∼P [et(w

T(Σ̂+µ̂µ̂T)w−1)] (32)

Define the random variable s = (wTz)2 − 1. As we
argued in Theorem 4, the random variable wTz is
sub-Gaussian with parameter σ where σ2 = wTΣw.
Furthermore, σ2 ≤ wT(Σ + µµT)w = 1 in the sup-
port H as in eq.(16). Additionally, in the support
H, we have Ez∼Z [s] = wT(Σ + µµT)w − 1 = 0
and furthermore, s is sub-exponential since it is the
square of a sub-Gaussian variable. In what follows,
we use a bound for the moment generating function
of a sub-exponential variable, that resembles that of
sub-Gaussian variables. (See Appendix B for details.)

Note that wT(Σ̂ + µ̂µ̂T)w − 1 = 1
m

∑m
i=1 s

(i).

Furthermore, s(1), . . . , s(m) are independent since
z(1), . . . , z(m) are independent. Thus, we can upper-
bound the expected value in the right-hand side of
eq.(32) as follows:

Ez(1)...z(m)∼ZEw∼P [et(w
T(Σ̂+µ̂µ̂T)w−1)]

= Ew∼PEz(1)...z(m)∼Z [e
t
m

∑m
i=1 s

(i)

]

= Ew∼P
∏m
i=1 Ez∼Z [e

t
m s]

≤ Ew∼P
∏m
i=1 e

16t2

m2 for |t/m| ≤ 1/4

= e
16t2

m

The rest of the proof follows similarly as in Lemma
12. Note that since we set t =

√
m, the condition

|t/m| ≤ 1/4 for applying the bound for the moment
generating function of the sub-exponential variable s
leads to the condition m ≥ 16.

Finally, we show PAC-Bayes concentration of the
Gibbs-Fisher function for sub-Gaussian random vari-
ables. Our “minimax” generalization bound is
dimensionality-independent and O(

√
1/m) for m sam-

ples.

Theorem 14. Let z(1), . . . , z(m) be m ≥ 16 samples
independently drawn from Z(µ,Σ), an arbitrary dis-

tribution with mean µ and covariance Σ. Let µ̂ and Σ̂
be the empirical mean and covariance computed from

those samples. Assume z is a sub-Gaussian vector.
For any prior distribution P of support H as in eq.(16),
with probability at least 1− δ:

(∀Q)
∣∣∣e− 1

2F(Q|µ̂,Σ̂) − e− 1
2F(Q|µ,Σ)

∣∣∣
≤
√

36

m

(
KL(Q||P) + log

4e16

δ

)
+O

(
1

m

)
(33)

Proof. In order to obtain two-sided concentration of
both, the projected mean and variance simultaneously,
we apply the union bound to the one-sided results in
Lemmas 12 and 13. That is, with probability at least

1− δ, let ε =
√

1
m

(
KL(Q||P) + log 4e16

δ

)
, we have:

(∀Q)
∣∣Ew∼Q[wT(µ̂− µ)]

∣∣ ≤ ε
(∀Q)

∣∣∣Ew∼Q[wT(Σ̂ + µ̂µ̂T)w − 1]
∣∣∣ ≤ ε (34)

With some algebra, we can prove that for any Q, µ,
Σ and S = Σ + µµT, we have:

e−
1
2F(Q|µ,Σ) = exp

− (Ew∼Q[wTµ])2

Ew∼Q[wTSw]

2
(

1− (Ew∼Q[wTµ])2

Ew∼Q[wTSw]

]
)

 (35)

Let Ŝ = Σ̂+ µ̂µ̂T, α = Ew∼Q[wTµ], α̂ = Ew∼Q[wTµ̂]

and β̂ = Ew∼Q[wTŜw]. The concentration results in

eq.(34) are equivalent to |α̂− α| ≤ ε and |β̂ − 1| ≤
ε. Note that by eq.(35), the left-hand side of eq.(33)

is equivalent to
∣∣∣exp

(
− α̂2/β̂

2(1−α̂2/β̂)

)
− exp

(
− α2

2(1−α2)

)∣∣∣.
Furthermore, by Lipschitz continuity:∣∣∣exp

(
− α̂2/β̂

2(1−α̂2/β̂)

)
− exp

(
− α2

2(1−α2)

)∣∣∣ ≤ 2|α̂2/β̂ − α2|

The rest of the proof follows as in Theorem 9 to show
that |α̂2/β̂ − α2| ≤ 3ε+O(1/m).

5 Concluding Remarks

There are several ways of extending this research.
While in this paper we focused in the PAC-Bayes
framework, one future goal is to provide guarantees for
all weight vectors w. In order to obtain bounds that
are either independent or logarithmically-dependent
on the dimension, it might be necessary to produce
novel bounds for the Rademacher and/or Gaussian
complexity of not-everywhere-bounded functions. Fi-
nally, since our bounds on the expected risk are worst-
case (among all data distributions with a given mean
and covariance), it would be interesting to analyze
their applicability to scenarios where each training
sample may come from a different distribution, as well
as for transfer learning.
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A Proof of Expression in Equation (6)

In this section, we restate the results provided in [3, 16]
in order to obtain eq.(6). We follow the well-known
Lagrangian duality approach as in Appendix A in [14].

The following result is provided in [3, 16]. Let Ω(µ,Σ)
be the family of all distributions with mean µ and
covariance Σ. For a fixed weight vector a and constant
b, we have:

sup
Z∈Ω(µ,Σ)

Pz∼Z [aTz ≥ b] =
1

1 + d2

where d2 = inf
aTz≥b

(z− µ)
T
Σ−1(z− µ)

Let a = −w and b = 0. We have:

sup
Z∈Ω(µ,Σ)

Pz∼Z [wTz ≤ 0] =
1

1 + d2

where d2 = inf
wTz≤0

(z− µ)
T
Σ−1(z− µ)

Note that if wTµ ≤ 0, then we can just take z = µ and
obtain d2 = 0, which is certainly the optimum because
d2 ≥ 0 due to positive definiteness of Σ. In what
follows, we assume wTµ > 0, as required in eq.(6).

We are interested in the value of d2. That is, we seek
for a closed-form solution of the primal problem:

min
wTz≤0

(z− µ)
T
Σ−1(z− µ) (36)

which has the following Lagrangian:

L(z, λ) = (z− µ)
T
Σ−1(z− µ) + λwTz

By optimality arguments (i.e. ∂L/∂z = 0), we have
that L is minimized at z∗ = −λ2 Σw + µ. Therefore,
the Lagrange dual function is given by:

g(λ) = inf
z
L(z, λ)

= L(z∗, λ)

= −λ
2

4
wTΣw + λwTµ

Consequently, the dual problem of eq.(36) is:

max
λ≥0

g(λ)

Again, by optimality arguments (i.e. ∂g/∂λ = 0), we

have that g is maximized at λ∗ = 2 wTµ
wTΣw . Note that

λ∗ ≥ 0 since wTµ > 0. Finally:

d2 = max
λ≥0

g(λ)

= g(λ∗)

=
(wTµ)2

wTΣw
≡ F(w|µ,Σ)

B Moment Generating Function of
the Square of a Sub-Gaussian
Variable

Let s be a sub-Gaussian variable with parameter σs
and mean µs = E[s]. By sub-Gaussianity, we know
that the moment generating function is bounded as
follows:

(∀t ∈ R) E[et(s−µs)] ≤ e 1
2 t

2σ2
s

Our goal is to find a similar bound for the moment
generating function of the sub-exponential variable
v = s2. Let Γ(r) be the Gamma function, the mo-
ments of the sub-Gaussian variable s are bounded as
follows:

(∀r ≥ 0) E[|s|r] ≤ r2r/2σrsΓ(r/2)

Let µv = E[v]. By power series expansion and since
Γ(r) = (r − 1)! for an integer r, we have:

E[et(v−µv)] = 1 + tE[v − µv] +

∞∑
r=2

trE[(v − µv)r]
r!

≤ 1 +

∞∑
r=2

trE[|s|2r]
r!

≤ 1 +

∞∑
r=2

tr2r2rσ2r
s Γ(r)

r!

= 1 +

∞∑
r=2

tr2r+1σ2r
s

= 1 +
8t2σ4

s

1− 2tσ2
s

By making |t| ≤ 1/(4σ2
s), we have 1/(1− 2tσ2

s) ≤ 2. Fi-
nally, since (∀α) 1 + α ≤ eα, we have that for a sub-
Gaussian variable s with parameter σs:

(∀|t| ≤ 1/(4σ2
s)) E[et(s

2−E[s2])] ≤ e16t2σ4
s (37)

Thus, we obtained a bound for the moment generat-
ing function of the sub-exponential variable s2, that
is similar to that of sub-Gaussian variables but holds
only for a small range of t.


