Java Comparability Java Comparability

Java Comparability

Contents:

°
e |Definition of Compaability]
e [StaticAnalysiq
o [DynamicAnalysig
O [Tracking variable$
e |Opertional Detailg
o |VariableTracking Issuep
O [Tracking objects
o [Opertional Detailg
o [ObjectTracking Issuep
O [Maintaining tracking information for eachvalue

Introduction

Variablesof the same declared type (such as int or float) may comtadatedinformation. In this case we say that the two
variableshavedifferentabstract data types. For example the integdablex mayrepresentthe time in seconds since 1970
and the integevariabley mayrepresentthe outsiddempeesture in Celsius. Thevariablesx and yrepresenttwo different
abstract typesv/ariablesof the same abstract type are said tedrapaable. Two variablesare presumed to be of the same
abstract type if they are used together iregpresion (eg, x+y, x>y, x=y, etc). We often use the témteract as ashort
handfor this.

Compaability is importantto dynamicinvariant dete¢ion. Dynamicinvariant dete¢ion looks forinvariantsbetween each
possble combhnation of variables If variablesare notcompaable, then it makes no sense to look fovariantsbetween
them. For example, using tldefinitions of x and y from above, it makes no sense to lookrfeariantsbetween x and y
(even though some (eg, x > y) are almost certainly true).

Our dynamidnvariantdetecion tool (Daikon) looks foinvariantsover a subset of theariables fields, andexpresionsin
the target program. We refer to theséDaskon variables We areinterestedin detemining for each Daikorvariable what
other Daikonvariablesit is compaable to. Consider théollowing class:

class A {
int x;
inty;
void m1(float f) {}

There are two Daikon clasgariables A.x and A.y. There are also three Daikwariables asseiated with A.m1:
A.m1l.this.x, A.ml.this.y, and A.m1.f. A.x and Argpresentall of the values of x and y across all instances of A. The m1
variablesrepresentall of the values of x, y, and f across all calls to m1().

Currently, we make use of the static tools Ajax (Java) and Lackwit (@gteomine compaability. Unfortunately, both of
these tools are slow, buggy, and can handle oniglaively small subset of programs. It is Mike's opinion that the
design/implenertation of these tools makes fixing thahortomingsimpossible (or at least extremelgiffi cult).

We are thusnterestedin devebping a compaability anaysis of our own. We areonsicling both static and dynamic
approaches. The attributes of each approacipassble design approaches are discussed below.

Page 1 18 May 2004 11:28



Definition of Comparability

Definition of Comparability

The definition of compaability presented above is amuitive one. Manydefinitions are possble, but athorough under
standng of the goal is1xecesaryin order toundestandhow to achieve it.

Here is gpossble more formaldefinition: compaability capturedidiredional dataflowreactability. Dataflowreaclability
indicateswhen one value can affect anotherintlicateswhich definitions flow to (or affect) which usesquivalently, it
detemines for a given use, whictefinitions might have defined the value that is obtained at the use. We wish to relate all
definitionsand uses that afgarsitively) related.

Here are somguegions about thelefinition, with proposed answersiiiralics.

1. If fields in an objecinteract beforethat object is assigned tovariable are thecorrespondng fields of thevariable
compaable?

For example, ia.x += a.y; ¢ = a; Is c.xcompaable to c.y?
Yes previousinformation should be included inoompaability

2. If the fields of an objedhteractafter avariableis assigned away from that object, are dbeespondng fields in the
variablecompaable?

For example, it = a; ¢ = null; a.x += a.y; Is c.xcompaable to c.y?

No. Variablec’s fields nevemteracted Interactionsthat occur after an object ieferencedby avariable are notrele-
vant

3. Is compaability between formaparanetersdeteminedonly by the code within the method? Or, if two acteiane-
tersarecompaable are thecorrespondng formal parangterscompaable as well?

Consider the methooh1(A a, B b) . Formalparangtersa and b do nadnteract within m1(). If we call m1() with
actualparanetersal and bl that aemmpaable, do the formaparanetersbecomecompaable?

I think that thecompaability of actual parameters should flow to the formagbaraneters This implies that if the
parametersto a method areompaable in any call that the formaparaneters are compaable in all calls.
4. If the actuaparanetersinteractafter the call to the routine, are the fornparanetersstill related?

For example, considenl(al, bl); m1l(a2, b2); al < bl; Are the formabparangtersfor m1compaable?

Again, | think they are. This is not exactly the saih@tion aspreviouslydiscussed fointeractionsthat occur after a
variable refers to an object. Aariable can be assigned away from an object, but the fopasghneter is in some
sense always related to its actyparanmeters

5. If two formal paranetersbecomecompaable because their actuphranetersin one call are&eompaable (seeprevious
issue), does this imply that all actyaranetersshould becomeompaable?

For example, consider:
inta, b, c, d;
a== ’
m(a,b);
m(c,d);

Are ¢ and ccompaable?

18 May 2004 11:28 Page 2



Java Comparability Definition of Comparability

No. There was nimteraction between c¢ and d. A similaituation exists if the formabaranetersinteractin only some
calls (due to a branch). Only in the calls where tlaeyally interact should thecorrespondng actual parameters
becomecompaable.

6. If two variablesever point to the same object, should that make each of theirdaitgzaable?
For example, considerl = a2. Does that make al.x and a2ompaable?

It seems like it should make theompaable. Or you could argue that it really makes al andcathpaable, and has
no impact on the fields of al and a2.

7. There is aierarchy of Daikonvariablesat different program points. Can Daikorariableswhich arechildrenof the
same parent hawfferentcompaability ?

For example, in class A with fields x and y and methods m1() and m2(), the Daikiables A.m1.this.x and
A.m2.this.x are botlthildren of A.x. The same is true for field y. Can A.m1.this.x and A.m1.this.gdmpaable
while A.m2.this.x and A.m2.this.y are not?

The answer to this (and several other issues) depends alefihition of compaability. If compaability is defined as
captuiing bidirectional dataflowreachability then it isreasorable for the compaability of instancevariablesto be

different at different methods. There may be no instances of A in m2() where this.x and thisgomeasable. But

there may be other instances of A in m1() where this.x and this.\cerapaable.

If, however, twoariablesare consiceredto becompaable if they are of the same abstract type, then it wouldn’t seem
to bepossble for two children of the same parent to haddferentcompaability (because each child would have the
same abstract type).

8. Are fields in a class alwaympaable with thenselvesacrosglifferentinstartiations?
For example, should al.x and a2.x alwaysdmapaable since they are the same field in the same class?

These should not beompaable. There are mangircunstanceswhere a field can be used to hold completaiye
lated values. We shouldn’t assume the values of a field are always related.
9. Doesassigment(alone) make twoariablescompaable?

For example, consider tfiellowing:

Class T {
inta=7;
intb =15;
void m1() {

a=b;
b=0;

void swap() {
inttmp = a;
a=b;
b =tmp;
}
}

At the end of m1() or swap() are a anddmpaable?

Page 3 18 May 2004 11:28



Static Analysis

Under eitherdefinition of compaability it seems that a and b should t@mpaable as a result of thassigment If
compaability is based on abstract types, then the types for a and b would be the same basedgignthent If it is
based onbidirectional dataflow reactability, it seems that the data from b flowed into a and thus they should be
compaable.

10. How do constants affecompaability ?
For example, doesl.x = 7; a2.x =7, imply that al.x and a2.x aoempaable?

Certainly for common constants such as 0, 1, -1, not-a-numbegssigjing like constants should not imptpmpa
rability. It is not clear what should happen for more unusual numbers. Certainly if the nuepbesentssome
common symbolic value it should imptympaability.

Static Analysis

This approach tracks data flostatcally through the entire prograntoncepually, it is very similar to the typanalsis
used by Alan and Adam iiggeai, except that sets @hriablesare flowed rather than sets of types.

The approach can be completely sound, but it must makeevative assumpons. The result is that it may bmprecise
(depenthg, of course, on the program). It's my feeling (based partially on the results from Lackwit) thatptesision
may be asignificant problem (i.e., asignificant number ofvariablesmay beindicatedas compaable that are not). For
example, consider tHellowing code:

Class A {
int x;
inty;

}

List alist = new ArrayList();

A al =new A(); A a2 = new A(); A a3 = new A();
alist.add (al); alist.add (a2); alist.add (a3)
intz=7,

A a4 = alist.get(1);

Z += a4 .x

It is unlikely that a statianalsis will be able todetemine which A was retrieved from the list. While only a4.x and a2.x
are trulycompaable to z, a stati@naysis will probably conclude that al.x, a2.x, a3.x, a4.x evenpaable to z (and each
other).

The advartage of a static approach is that it is nmcesaryto run the program and the results don't depend on the test
suite. We also may be able to taldvarageof Alan and Adams work tmmplementthisrelatively quickly.

Dynamic Analysis

A dynamicanaysis executes the program over some set of input data (perhaps a test sudpgiafibns are tracked and
when two valuegnteract they become&ompaable. This wouldprobebly beimplementedby rewriting the Java byte codes
to include extraopemtions to trackcompaability. It could also bémplementedvia the JVMdebugjing interface but our
feeling is that this would be too slow (since matgtenentswould be changed, this would requiietually singlesteping
through the program).

This docunentpresents twdlifferent possble approaches tdynanically detemining compaability, called'tracking vari
[ables] and"tracking objects] Each approach requires certaiformation to be tracked about each valadocatedobject or
primitive) in the program. Each approach also keepspmate datastrudure that maps Daikowariablesto compaability
information, using the trackethformation about each value.

18 May 2004 11:28 Page 4



Java Comparability Tracking variables

The presetation makes twosimplifying assumfions First, we assume that there is somectanism to ascciate the
trackedinformation with each object (for example, each object could have extra sfiacatedwithin it for the tracked
information, or asepaatetable mapping objects to the trackatbrmation could be used). Second, we assume hati-

tives can be treated in the same way. [flkaintaining tracking informaion for eachvalue] section discussamplemerta-

tion stratejies

Tracking variables

As mentioned, our goal is ttetemine compaability for Daikonvariables Unfortunately, opesmtions within the program do
not take place on Daikovariables When anopestion occurs in the program, it is not known which Daikariables(if
any) are involved. This approach keeps track, for each object, of the set of Baiiladresthat refer to it. This is referred
to as the object'sariable set Thevariableset for each object imaintainedas the program is running. Any time iaterac
tion between two objects occurs, all of thaiablesin thecorrespondng variablesets are marked asmpaable.

For example, in théollowing code, the object created by 'new A()referencedby both al and a2. Thariableset for that
object is thus {al, a2}

A al =new A();
Aaz=al;

Thevariableset for each object mairtainedas follows. When an object is createdyasiable set isinitializedto itsclass
name In the example above, thariableset for the object created by 'new A()'ingtializedto "A".

Variablesets are also updated whenaasigmentstatenent(var = obj) is executed. Any Daikamriablenamesasseiated
with left hand side of thassigmentmust be removed from theariable set of the object currentheferencedby var. The
same names also must be added toéiniable set of object. The names are alsousively applied to any fields within the
object up to Daikon’slerekrencelimit.

Detemining the Daikonvariablenamesassaiatedwith the left hand side (Ihs) depends on the type of the |hs. If the lhs is a
programvariable (not a field), its Daikorvariable name is the fullyqualfied name of the programariable if that name
matches a Daikowmariable If the |hs is a fieldexpresion the objectontairing the field may itself be referred to loyulti-

ple Daikon variable names. The Daikomariable names for the |hs are thus formeddppenihg the field name to each
element of the container objes@riableset.

Operational Details
There are two primary dasdrudures
e varcomp:compaability information for variables

For each program point, a union-find dateudure whose domain is the set of Daikeariablesat that program point.
For instance, varcomp[m1.enter] is a union-find daitadure for the Daikorvariablesin scope at entry to method m1.
Varcomp[ppt] has théollowing opestions

merge (varlyar2) - merges theompaability sets for the tweariables

merges theompaability sets for all of th@ariablesin thevariablesets vs1 and
VS2.

merge_vs (vslys2)

add_literal(literal) Adds thespedfied literal as a Daikowariableand returns its name. Only one

name will beallocatedfor idertical literals

Page 5 18 May 2004 11:28



Tracking variables

® objvars:variableset for each object

Each object contains the set of Daik@riablesthat currentlyeferenceit in the program.

add_varn(variablg - Adds thespedfied variableto the objectyariableset. Also for each field in the object
field.add_var(variable+ "field name")

rm_var(variable - Removes thepedfied variablefrom the objectvariableset. Also for each field in the object
field.rm_var(variable+ "field name")

Thefollowing details what thalgaithm needs to do for each construct in the program:
® Object creation (new Class())
Add an entry to the map from the newly created object (obj) told#ismameof the object:
obj.objvars.add_var (Class.getName())
® integer literal
If the literal isinteresing (eg, "7"), it is given a fullyguaified name (eg, Literal.7) and added to varcomp table.

name = varcomp[Global].add_literal (literal)
obj.objvars.add_var (name)

If the literal isuninteresing, its variableset is empty.
® Assigmment(x = y)
If programvariablex is a Daikorvariable update theariablesets for x ang.

x.objvars.rm_var (fully qualified name of x)
y.objvars.add_var (fully qualified name of x)

If x is a fieldreference(z.f = y)

foreach varname in z.objvars
z.f.objvars.rm_var (varname + ")
y.objvars.add_var (varname + "f*)

® Opegtion (X+y, x==y, etc)

Thevariableset for the result is set to the union of Waeiablesets of the two operands. Also, eaehiablein thevari-
ablesets of x and y is mad®mpaable.

(x+y).objvars = union (x.objvars, y.objvars)
varcomp.merge_vs (x.objvars, y.objvars)

® Scope entry nothing
® Scope exit - nothing

® Procalureentry

18 May 2004 11:28 Page 6



Java Comparability Tracking objects

The name of each formparangter (p) must be added to thariableset of each actuphraneter.
actual.objvars.add_var (formal parameter name)

® Procealureexit

Nothing is done here. The fornm@drangter name isnot removed from objvars so that futirgeradions on that object
will be recorded on formalaraneter.

® Procealurereturn - nothing

Variable Tracking Issues

e If an object can be referred to by the saragablename more than once (such as neeusive call), will thevariable
set bemairtainedcorrectly.

| think thesolution to this is to allow the same name to exmstltiple times in thevariable set. This would allow the
object to keep track of how many timegaaticular namereferencedit. Anotherpossble soluion would be to create
variable names that are specific to the stack frame sorthdtiple refemcesto the sameariable names (irdifferent
stack frames) could be kept.

Yet another approach would be to simply not ad@@able name to thezariable set more than once. Formphrane-
tersand locals are the onlyariablesthat are created on eadalecursive call. Formal paraneters are never removed
from an objectwariable set and locals are not Daikaariables

e |f actualparanetersbecomecompaable after a call to a routine, how do we mark the forpatangetersascompaable
(seequedion in thedefinition section).

Each object that is passed to a forrpakaneter adds the formaparaneter to itsvariable set. Unlike a normabari-
able, therelation to the formalparamneter is never removed (as there is notharalogousto assigring thevariable a
new value). Thus if theompaability of the actuaparaneter is ever changed, it will be recorded on the forpeadam
eter.

Tracking objects

In this approach, each value (objectpoimitive) tracks itsequivalenceset of other objects that atempaable to it. This
can be thought of as a tag, such thatcathpaable objects have the same tag. ltingplementedas areferenceinto a
union-find datestrudure

For example, consider:
class A {
int x;
inty;
void m1() {
}

A al =new A();
double z = 705;
}

When 'new A()’ is executed an object of class A is created and assigned a new, unique tag. Fields such as x and y are not
assigned tags -- but if they are assigned values, the values will (already) havekemgise, 'double z = 705’ assigns a

Page 7 18 May 2004 11:28



Tracking objects

value(including its tag) tovariablez.

Wherevertwo valuesnteract, their tags are mergdthdicaing that their values are in the saeguivalenceset) using the
union-findalgarithm.

There is a global table that contaicempaability informaion for each Daikorvariable At eachinstrumentedprogram
point, each Daikowariableis evaliated(as arexpresion) to deteminethe tag of its value. Tweaariablesare madeompa
rable if the values theyeferencehave the same tags. In theevious example, when mi() is called, thestrumentedcode
will deteminethe value (and thus the tag) referred to by this.x and this.y.

Operational Details
There are two primary dasirudures
® objsetsicompaability information for objects
A union-find datastrudure whose domain is the set of all valusmanically created by the program.
® varsetscompaability information for variables

For each program point, a union-find dateudure whose domain is the set of Daikeariablesat that program point.
For instance, varsets[m1l:enter] is a union-find datadure for the Daikorvariablesat entry to method m1.

The procalure update(ppt)copiesinformation from objsets to varsets[ppt]. Each pairvafiables(eg, x and y) at program
point ppt are compared:

update(ppt) {
if find(x.tag) == find(y.tag)
varsets[ppt].union ("x", "y")
}
Thefollowing details what thalgaithm needs to do for each construct in the program:
® Object creation (new Class())
Assign a newglobally unique tag to the just-created object.
object.tag = next_tag()

® integer literal

If the literal isinteresing (eg, "7"), therallocatea tag and assign it to the value on eaxbcdion. The value could be
a unigue value for each instance of the same literal or shared @heaticgl literals

If the value isuninterestng (eg, "0") either assign a newlobally unique tag value on ea&xecuion, or assign a
specific tag value that meatninteresing”. This might reduce the number of tags that are ever created, but requires
special-case code in the union-find dsttaicure

® Assigmment(x =y)

Simply assign the tags (x.tag = y.tag). This meangitteafousvaluesreferencedby x are not related to its new value.

® Opegtion (X+y, x==y, etc)

18 May 2004 11:28 Page 8



Java Comparability Maintaining tracking information for each value

Merge the tags for x and y and let tiesuling value use x.tag (or y.tag, it doesmtter).

union (x.tag, y.tag)
(x+y).tag = x.tag

Scope entry nothing
Scope exit nothing
Procelureentry -nothing
Procealureexit - nothing

Procalurereturn - nothing

At the end of the run: For each program point ppt, readmfipaability information from varsets[ppt]. Use a bottom-up
algaithm to computecompaability for non-leaf program points. Make a final pass across all program points so that if two
variablesarecompaable at a higher point, any versions of them at a lower program point are also related. (For instance,
m1.this.x and m1.this.y would lmempaable iff m2.this.x and m2.this.y were.)

Object Tracking Issues

If actualparangtersbecomecompaable after a call to a routine, how do we mark the forpatangtersascompaable
(seequedion in thedefinition section).

There are a couple g@ossble soluions. First, the tagassaiatedwith the formaparaneters of each call to a method
could be retained. At the end of the run, each couldXamined to see if they werequivalent Second, the program
could be analyzed at the end to see if any of the aparalretersto a method were evénenselvescompaable. If
they were, then the formphraneters becomecompaable.

An altemaive approach would track not objects lneferencesto objects, and would produddifferent results.
Consider thédollowing example:

A a0 =new A(); /I creates object 0ol
Aal=newA(); /I creates object 02
A a2 =ag0;

Aa2=al,

A a3 =newA(); /lcreates object 03
if (@l ==a3) ...

If tags are applied to objects, the tags for 02 and 03 are merged on the last line, but oltereetswith the other
objects and is thus never merged. The merged objects (01 and oXpmmecedby al, a2, and a3 and thus theas-
ablesarecompaable. Object 01 igeferencedby a0 and since ol is disjoint, a0 is nompaable to any of the other
variables

Alterndtively, if tags are applied toeferences(eg, a0, al, a2, and a3), all of tiederencesare merged (in the same
equaity set) by the end of the code

Maintaining tracking information for each value

We have assumed that we can add exfiarmation (a union-find tag, or a list ofariableg to each value computed by a
program.

Page 9 18 May 2004 11:28



Issues/Questions

For objects, this is easy: place théormation in a field, or create sepaatetable mapping objects to the trackatbrma

tion could be used. In both approaches, the trackedmaion goes away when the object is garbage-collected -- so long as
the sepaate table uses weakly held keys, as Java's WeakHashMap (ldkswise, union-find datastrudures permit
elements to be added and removed at will, and this will be @laamaically by the garbageolledor.)

Adding extrainformation to aprimitive value is more involved. One approach is to convenrattitives to wrappers(e.g.,
int becomes Integer) and treat them like other objects.

A moreefficientimplemertation is to create a shadowvariable for eachvariable of primitive type. For everyppestion on
the realvariablg theinstrumenterinsertscorrespondng opestionson the shadowariable

In the context of the Java Virtual Machine, an eleganpiemertation of the shadowariablesis to mairtain a shadow
stack. For eacprimitive value on the main stack, the shadow stack contains its tradkechaion. Wherevera primitive
value is pushed onto the main stack (for any reason), its tractadhaion is pushed onto the shadow stack. Because
procadurecall and return use the stack, the trackddrmaion acconpanies primitives autanaically, without any special
meclanism The same is true fantemmediateresults ofcompuations like "(a+b)*c".

Issues/Questions

Which definition of compaability - abstract data type dridirecional dataflow reaclability is moreapprgriate for our
purposes?

18 May 2004 11:28 Page 10



Java Comparability Table of Contents

Table of Contents

[JavaCompaability |
.
Definition of Compaability| .
StaticAnalysig .
DynamicAnalysig .
[OpertionalDetall§ .
[VariableTracking Issueks
:
Maintaining trackng information for eachvalug .

CLVWOWoOON~NOUPAADMNEREPR

[

Page i 18 May 2004 11:28



	Java Comparability
	Introduction
	Definition of Comparability
	Static Analysis
	Dynamic Analysis
	Tracking variables
	Operational Details
	Variable Tracking Issues

	Tracking objects
	Operational Details
	Object Tracking Issues

	Maintaining tracking information for each value

	Issues/Questions


