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Dynamic invariant detection 

Program analysis that generalizes over observed runtime
values to hypothesize program properties 

The result is a set of likely invariants per program point 
Entry to function binary_search(int[] list, int val) 

list is sorted 
list ≠ null 
val ∈ list 

Exit from function square(int a) 

return = a ⋅ a 

Class Stack 

this.top = this.stack[this.top_stack-1] 
this.stack[this.top_stack..] = null 
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Uses of dynamic invariant detection 

Verifying safety properties [Vaziri 98] [Nimmer 02] 
Automatic theorem proving [Win 02] 
Identifying refactoring opportunities [Kataoka 01] 
Predicate abstraction [Dodoo 02] 
Generating test cases [Xie 03] [Gupta 03] 
Selecting and prioritizing test cases [Harder 03] 
Explaining test failures [Groce 03] 
Predicting incompatibilities in component upgrades [McCamant 03] 
Error detection [Raz 02] [Hangal 02] [Pytlik 03] [Mariani 04] [Brun 04] 
Error isolation [Xie 02] [Liblit 03] 
Choosing modalities [Lin 04] 
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Goals of this research 

Handle moderate to large programs 

Produce useful and expressive program properties 
Rich set of derived variables 

array references: a[i], a[i..], a[..i]  
pre-state variables: at exit, orig(x) stands for the value at entry 

Rich invariant grammar 

unary, binary, and ternary invariants  
invariants over pointers, integers, floats, strings and arrays 
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Outline 

Approaches to invariant detection  
Simple incremental algorithm  
Simple incremental algorithm scales poorly 
Many invariants are redundant  
Multiple pass approach 
Multi-pass scales poorly to large data sets 

Optimized incremental algorithm  
Complications  
Results 
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Simple incremental algorithm 

Hypothesize each invariant in the grammar 
Over each set of variables  
At each program point 

Check observed values for each variable (sample) at each 
invariant 

Discard invariants that are falsified  

The remaining invariants are true over the sample data 

Examples 
DIDUCE [Hangal 02] - checks 1 invariant over each variable  
Carrot [Pytlik 03] - checks 2 unary and 4 binary invariants  
Daikon version 1 [Ernst 99] 
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Simple incremental algorithm scales poorly 

Ternary derived variables (eg, A[i..j]) 
V = the number of source program variables (at a program point) 
VD  = O(V3 ) 

Ternary invariants 
I = O(VD

3 ) = O(V9 ) 

The number of possible invariants in modest test cases
ranged from 460 million to 750 million 
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Many invariants are redundant 

Many invariants are implied by other invariants 

Examples 
(x = y) ∧ odd(x)  ⇒  odd(y) 
(x = 5) ∧ (y = 6)  ⇒  (x < y) 
(x < y)  ⇒  (x ≤ y) 
(x ≥ y) at class Stack  ⇒  (x ≥ y) at method Stack.top()  
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Multiple pass approach 

Processes the input data multiple times 

Early passes check simple invariants 

Later passes check more complex invariants only if they are
not redundant 

Constants are checked first and removed 
Equality is checked next. Only one member of an equal set need be
checked in following passes 

The multi-pass approach doesn’t create or check invariants
implied by earlier passes (saving both time and space) 

Example: Daikon version 2 
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Multi-pass scales poorly to large data sets 

Even modest traces require gigabytes of space 

Possible solutions have drawbacks 
May be too large to store in memory 
File I/O is expensive and disks may be insufficient for larger traces 
Running the target program multiple times is often not acceptable

Program has side effects 
Program depends on its environment  
Program uses expensive resources (such as human attention) 
Program doesn’t terminate  
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Outline 

Approaches to invariant detection  
Optimized incremental algorithm  

Optimized incremental algorithm concept 
Constants 
Equality sets 
Program point and variable hierarchy  
Suppression  

Complications  
Results 
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Optimized incremental algorithm concept 

Same processing model as the simple incremental algorithm 

Redundant invariants are not instantiated or checked 
Many invariants are implied by others 
As long as the antecedents are true, the consequent need be neither 
instantiated nor checked 

An invariant must be created when its antecedent is falsified 
(x = y) ∧ odd(x)  ⇒  odd(y) 
If a sample is seen where x ≠ y, the odd(y) invariant must be created 
The new invariant must be true over all past samples (which are no
longer available) 
The new invariant must be checked over future samples 
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Constants 

Invariants over (only) constant variables are redundant 
(x = 5)  ⇒  odd(x) 
(x = 5) ∧ (y = 6)  ⇒  x < y  

All variables are initially constant 

Invariants are not instantiated between constants 

When (var = constant) is falsified 
Invariants are instantiated between it and all remaining constants 
Invariants which are not true over the constant values are discarded 
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Equality sets 

If two or more variables are equal, any invariant true over
one variable is true over all of them 

(x = y) and f(x)  ⇒  f(y) 

Initially, all variables are placed in a single equality set 

One variable (the leader) represents the set 

Invariants are instantiated only between leaders 

When (var1 = var2) is falsified 
The set is split into two or more equality sets 
Invariants over each old leader are copied to each new leader 
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Program point and variable hierarchy 

Relationship between program points 
Class A

A.m1() entry A.m1() exit A.m2() entry A.m2() exit

Samples are only processed at the leaves of the hierarchy 

Invariants are created at the parent iff it is true at each child 

x = y

Initially each invariant (e.g., x = y) holds

at each leaf

x = yx = yx = yx = yx = y
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Program point and variable hierarchy 

Relationship between program points 
Class A

A.m1() entry A.m1() exit A.m2() entry A.m2() exit

Samples are only processed at the leaves of the hierarchy 

Invariants are created at the parent iff it is true at each child 

x = y

After processing the invariant was

falsified at one program point (red) 

x = yx = yx = yx = yx = y
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Program point and variable hierarchy 

Relationship between program points 
Class A

A.m1() entry A.m1() exit A.m2() entry A.m2() exit

Samples are only processed at the leaves of the hierarchy 

Invariants are created at the parent iff it is true at each child 

x = y

Post processing creates parent

invariants

x = yx = yx = yx = yx = y

x = y x = y x = y
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Program point and variable hierarchy 

Relationship between program points 
Class A

A.m1() entry A.m1() exit A.m2() entry A.m2() exit

Samples are only processed at the leaves of the hierarchy 

Invariants are created at the parent iff it is true at each child 

x = y

Post processing creates parent

invariants

x = yx = yx = yx = yx = y

x = y x = y x = y

x = y

 2 Nov 2004  01:48Page 18

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection



Suppression 

An invariant can be suppressed if it is logically implied by
some set of other invariants. For example: 

(x = y) ∧ (z = 1)  ⇒  x = y ⋅ z  
(x = 0) ∧ (y = 0)  ⇒  x = y & z  

Other optimizations are special cases of suppression 

Goals 
Instantiate/check only non-redundant invariants  
Use no storage for a non-instantiated invariants  

When an antecedent is falsified 
Each invariant that might be suppressed is checked 
If a suppression held before the antecedent was falsified, but no 
suppression holds after, the invariant is instantiated  
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Outline 

Approaches to invariant detection  
Optimized incremental algorithm  
Complications  

Missing variables  
Optimizations interact  

Results 
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Missing variables 

Suppose a is null. What do we do with the invariant a.b > x? 

One choice is to falsify the invariant 
The invariant thus means: (a ≠ null) ∧ (a.b > x) 
Problem: interesting invariants are lost 

Alternative is to retain the invariant 
The invariant thus means: (a ≠ null)  ⇒  (a.b > x) 
Problem: diffi cult to implement  

Optimizations must take missing into account 
Constants must never be missing 
Members of an equality set must have identical missing attributes 
Suppressions can’t assume transitivity  

(x > a.b) ∧ (a.b > y)  ⇒  (x > y) 

((a ≠ null)  ⇒  (x > a.b)) ∧ ((a ≠ null)  ⇒  (a.b > y))   ≠>  (x > y) 
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Optimizations interact 

When checking suppressions, uninstantiated invariants must
be considered. 

Creating parent invariants using the program point hierarchy 
Suppression optimizations must be undone 
Constant and equality set information must be merged 
Different equalities in different children require special processing  
Uninstantiated invariants between constants must be considered  
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Outline 

Approaches to invariant detection  
Optimized incremental algorithm  
Complications  
Results 

Optimizations are effective  
Real programs can be processed 
Performance comparison on the Daikon utilities  
Contributions  
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Optimizations are effective 

1

10

100

1000

10000

100000

1e+06

1e+07

0 500 1000 1500 2000 2500

in
va

ri
an

t c
ou

nt

sample count

Candidate invariant count after each sample is processed

without optimizations
with all optimizations

100 times fewer invariants with the optimizations 

 2 Nov 2004  01:48Page 24

Jeff PerkinsEfficient Incremental Dynamic Invariant Detection



Real programs can be processed 

The optimized algorithm can process non-trivial programs in
a reasonable amount of time and space 

The multi-pass and simple incremental approaches cannot
process our experiments 

Experiments 
Flex lexical analyzer generator  

391 program points averaging 275 variables each 
232,000 samples (9.2 Gbytes of data) 
Processing time of 4 hours 
Max memory use of 750 Mbytes 

Daikon utilities  
1593 program points averaging 60 variables each 
26 million samples (11.5 Gbytes of data) 
Processing time of 1.5 hours 
Max memory use of 150 Mbytes 
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Performance comparison on the Daikon utilities 
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Contributions 

Effective optimizations in an incremental context 
Redundant invariants are neither instantiated or checked 
When antecedents are falsified, the optimization is undone and 
invariants that are no longer redundant are created 

Result is usable in a wide variety of contexts 
Handles non-trivial programs 
Supports a rich set of derived variables and invariants  
Supports on-line operation  
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