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Abstract
This paper investigates the problem of cross-lingual transfer parsing, aiming at inducing de-

pendency parsers for low-resource languages while using only training data from a resource-rich
language (e.g., English). Existing model transfer approaches typically don’t include lexical fea-
tures, which are not transferable across languages. In this paper, we bridge the lexical feature gap
by using distributed feature representations and their composition. We provide two algorithms for
inducing cross-lingual distributed representations of words, which map vocabularies from two dif-
ferent languages into a common vector space. Consequently, both lexical features and non-lexical
features can be used in our model for cross-lingual transfer. Furthermore, our framework is flexible
enough to incorporate additional useful features such as cross-lingual word clusters. Our combined
contributions achieve an average relative error reduction of 10.9% in labeled attachment score as
compared with the delexicalized parser, trained on English universal treebank and transferred to
three other languages. It also significantly outperforms state-of-the-art delexicalized models aug-
mented with projected cluster features on identical data. Finally, we demonstrate that our models
can be further boosted with minimal supervision (e.g., 100 annotated sentences) from target lan-
guages, which is of great significance for practical usage.

1. Introduction

Dependency Parsing has been one of the long-standing central problems in natural language process-
ing (NLP). The goal of dependency parsing is to induce implicit tree structures for natural language
sentence following the dependency grammar, which can be highly beneficial for various downstream
tasks, such as question answering, machine translation and knowledge mining/representation. The
majority of work on dependency parsing has been dedicated to resource-rich languages, such as En-
glish and Chinese. For these languages, there exists large-scale annotated treebanks that can be used
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for supervised training of dependency parsers, such as the Penn Treebank (Marcus, Marcinkiewicz,
& Santorini, 1993; Xue, Xia, Chiou, & Palmer, 2005). However, for most of the languages in the
world, there are very few or even no labeled training data for parsing, and it is both labor intensive
and time consuming to manually annotate treebanks for all languages. This fact has given rise to
a range of research on unsupervised methods (Klein & Manning, 2004), and transfer methods (H-
wa, Resnik, Weinberg, Cabezas, & Kolak, 2005; McDonald, Petrov, & Hall, 2011) for linguistic
structure prediction.

Considering that the unsupervised methods fall far behind the transfer methods in terms of
accuracy, as well as the difficulty in evaluation, we will focus on the transfer methods in this study.
We attempt to build parsers for low-resource languages by exploiting treebanks from resource-rich
languages. There are two approaches to linguistic transfer in general, namely data transfer and
model transfer. Data transfer methods emphasizes the creation of artificial training data that can
be used for supervised training on the target language side. They have the appealing property
that they can learn language-specific linguistic structures effectively. The major drawbacks are
the requirement of parallel data and the noise in the automatically created training data introduced
by word alignment-based projection. On the other hand, model transfer methods build models on
the source language side, which are used directly for parsing target languages without the need of
creating annotated data in target languages.

This paper falls into the latter category. The major obstacle in transferring a parsing system
from one language to another is the lexical features (e.g., words) that are not directly transferable
across languages. To address this challenge, McDonald et al. (2011) built a delexicalized pars-
er – a parser that only has non-lexical features. A delexicalized parser makes sense in that POS
tag features are significantly predictive for unlabeled dependency parsing. However, for labeled
dependency parsing, especially for semantic-oriented dependencies like Stanford typed dependen-
cies (De Marneffe et al., 2006; De Marneffe & Manning, 2008), these non-lexical features are not
predictive enough. Täckström, McDonald, and Uszkoreit (2012) proposed to learn cross-lingual
word clusters from multilingual paralleled unlabeled data through word alignments, and apply these
clusters as features for semi-supervised delexicalized parsing. Word clusters can be thought of as a
kind of coarse-grained representations of words. Thus, this approach partially fills the gap of lexical
features in cross-lingual learning of dependency parsing.

This paper proposes a novel approach for cross-lingual dependency parsing that is based on
pure distributed feature representations. In contrast to the discrete feature representations used in
traditional dependency parsers, distributed representations map symbolic features into a continuous
representation space, that can be shared across languages. Therefore, our model has the ability
to utilize both lexical and non-lexical features naturally. Specifically, our framework contains two
primary components:

• A neural network-based dependency parser. We expect a non-linear model for dependency
parsing in our study, because distributed feature representations are shown to be more effec-
tive in non-linear architectures than in linear architectures (Wang & Manning, 2013). Chen
and Manning (2014) proposed a transition-based dependency parser using a neural network
architecture, which is simple but works well on benchmark datasets. Briefly, this model sim-
ply replaces the predictor in transition-based dependency parser with a well-designed neural
network classifier. We will provide explanations for the merits of this model in Section 3, as
well as how we adapt it to the cross-lingual task.

996



REPRESENTATION LEARNING FOR CROSS-LINGUAL TRANSFER PARSING

• Cross-lingual word representation learning. The key to filling the lexical feature gap is to
project the representations of these features from different languages into a common vector
space, preserving the translational equivalence. We will study and compare two approaches
of learning cross-lingual word representations in Section 4. The first approach is named
robust projection, and the second approach is based on canonical correlation analysis. Both
approaches are simple to implement and are scalable to large data.

Another drawback of the model transfer methods is that they focus only on the universal struc-
tures across various languages, and thus lack the ability of recovering the target language-specific
structures. Therefore, it is necessary to conduct target language adaptation on the top of the trans-
ferred models. We introduce a practical and straightforward solution by incorporating minimal
supervision from target languages (Section 6).

We evaluate our models on the universal multilingual treebanks v2.0 (McDonald et al., 2013).
Case studies include transferring from English (EN) to German (DE), Spanish (ES) and French
(FR). Experiments show that by incorporating lexical features, the performance of cross-lingual
dependency parsing can be improved significantly. By further embedding cross-lingual cluster fea-
tures (Täckström et al., 2012), we achieve an average relative error reduction of 10.9% in labeled
attachment score (LAS), as compared with the delexicalized parsers. It also significantly outper-
forms the delexicalized models of McDonald et al. augmented with cluster features on identical
data. In addition, we show that by using a small amount of labeled training data (e.g., 100 sen-
tences) at the target language side for parameter adaptation (minimal supervision), the performance
of our cross-lingual transfer system can be boosted, and the recalls of language-specific dependency
structures are improved dramatically.1

The original major contributions of this paper include:

• We propose a novel and flexible cross-lingual learning framework for dependency parsing
based on distributed representations, which can effectively incorporate both lexical and non-
lexical features.

• We present two novel and effective approaches for inducing cross-lingual word representation
that bridge the lexical feature gap in cross-lingual dependency parsing transfer.

• We show that cross-lingual word cluster features can be effectively embedded into our model,
leading to significant additive improvements.

• We show that the our cross-lingual transfer systems can be easily and effectively adapted to
target languages with minimal supervision, demonstrating great potential in practical usage.

2. Background

This section describes the necessary background which is crucial for understanding our transfer
parsing framework.

1. This article is a thoroughly revised and extended version of the work of Guo, Che, Yarowsky, Wang, and Liu (2015).
We provide a more detailed linguistic and methodological background of cross-lingual parsing. Additional extensions
primarily include experiments and analysis of target language adaptation with minimal supervision. Our system is
made publicly available at: https://github.com/jiangfeng1124/acl15-clnndep.
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ROOT He has good control .
PRON VERB ADJ NOUN .

root

nsubj

dobj

amod

punct

Figure 1: An example labeled dependency tree.

2.1 Dependency Parsing

Given an input sentence x = w0w1...wn where wi is the ith word of x, the goal of dependency
parsing is to build a dependency tree, which can be denoted by d = {(h,m, l) ∶ 0 ≤ h ≤ n; 0 < m ≤
n, l ∈ L}, where (h,m, l) indicates a directed arc from the head word wh to its modifier wm with a
dependency label l, and L is the label set (Figure 1).

The mainstream models that have been proposed for dependency parsing can be described as
either graph-based models or transition-based models (McDonald & Nivre, 2007). Graph-based
models (Eisner, 1996; McDonald, Crammer, & Pereira, 2005) view the parsing problem as finding
the highest scoring tree from a directed graph. The score of a dependency tree is typically factored
into scores of some small independent structures. The way of factorization defines the order of
a model and also the complexity in the inference process (McDonald & Pereira, 2006; Carreras,
2007; Koo & Collins, 2010). For instance, first-order models are factored into dependency arcs,
thus also known as arc-factored models. Higher-order models would consider more expressive
substructures such as sibling and grandchild structures. Transition-based models instead aim to
predict a transition sequence from an initial parser state to some terminal states, conditioned on the
parsing history (Yamada & Matsumoto, 2003; Nivre, 2003; Nivre, Hall, & Nilsson, 2004). This
approach has a lot of interest since it is fast (linear time for projective parsing) and can incorporate
rich non-local features (Zhang & Nivre, 2011).

It has been considered in the past that simple transition-based parsing using greedy decoding
and local training is not as accurate as graph-based parsers that are globally trained and use exact
inference algorithms. However, Chen and Manning (2014) showed that the greedy transition-based
parsers can be significantly improved with a well-designed neural network architecture. This ap-
proach can be considered as a new paradigm of parsing, in that it is based on pure distributed
feature representations. More recently, this architecture has been improved in different ways. For
example, Weiss, Alberti, Collins, and Petrov (2015) combined the neural network with structured
perceptron, and use beam-search for decoding, achieving the new state-of-the-art performance. Dy-
er, Ballesteros, Ling, Matthews, and Smith (2015) instead explored novel techniques for learning
better representations of parser states by utilizing long short-term memory networks (LSTM). Other
work also includes that of Zhou, Zhang, Huang, and Chen (2015) who applied structured learning
with beam-search decoding over the neural network model. In this study, we choose the original
Chen & Manning’s architecture, without losing generality, to build our basic dependency parsing
models for cross-lingual transfer.
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2.2 Distributed Representations for NLP

Recent years have seen numerous attempts of learning distributed representations for different nat-
ural language objects, from morphemes, words and phrases, to sentences and documents. Using
distributed representations, these symbolic units are embedded into a dense, continuous and low-
dimensional vector space, thus it is often referred to as embeddings.2

Distributed representation is attractive in NLP for several reasons. First, it provides a straight-
forward way of measuring the similarities between natural language objects. Through distributed
representations, we can easily tell which two words/phrases/documents are similar in semantic or
even other aspects by simply measuring the cosine distance of vectors.

Second, it can be learned from large-scale unannotated data in general, and thus can be high-
ly beneficial for various downstream applications as a source to alleviate data sparsity. The most
straightforward way of applying distributed representations to NLP tasks is to fed the distributed
feature representations into existing supervised NLP systems as augmented features, in a semi-
supervised fashion (Turian, Ratinov, & Bengio, 2010). Despite the simplicity and effectiveness, it
has been shown that the potential of distributed representations cannot be fully exploited in the gen-
eralized linear models which are adopted in most of the traditional NLP systems (Wang & Manning,
2013). One remedy is to discretize the distributed feature representations, that is to convert the con-
tinuous, dense and low-dimensional vectors into traditional discrete, sparse and high-dimensional
space, as studied by Guo, Che, Wang, and Liu (2014). However, we believe that a non-linear system
(e.g., neural network) is a more powerful and promising solution. Some decent progress has already
been made in this paradigm of NLP on various tasks, such as neural sequence labeling (Collobert
et al., 2011), dependency parsing (Chen & Manning, 2014), sentence classification (Kim, 2014) and
machine translation (Sutskever, Vinyals, & Le, 2014).

Third, it provides such a kind of representation that can be shared across languages, tasks and
even diverse modalities of data resources. This property has motivated lines of research on mul-
tilingual representation learning (Klementiev et al., 2012; Chandar A P et al., 2014; Hermann &
Blunsom, 2014), multi-task learning (Collobert & Weston, 2008) and multi-modal learning (Sri-
vastava & Salakhutdinov, 2012). This is also the primary motivation of this work that facilitates
cross-lingual transfer parsing via multilingual distributed representation learning of words.

3. Cross-Lingual Dependency Parsing

In this section, we first describe the primary transition-based dependency parsing model utilizing
neural networks, and then details for cross-lingual transfer.

3.1 A Neural Network Architecture for Transition-Based Dependency Parsing

In this section, we first briefly describe transition-based dependency parsing and the arc-standard
parsing algorithm. Then we revisit the neural network architecture for transition-based dependency
parsing proposed by Chen and Manning (2014).

As discussed in Section 2.1, transition-based parsing generates a dependency tree by predict-
ing a transition sequence from an initial parser state to the terminal state. Several transition-based
parsing algorithms have been presented in the literature, such as the arc-standard and arc-eager al-
gorithms for projective parsing (Nivre, 2003, 2004), the list-based algorithm (Nivre, 2008) and the

2. In this paper, these two terminologies are used interchangeably.
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swap-based algorithm (Nivre, 2009) for non-projective parsing. Different algorithms have different
transition actions. Take the arc-standard algorithm for example, each parsing state (typically known
as configuration) can be represented as a tuple consisting of a stack S, a buffer B, and a partially de-
rived forest (i.e., a set of dependency arcs) A. Given an input word sequence x = w1w2, ...,wn, the
initial configuration can be represented as: ⟨[w0]S , [w1w2, ...,wn]B,∅⟩, and the terminal configu-
ration is ⟨[w0]S , []B,A⟩, where w0 is a pseudo word indicating the root of the whole dependency
tree. Denoting Si (i = 0,1, ...) as the ith element in the stack, and Bi (i = 0,1, ...) as the ith elemen-
t in the buffer,3 the arc-standard system defines three types of transition actions: LEFT-ARC(r),
RIGHT-ARC(r), and SHIFT, r is the dependency relation.

• LEFT-ARC(r): extend A with a new arc (S1
r←Ð S0) (S0 the head and S1 the modifier) and

remove S1 from the stack.

• RIGHT-ARC(r): extend A with a new arc (S1
rÐ→ S0) (S1 the head and S0 the modifier) and

pop S0 from the stack.

• SHIFT: move B0 from the buffer to the stack. Precondition is that B is not empty.

The typical approach for greedy arc-standard parsing is to build a multi-class classifier (e.g.,
support vector machines, maximum entropy models) of predicting the transition action given a fea-
ture vector extracted from a specific configuration. While conventional feature engineering suffers
from the problem of sparsity, incompleteness and expensive feature computation (Chen & Manning,
2014), the neural network model provides an effective solution.

The architecture of the neural network based dependency parsing model is illustrated in Fig-
ure 2. Unlike the high-dimensional, sparse and discrete features used by traditional parsing models,
in the neural network model, we apply distributed feature representations. Primarily, three types of
information are extracted from a configuration in Chen & Manning’s model: word features, POS
features and relation features respectively. In this study, we add non-local features including dis-
tance features indicating the distance between two items, and the valency features indicating the
number of children for a given item (Zhang & Nivre, 2011). Both distance and valency features
are discretized into buckets. All of these features are then projected to an embedding layer via cor-
responding lookup tables (i.e., embedding matrices), which will be estimated through the training
process. The complete feature templates used in our system are shown in Table 1.

Then, feature compositions are performed at the hidden layer via the cube activation function:

h = g(x) = (W1 ⋅ [xw, xt, xr, xd, xv] + b1)3

where W1 is the weight matrix from the input layer to the hidden layer, and b1 is the bias vector.
Feature compositions are important not only in dependency parsing but in NLP in general.

Researchers used to do cost-intensive manual feature engineering to design a large set of feature
templates. However, this approach cannot cover all potentially useful features. Lei, Xin, Zhang,
Barzilay, and Jaakkola (2014) showed that a full feature representation can be derived from the
Kronecker product of multiple views of features, which results in a tensor model. By representing
the tensor in a low-rank form using CANDECOMP/PARAFAC (CP) tensor decomposition (Kolda &
Bader, 2009), the number of parameters can be effectively reduced, and thus is suitable for tasks
with limited training data (Cao & Khudanpur, 2014).

3. S0/B0 is the top/head element of the stack/buffer.

1000



REPRESENTATION LEARNING FOR CROSS-LINGUAL TRANSFER PARSING

Words POS tags Relations

Transition Actions

Hidden Representation

Distance, 
Valency

𝑊1

𝑾𝟐
𝑪𝒖𝒃𝒆

ROOT  has_VERB good_ADJ Control_NOUN ._.

Stack Buffer

He_PRON

nsubj

Clusters

Lookup Tables

𝑳𝑻𝑫,𝑽𝑳𝑻𝑹𝑳𝑻𝑻𝑳𝑻𝑪𝑳𝑻𝑾

𝑾𝟏

Lexical features Non-lexical features

Hidden Layer: 

𝒉 = 𝑔 𝐱 = (𝑾𝟏 ∙ 𝐱+ 𝒃𝟏)
3

𝑺𝒐𝒇𝒕𝒎𝒂𝒙

Parsing Configurations

Input Layer:

𝐱 = [𝑥𝑤, 𝑥𝑐 , 𝑥𝑡, 𝑥𝑟 , 𝑥𝑑,𝑣]

Softmax Layer:

𝒚 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑾𝟐 ∙ 𝒉)

Feature Extraction

Figure 2: Neural network model for dependency parsing. The Cluster features are introduced in
Section 5.2 and 5.3.

Type Feature Templates

Word†

Ew
Si
,Ew

Bi
, i = 0,1,2

Ew
lc1(Si)

,Ew
rc1(Si)

,Ew
lc2(Si)

,Ew
rc2(Si)

, i = 0,1

Ew
lc1(lc1(Si))

,Ew
rc1(rc1(Si))

, i = 0,1

POS‡

Et
Si
,Et

Bi
, i = 0,1,2

Et
lc1(Si)

,Et
rc1(Si)

,Et
lc2(Si)

,Et
rc2(Si)

, i = 0,1

Et
lc1(lc1(Si))

,Et
rc1(rc1(Si))

, i = 0,1

Relation‡ Er
lc1(Si)

,Er
rc1(Si)

,Er
lc2(Si)

,Er
rc2(Si)

, i = 0,1

Er
lc1(lc1(Si))

,Er
rc1(rc1(Si))

, i = 0,1

Distance‡ Ed
⟨S0,S1⟩

,Ed
⟨S0,B0⟩

Valency‡ Elv
S0
,Elv

S1
,Erv

S1

Table 1: Feature templates of the neural network model for transition-based dependency parsing.
E
{w,c,t,r,d,lv,rv}
p indicates various feature embeddings of the element at position p. lc1

(rc1) is the first child to the left (right) and lc2 (rc2) is the second child to the left (right).
† indicates the lexical features, ‡ indicates the non-lexical features.

We suggest that the cube activation function g(x) = x3 can be viewed as a special case of the
low-rank tensor. For verification, g(x) can be expanded as:

g(w1x1 + ... +wmxm + b) =
∑
i,j,k

(wiwjwk)xixjxk +∑
i,j

b(wiwj)xixj + ...
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If we treat the bias term as b × x0 where x0 = 1, then the weight corresponding to each feature
combination xixjxk can be wrote as wiwjwk, which is exactly the same as a rank-1 component ten-
sor in the low-rank form using CP tensor decomposition. Consequently, the cube activation function
implicitly derives full feature combinations. In fact, we can add as many features as possible to the
input layer to improve the parsing accuracy. We will show in Section 5.2 that the Brown-cluster
features can be readily incorporated into our model.

The composed features are then propagated to the output layer, generating a probabilistic dis-
tribution of the output labels (i.e., transition actions) via the softmax activation function: y =
softmax(W2 ⋅ h). We use the following objective function to train the model:

J (θ) = 1

N

N

∑
i=0

CrossEnt(di,yi) +
λ

2
∥θ∥2

where CrossEnt(p,q) is the cross-entropy between two distributions p and q:

CrossEnt(p,q) =∑
k

pk lnqk

All parameters in θ are trained using back-propagation. In this model, θ typically consists of all
the embedding matrices and weights in the network. However, in some cases, θ may exclude the
word embedding matrix Ew, which indicates that the word embeddings are constrained to be fixed
(i.e., without updating) while training.

3.2 Cross-Lingual Transfer

The idea of cross-lingual transfer using the parser we examined above is straightforward. In contrast
to traditional approaches that have to discard rich lexical features (delexicalizing) when transferring
models from one language to another, our model can be transferred using the full model trained on
the source language side (i.e., English).

Since the non-lexical feature (POS, relation, distance, valency) embeddings are directly trans-
ferable between languages, the key component of this framework is the cross-lingual learning of
lexical feature embeddings (i.e., word embeddings). Once the cross-lingual word embeddings are
induced, we first learn a dependency parser at the source language side. After that, the parser will
be directly used for parsing target language data.

3.2.1 UNIVERSAL DEPENDENCIES

As discussed previously, cross-lingual model transfer assumes universal grammatical structures that
can be identified in multiple languages. Therefore, when evaluated on the test set of target language
with either unlabeled attachment score (UAS) or labeled attachment score (LAS), the performance
of transfer parsing rely heavily on the multilingual consistency of annotation schemes. Generally
syntactic annotation schemes differ in the head-finding rules (e.g., the choice of lexical versus func-
tional head) and the dependency relation labels (i.e., the syntactic tagset). It is a challenging task to
construct multilingual treebanks with such consistent annotations. In the initial cross-lingual pars-
ing studies, the CoNLL shared task datasets (Buchholz & Marsi, 2006) are broadly used. However,
inconsistencies occur both in the head-finding rules and the syntactic tagset across languages, which
made it difficult to evaluate the cross-lingual parsers.
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In order to overcome these difficulties, a new collection of multilingual treebanks with homo-
geneous syntactic dependency annotation has been presented recently, namely the Universal De-
pendency Treebanks (UDT) (McDonald et al., 2013). The universal annotation scheme was created
by harmonizing available treebanks in slightly different variants of the Stanford typed dependen-
cies (De Marneffe et al., 2006), along with the universal Part-of-Speech tags (Petrov, Das, & Mc-
Donald, 2012). This dataset greatly facilitates research on multilingual syntactic analysis, and also
makes it possible to use LAS for evaluation. In fact, UDT has already been used as a standard
dataset for benchmarking research on cross-lingual transfer parsing (Ma & Xia, 2014; Tiedemann,
2014; Zhang & Barzilay, 2015; Duong, Cohn, Bird, & Cook, 2015a, 2015b; Rasooli & Collins,
2015). Other efforts towards universal dependencies include the most recent Universal Dependen-
cies project (UD) 4 and HamleDT (Zeman et al., 2014). In this paper, we conduct experiments on
the UDT (v2.0) 5 dataset without losing generality.

3.2.2 PROJECTIVE VS. NON-PROJECTIVE PARSING

Non-projectivity is a common phenomenon in multilingual dependency parsing. The term non-
projectivity indicates that a dependency tree has crossing-arcs, which often appear in morphologi-
cally rich languages. Various algorithms have been proposed for both graph-based and transition-
based parsing algorithms to produce non-projective trees. For example, the arc-standard algorithm
(Section 3.1) can be readily extended by adding a swap action to handle the non-projectivity, which
gives an expected linear and worst-case O(n2) complexity (Nivre, 2009). Other strategies include
the list-based algorithm (Nivre, 2008) which is adapted from the Covington algorithm (Coving-
ton, 2001), and a further combination of the list-based and the swap-based algorithm (Choi &
McCallum, 2013). Unfortunately, there has been no systematically comparison for these different
algorithms in the literature so far.

In this study, however, we focus only on projective parsing because there is no non-projective
trees in our source language (English) training data. Consequently, non-projectivities in target lan-
guages will not be handled at this moment.6

4. Cross-Lingual Word Representation Learning

Prior to introducing our approaches for cross-lingual word representation learning, we briefly review
the basic model for learning monolingual word embeddings, which constitutes a subprocedure of
the cross-lingual approaches.

4.1 Continuous Bag-of-Words Model

In recent years, various approaches have been studied for learning word embeddings from large-
scale plain texts. All approaches are generally derived from the so-called distributional hypothe-
sis (Firth, 1957): “You shall know a word by the company it keeps”. In this study, we consider
the Continuous Bag-of-Words (CBOW) model (Mikolov, Chen, Corrado, & Dean, 2013) as imple-

4. https://universaldependencies.github.io/docs/
5. https://github.com/ryanmcd/uni-dep-tb
6. Note that for the target languages we address in this paper, non-projectivity is not pervasive. Specifically, the pro-

portion of projective trees presented in their training corpus is respectively 91% for DE, 94% for ES, and 88% for
FR.
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mented in the open-source toolkit word2vec.7 The basic principle of the CBOW model is to predict
each individual word in a sequence given the bag of its context words within a fixed window size
as input, using a log-linear classifier. This model avoids the non-linear transformation in hidden
layers, and hence can be trained with high efficiency.

With large window size, grouped words using the resulting word embeddings are more topi-
cally similar; whereas with small window size, the grouped words will be more syntactically simi-
lar (Bansal, Gimpel, & Livescu, 2014). So we set the window size to 1 in our parsing task.

Next, we introduce our approach for inducing bilingual word embeddings. In general, we expect
our bilingual word embeddings to preserve translational equivalences. For example, “cooking” (En-
glish) should be close to its translation: “kochen” (German) in the embedding space.

4.2 Robust Alignment-Based Projection

Our first method for inducing cross-lingual word embeddings has two stages. First, we learn word
embeddings from a source language (S) corpora as in the monolingual case, and then project the
monolingual word embeddings to a target language (T), based on word alignments.

Given a sentence-aligned parallel corpus D, we first conduct unsupervised bidirectional word
alignment, and then collect an alignment dictionary. Specifically, in each word-aligned sentence pair
of D, we keep all alignments with conditional alignment probability exceeding a threshold δ = 0.95
and discard the others. Specifically, let AT ∣S = {(wT

i ,w
S
j , ci,j), i = 1,2, ...,NT ; j = 1,2, ...,NS} be

the alignment dictionary, where ci,j is the number of times when the ith target word wT
i is aligned

to the jth source word wS
j . NS and NT are vocabulary sizes. We use the shorthand (i, j) ∈ AT ∣S

to denote a word pair in AT ∣S . The projection can be formalized as the weighted average of the
embeddings of translation words:

v(wT
i ) = ∑

(i,j)∈AT ∣S

ci,j

ci,⋅
⋅ v(wS

j ) (1)

where ci,⋅ = Σjci,j , v(w) is the embedding of w.
Obviously, the simple projection method has one drawback: it only assigns word embeddings

for those target language words that occur in the word aligned data, which is typically smaller than
the monolingual datasets. Therefore, in order to improve the robustness of projection, we utilize
a morphology-inspired mechanism, to propagate embeddings from in-vocabulary words to out-of-
vocabulary (OOV) words. Specifically, for each OOV word wT

oov, we extract a list of candidate
words that is similar to it in terms of edit distance (Levenshtein distance), and then set the averaged
vector as the embedding of wT

oov. More formally,

v(wT
oov) = Avg

w′∈C
(v(w′))

where C = {w∣w ∈ EditDist(wT
oov,w) ≤ τ}

(2)

To reduce noise, we choose a small edit distance threshold τ = 1.
The process of robust projection can be viewed as a two-stage graph-propagation algorithm, as

illustrated in Figure 3 (left panel). Embeddings are first propagated from source language words
to target language words that appear in the bilingual lexicons. Next, monolingual propagation is
performed to obtain OOV word embeddings in the target language, using the edit distance metric.

7. http://code.google.com/p/word2vec/
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Target Language

Source Language

Σ Ω𝑛1

𝑑1

𝑛2

𝑑2
Σ′ Ω′

𝑉 𝑊𝑑1

𝑑

𝑑2

𝑑

𝑛1

𝑑

𝑛2

𝑑

CCA

Σ∗ Ω∗

Bilingual Lexicon
(weighted)

• Parallel data

• Wiktionary

• PanLex

• ……

In-Vocabulary words

Out-of-Vocabulary words

Figure 3: Illustration of robust projection (left) and CCA (right) for inducing cross-lingual word
embeddings.

4.3 Canonical Correlation Analysis

The second approach we consider is similar to that of Faruqui and Dyer (2014), which uses CCA to
improve monolingual word embeddings with multilingual correlation. CCA is a way of measuring
the linear relationship between multidimensional variables. For two multidimensional variables,
CCA aims to find two projection matrices to map the original variables to a new basis (lower-
dimensional), such that the correlation between the two variables is maximized.

We refer the readers to the work of Hardoon, Szedmak, and Shawe-Taylor (2004) for theoretical
foundations and algorithm specifics of CCA. Here let’s treat CCA as a black box, and see how CCA
can be applied for inducing bilingual word embeddings. Suppose there are already two pre-trained
monolingual word embeddings (e.g., English and German): Σ ∈ Rn1×d1 and Ω ∈ Rn2×d2 . At the
first step, we extract a one-to-one alignment dictionary D ∶ Σ′ ↔ Ω′ from the alignment dictionary
AS∣T .8 Here, Σ′ ⊆ Σ, indicating that every word in Σ′ is translated to one word in Ω′ ⊆ Ω, and vice
versa.

The process is illustrated in Figure 3 (right panel). Denoting the dimension of resulting word
embeddings by d ≤ min(d1, d2). First, we derive two projection matrices V ∈ Rd1×d,W ∈ Rd2×d

respectively for Σ′ and Ω′ using CCA:

V,W = CCA(Σ′,Ω′) (3)

Then, V and W are used to project the entire vocabulary Σ and Ω:

Σ∗ = ΣV, Ω∗ = ΩW (4)

where Σ∗ ∈ Rn1×d and Ω∗ ∈ Rn2×d are the resulting word embeddings for our cross-lingual task.

8. AT ∣S is also worth trying, but we observed slight performance degradation in our experimental setting.
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4.4 Pros and Cons

Contrary to the robust projection approach, CCA assigns embeddings for every word in the mono-
lingual vocabulary. However, one potential limitation is that CCA assumes linear transformation of
word embeddings, which is difficult to satisfy. At the mean time, when training the source language
parser using the CCA cross-lingual word embeddings, we have to constrained Ew to be fixed, as
mentioned in Section 3.1, otherwise, the translational equivalence will be broken. The robust pro-
jection approach, however, doesn’t have such limitation. Further discussion with experiments will
be presented in Section 5.3.2.

Note that both approaches can be generalized to lower-resource languages where parallel bitexts
are not available. In that way, the dictionaryA can be readily obtained either using bilingual lexicon
induction approaches (Mann & Yarowsky, 2001; Koehn & Knight, 2002; Haghighi, Liang, Berg-
Kirkpatrick, & Klein, 2008), or from online-resources like Wiktionary9 and Panlex.10

5. Experiments

This section describes the experiments. We first describe the data and settings used in the experi-
ments, and then the results.

5.1 Data and Settings

For the pre-training of word embeddings, we use the WMT-2011 monolingual news corpora for
English, German and Spanish.11 For French, we combined the WMT-2011 and WMT-2012 mono-
lingual news corpora.12 We got the word alignment counts using the fast-align toolkit in cdec (Dyer
et al., 2010) from the parallel news commentary corpora (WMT 2006-10) combined with the Eu-
roparl corpus for English–{German, Spanish, French}.13

For the training of the neural network dependency parser, we set the number of hidden units to
400. The dimension of embeddings for different features are shown in Table 2.

Word POS Label Distance Valency Cluster
Dim. 50 50 50 5 5 8

Table 2: Dimensions of various types of feature embeddings.

Mini-batch adaptive stochastic gradient descent (AdaGrad) (Duchi, Hazan, & Singer, 2011) is
used for optimization. For the CCA approach, we use the implementation of Faruqui and Dyer
(2014).

We employ the universal dependency treebanks (UDT v2.0) for a reliable evaluation of our
approach for cross-lingual dependency parsing. The universal multilingual treebanks are annotated
using the universal POS tagset (Petrov et al., 2012) which contains 12 POS tags, as well as the
universal dependencies which defines 40 dependency relations. We follow the standard split of the
treebanks for all languages.

9. https://www.wiktionary.org/
10. http://panlex.org/
11. http://www.statmt.org/wmt11/
12. http://www.statmt.org/wmt12/
13. http://www.statmt.org/europarl/
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5.2 Baseline Systems

We compare our approach with the following systems.
For the first baseline, we evaluate the delexicalized transfer of our neural network-based parser

[DELEX], in which we only use the non-lexical features (Figure 2). Here we investigate the effect
of the non-local features (distance, valency). The delexicalized systems which do not include these
non-local features is referred to as [DELEX (basic)].

We also compare our approach with the delexicalized parser presented by McDonald et al.
(2013) [MCD13], which used a perceptron-based transition-based parser with a beam of size 8,
along with richer non-local features (Zhang & Nivre, 2011). Our re-implementation of this approach
under the framework of Zpar (Zhang & Clark, 2011) is referred to as [MCD13∗].

Furthermore, we consider a strong baseline system as proposed by Täckström et al. (2012),
which utilized cross-lingual word cluster features to enhance the perceptron-based delexicalized
parser [MCD13∗+Cluster]. We use the same alignment dictionary as described in Section 4.2 to
induce the cross-lingual word clusters. We re-implement the PROJECTED clustering approach de-
scribed in the work of Täckström et al., which assigns a target word to the cluster with which it is
most often aligned:

c(wT
i ) = arg max

k
∑

(i,j)∈AT ∣S

ci,j ⋅ 1[c(wS
j ) = k]

Obviously, this method also has the drawback that words that do not occur in the alignment dic-
tionary (OOV) cannot be assigned a cluster. Therefore, we use the same strategy as described in
Section 4.2 to find the most likely clusters for the OOV words. Instead of computing the average of
embeddings, we solve an argmax problem:

c(wT
oov) = arg max

k
∑
w′∈C

1[c(w′) = k]

where C = {w∣EditDist(wT
oov,w) ≤ τ}

(5)

τ is set to 1 constantly. Instead of the clustering model of Uszkoreit and Brants (2008), we use
Brown clustering (1992) to induce hierarchical word clusters, where each word is represented as a
bit-string. We use the same word cluster feature templates from Täckström et al. (2012), and set the
number of Brown clusters to 256.

5.3 Experimental Results

All of the parsing models are trained using the development data from English for early-stopping.
Table 3 lists the results of the cross-lingual transfer experiments for dependency parsing. Table 4
further summarizes each of the experimental gains detailed in Table 3.

We first examine the benefit brought by the non-local distance and valency features. As observed
in the comparison of DELEX (basic) and DELEX, marginal improvements are obtained for DE and
FR, and more significant improvements for ES. Therefore, we adopted these features in all of the
following experiments.

Our delexicalized system obtains slightly lower performance than those reported by McDonald
et al. (2013) (MCD13), because we used greedy decoding and local training. Our re-implementation
of McDonald et al.’s work attains comparable performance with MCD13. For all languages we con-
sider in this study, by using cross-lingual word embeddings either from alignment-based projection
or CCA, we obtain statistically significant improvements against the delexicalized system, both in
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Unlabeled Attachment Score (UAS) Labeled Attachment Score (LAS)
EN DE ES FR AVG EN DE ES FR AVG

DELEX (basic) 83.63 56.85 67.28 68.70 64.28 79.37 47.06 56.43 57.73 53.74
DELEX 83.67 57.01 68.05 68.85 64.64 79.42 47.12 56.99 57.78 53.96
PROJ 91.96 60.07 71.42 71.36 67.62 90.48 49.94 61.76 61.55 57.75
PROJ+Cluster 92.33 60.35 71.90 72.93 68.39 90.91 51.54 62.28 63.12 58.98
CCA 90.62† 59.42 68.87 69.58 65.96 88.88† 49.32 59.65 59.50 56.16
CCA+Cluster 92.03† 60.66 71.33 70.87 67.62 90.49† 51.29 61.69 61.50 58.16

MCD13 83.33 58.50 68.07 70.14 65.57 78.54 48.11 56.86 58.20 54.39

MCD13∗ 84.44 57.30 68.15 69.91 65.12 80.30 47.34 57.12 58.80 54.42
MCD13∗+Cluster 90.21 60.55 70.43 72.01 67.66 88.28 50.20 60.96 61.96 57.71

Table 3: Cross-lingual transfer dependency parsing from English on the test dataset of 4 univer-
sal multilingual treebanks. Results measured by unlabeled attachment score (UAS) and
labeled attachment score (LAS). DELEX (basic) is the delexicalized model without non-
local features (distance, valency). ∗ denotes our re-implementation of MCD13. Since the
model varies for different target languages in the CCA-based approach, † indicates the
averaged UAS/LAS.

Experimental Contribution DE/ES/FR Avg. (Relative)
PROJ vs. DELEX +3.79 (8.2%)
CCA vs. DELEX +2.19 (4.8%)
PROJ vs. MCD13∗ +3.33 (7.3%)
CCA vs. MCD13∗ +1.74 (3.8%)
PROJ+Cluster vs. PROJ +1.23 (2.9%)
CCA+Cluster vs. CCA +2.00 (4.6%)
MCD13∗+Cluster vs. MCD13∗ +3.29 (7.2%)
PROJ+Cluster vs. DELEX +5.02 (10.9%)
CCA+Cluster vs. DELEX +4.20 (9.1%)
PROJ+Cluster vs. MCD13∗ +4.46 (9.8%)
CCA+Cluster vs. MCD13∗ +3.74 (8.2%)
PROJ+Cluster vs. MCD13∗+Cluster +1.27 (3.0%)
CCA+Cluster vs. MCD13∗+Cluster +0.45 (1.1%)

Table 4: Summary of each of the experimental gains detailed in Table 3, in both absolute LAS gain
and relative error reduction. All gains are statistically significant using MaltEval (Nilsson
& Nivre, 2008) at p < 0.01.

UAS and LAS. Interestingly, we notice that PROJ consistently outperforms CCA by a significant
margin, and is comparable to MCD13∗+Cluster. Further analysis to this observation will be con-
ducted in Section 5.3.1 and 5.3.2.
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Type Feature Templates

Cluster
Ec

Si
,Ec

Bi
, i = 0,1,2

Ec
lc1(Si)

,Ec
rc1(Si)

,Ec
lc2(Si)

,Ec
rc2(Si)

, i = 0,1

Ec
lc1(lc1(Si))

,Ec
rc1(rc1(Si))

, i = 0,1

Table 5: Word cluster feature templates.

Our framework is flexible for incorporating richer features simply by embedding them into
continuous vectors. Thus we further embed the cross-lingual word cluster features into our model,
together with the proposed cross-lingual word embeddings. The cluster feature templates are shown
in Table 5, which is similar to the POS tag feature templates. As shown in Table 3, significant
additive improvements are obtained for both PROJ and CCA by embedding the cluster features.
Compared with our delexicalized system, the relative error is reduced by up to 13.1% in UAS, and
up to 12.6% in LAS. The combined system further outperforms MCD13∗+Cluster significantly .

5.3.1 EFFECT OF ROBUST PROJECTION

Since in both PROJ and the induction of cross-lingual word clusters, we use edit distance measure
for OOV words, we would like to see how this affects the performance of parsing.

Intuitively, higher coverage of projected words in the test dataset should promote the parsing
performance more. To verify this, we further conduct experiments under both settings using the
PROJ+Cluster model. For robust projection, we examine the effect of edit distances ranging from
1 to 3. Results are shown in Table 6. Improvements are observed for all languages when using
robust projection with edit distance measure, especially for FR, where the highest coverage gain is
obtained by robust projection. We also observe slightly improvements for DE and ES when using
an edit distance of 2. But performance starts to degrade when it gets larger. This is reasonable, since
larger edit distance increases the word coverage, but also introduces more noise.

Simple
Robust

τ=1 τ=2 τ=3

DE
coverage 91.37 94.70 96.50 97.47

UAS 59.74 60.35 60.53 60.53
LAS 50.84 51.54 51.70 51.69

ES
coverage 94.51 96.67 97.75 98.47

UAS 70.97 71.90 72.00 71.93
LAS 61.34 62.28 62.34 62.27

FR
coverage 90.83 97.60 98.33 98.58

UAS 71.17 72.93 72.79 72.70
LAS 61.72 63.12 63.02 62.94

Table 6: Effect of robust projection.
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5.3.2 EFFECT OF FINE-TUNING WORD EMBEDDINGS

Another reason for the effectiveness of PROJ over CCA lies in the fine-tuning of word embeddings
while training the parser.

CCA can be viewed as a joint method for inducing cross-lingual word embeddings. When
training the source language dependency parser with cross-lingual word embeddings derived from
CCA, the EN word embeddings should be fixed. Otherwise, the translational equivalence will be
broken. However, for PROJ, there is no such limitation. Word embeddings can be updated as other
non-lexical feature embeddings, in order to obtain a more accurate dependency parser. We refer to
this procedure as a fine-tuning process to the word embeddings. To verify the benefits of fine-tuning,
we conduct experiments to see relative loss if word embeddings are fixed while training. Results
are shown in Table 7, which indicates that fine-tuning indeed offers considerable help.

Fixed Fine-tuning ∆

DE
UAS 59.74 60.07 +0.33
LAS 49.44 49.94 +0.50

ES
UAS 70.10 71.42 +1.32
LAS 61.31 61.76 +0.45

FR
UAS 70.65 71.36 +0.71
LAS 60.69 61.50 +0.81

Table 7: Effect of fine-tuning word embeddings.

5.4 Compare with Existing Bilingual Word Embeddings

In this section, we compare our bilingual embeddings with several previous approaches in the con-
text of dependency parsing. To the best of our knowledge, this is the first work on evaluation of
bilingual word embeddings in syntactic tasks.

The approaches we consider include the multi-task learning approach (Klementiev et al., 2012)
[MTL], the bilingual auto-encoder approach (Chandar A P et al., 2014) [BIAE], the bilingual com-
positional vector model (Hermann & Blunsom, 2014) [BICVM], and the bilingual bag-of-words
approach (Gouws et al., 2015) [BILBOWA].

For MTL and BIAE, we adopt their released word embeddings directly due to the inefficiency of
training.14 For BICVM and BILBOWA, we re-run their systems on the same dataset as our previous
experiments.15 Results are summarized in Table 8.

CCA and PROJ consistently outperforms all other approaches in all languages, and PROJ per-
forms the best. The inferior performance of MTL and BIAE is partly due to the low word coverage.
For example, they cover only 31% of words in the universal DE test treebank, whereas the CCA
and PROJ covers over 70%. Moreover, BIAE, BICVM and BILBOWA introduce sentence-level trans-
lational equivalence as objectives or regularizers for learning bilingual word embeddings. These
approaches are advantageous in that they don’t assume/require word alignment. However, word-to-
word translational equivalence cannot be well preserved in this way.

14. The MTL embeddings are normalized before training.
15. BICVM only uses the bilingual parallel dataset.
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DE ES FR
UAS LAS UAS LAS UAS LAS

MTL (Klementiev et al., 2012)‡ 56.93 46.22 67.71 58.43 67.51 57.27
BIAE (Chandar A P et al., 2014)‡ 53.74 43.68 58.81 46.66 60.10 49.47
BICVM (Hermann & Blunsom, 2014) 56.30 46.99 67.78 58.08 69.13 58.13
BILBOWA (Gouws et al., 2015) 54.51 44.95 67.23 56.16 64.82 52.73
CCA 59.42 49.32 68.87 59.65 69.58 59.50
PROJ 60.07 49.94 71.42 61.76 71.36 61.55

Table 8: Comparison with existing bilingual word embeddings. ‡For MTL and BIAE, we use their
released bilingual word embeddings.

Target Word (ES)
Neighboring Words (EN)

PROJ CCA MTL BIAE BICVM BILBOWA

china
(china)

india
russia
taiwan
chinese

russia
indonesia
beijing
chinese

china
independent
sumitomo
malaysian

korea
india
chinese
brazil

chinese
chinois
sino
33.55

helsinki
bulgarians
constituting
market

problemas
(problems)

problem
difficulties
troubles
issues

problems
woes
troubles
dilemmas

events
sanctions
conditions
laws

problem
greatly
highlighted
scale

problematic
problematical
difficulties
troubles

deficiencies
situations
omissions
attentively

septiembre
(september)

october
august
january
december

december
july
october
june

december
february
july
november

month
april
scheduled
march

11th
11.00
11
eleventh

a.m
p.m
twelve
1998-1999

Table 9: Target words in Spanish and their 4 most similar words in English, as induced by various
approaches.

To verify this assumption, we taking EN/ES as a case study. We manually inspect the 4 most
similar words (by cosine similarity) in English to a given set of words in Spanish (Table 9). We
can observe both semantic and syntactic shifting in the k-nearest neighbors prediction of BIAE,
BICVM and BILBOWA, whereas PROJ and CCA give more translational equivalent predictions. For
example, BICVM yields adjective like problematical for the target noun problemas; BILBOWA yields
semantic-related word market for china. In general, PROJ is the most robust approach, behaving
consistently well for most of the sampled words.

It is worth noting that we don’t assume/require bilingual parallel data in CCA and PROJ. What
we need in practice is a bilingual lexicon for each paired languages. This is especially important for
generalizing our approaches to lower-resource languages, where parallel texts are not available.
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6. Target-Language Adaptation with Minimal Supervision

It is important for us to distinguish what linguistic structures can be learned via cross-lingual transfer
versus what can only be learned on the basis of monolingual information in the language to be
parsed. Intuitively, cross-lingual approaches can only learn the common dependency structures
shared between the source and target language. However, for many languages, there are some
specialized (language-specific) syntactic characteristics that are can only be learned from data in
the target language.

Take the adjective-noun order for example, in Spanish and French, adjectives often appears
after the nouns, thus forming a right-directed arc labeled by amod, whereas in English, the amod
(adjectival modifier) arcs are mostly left-directed, as illustrated in Figure 4. Another example is the
subject-verb-object order. In German, verbs often appear at the end of a sentence in V2 position,
which causes much more left-directed dobj (direct object) arcs than in English (Figure 5). These
differences can be clearly observed from the universal treebanks. Table 10 shows the significant
distribution divergence between left-directed and right-directed arcs of dobj and amod relations in
treebanks from different languages.

Relation: dobj; Language: EN vs. DE
dobj↷ dobj↶ ratio

EN 38,395 764 50.3 : 1
DE 4,277 3,457 1.2 : 1

Relation: amod; Language: EN vs. ES, FR
amod↷ amod↶ ratio

EN 1,667 57,864 1 : 34.7
ES 14,876 5,205 2.9 : 1
FR 12,919 4,910 2.6 : 1

Table 10: Distribution divergences of left-directed and right-directed arcs with dobj relation in EN
and DE (top), and amod relation in EN and ES/FR (bottom).

NOUN ADJ NOUN ADJ
Spanish: Consejo Superior conflictos sociales

ADJ NOUN ADJ NOUN
English: Superior Council social conflicts

amod

amod

amod

amod

Figure 4: Reverse direction of the amod relation in Spanish and English. French also has the adjec-
tives following the nouns.
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ADV DET NOUN VERB
DE: endlich den richtigen gefunden

EN: finally found the right man
ADV VERB DET NOUN

advmod

det dobj

root

advmod det

dobj

root

Figure 5: Reverse direction of the dobj relation in German and English.

Therefore, in this section, we investigate how much our cross-lingual transfer model can be im-
proved by annotating a small amount of labeled training data at target language side. Even though
building large-scale treebanks of low-resource languages for supervised learning is costly, annotat-
ing dependency structures for a small amount of sentences (e.g., 100) is not that difficult.

We still conduct experiments on the universal dependency treebanks, which provide labeled
training data for multiple languages. For each language we studied (DE, ES, FR), we incrementally
augment the amount of labeled sentences from 100 to 1,000 with a step of 100, to adapt the param-
eters of the cross-lingual transfer model to the specific target language. Theoretically, since target
language treebanks contain non-projective trees, it would make more sense to apply non-projective
algorithms (e.g., swap-based) for target language adaptation. In this way, however, W2 has to be
re-trained from scratch, which doesn’t show good performance in our experiments since the min-
imally supervised data is very small. Consequently, we still rely on the arc-standard algorithm
for adaption. The process is almost the same as training the source language parser as described
in Section 3, except that the word embedding matrix Ew is fixed, while the rest of parameters in θ
(E{t,l,d,v,c},W1,W2,b1) are optimized using the augmented labeled data from the target language,
taking Equation 3.1 as objective function. No development data is used during this process, thus we
simply perform parameter updating for 2,000 iterations.

In addition, we built another strong baseline system which employs the same augmented labeled
training data for supervised learning. In this system, we utilize both word embeddings and Brown
clusters as features, which are derived separately for each language.

As shown in Figure 6, the results are really promising. The PROJ+Cluster and CCA+Cluster
systems consistently outperform the delexicalized system and the supervised system by a signifi-
cant margin. PROJ+Cluster and CCA+Cluster in general achieve comparable performances, while
CCA+Cluster is slightly better.

It is worthy noting that the performances of PROJ+Cluster and CCA+Cluster are boosted by
augmenting only 100 sentences. Take DE for example, UAS is increased from 60.35% to 68.91%,
and LAS from 51.54% to 61.54%, which is nearly equal to the effect of using 1,000 sentences for
supervised learning. This observation demonstrates the great potential of our cross-lingual transfer
system for practical usage.
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Figure 6: Target-language adaptation by incrementally augmenting labeled training data (sen-
tences) to fine-tune the cross-lingual transfer model. Performances are evaluated using
UAS (top) and LAS (bottom). Note that the points whose x coordinates are 0 represent
our cross-lingual transfer performance, where no labeled training data are used.

Analysis. Our primary hypothesis is that by incorporating data in the target language, our model
can be able to learn the special syntactic patterns that are not consistent with the source language. To
verify this, we further study the influence of target-language adaptation on the two special relations:
dobj (DE) and amod (ES, FR), by measuring their precision and recall changes with the use of
only 100 target language sentences. Results are shown respectively in Table 11 and Table 12. We
observe great improvements in recall for these relations, which indicates that the model indeed gains
the ability of learning target-language-specific dependency structures with the supervision of only
100 sentences.

7. Related Studies

The cross-lingual annotation projection method was pioneered by Yarowsky, Ngai, and Wicen-
towski (2001) for shallow NLP tasks (POS tagging, NER, etc.), and later applied to dependency
parsing (Hwa et al., 2005; Smith & Eisner, 2009; Zhao et al., 2009; Jiang et al., 2011; Tiedemann,
2014). Most work along this line has been dedicated to improving the robustness of syntactic pro-
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Relation: dobj; Language: DE
Precision Recall

PROJ+Cluster 41.45 31.09
+100 41.90 51.40

∆ ↑ 0.45 ↑ 20.31
CCA+Cluster 39.47 31.74

+100 43.59 57.57
∆ ↑ 4.12 ↑ 25.83

Table 11: Effect of minimal supervision (100 sentences) on dobj.

Relation: amod; Language: ES, FR
ES FR

Precision Recall Precision Recall
PROJ+Cluster 94.97 80.05 92.94 81.70

+100 91.60 92.52 93.61 95.75
∆ ↓ 3.37 ↑ 12.47 ↑ 0.67 ↑ 14.05

CCA+Cluster 93.37 77.31 92.08 72.22
+100 91.85 92.77 92.77 96.41

∆ ↓ 1.52 ↑ 15.46 ↑ 0.69 ↑ 24.19

Table 12: Effect of minimal supervision (100 sentences) on amod.

jection and alleviating the noise and errors introduced by word alignment-based projection. Typical
approaches include soft projection (Li, Zhang, & Chen, 2014), treebank translation (Tiedeman-
n, Agić, & Nivre, 2014), distribution transfer (Ma & Xia, 2014), and the most recently proposed
density-driven projection (Rasooli & Collins, 2015). It is worth mentioning that remarkable results
have been achieved through annotation projection methods (Tiedemann, 2015; Rasooli & Collins,
2015), due in large part to that parsers are trained at the target language side.

For cross-lingual model transfer, learning cross-lingual feature representations has been a promis-
ing direction. Typical approaches include cross-lingual word clustering (Täckström et al., 2012)
which is employed in this paper as a baseline system, and projection features (Durrett, Pauls, & K-
lein, 2012). Kozhevnikov and Titov (2014) derived a linear projection that maps target instances to
source-side feature representations, which to some extent is similar to our CCA approach. Xiao and
Guo (2014) learned cross-lingual word embeddings and applied them to MSTParser for linguistic
transfer, which inspired our work. Søgaard et al. (2015) obtained multi-source unified word embed-
dings via inverted indexing in Wikipedia, and applied them to various NLP tasks. However, their
results didn’t show significant improvements in parsing. Nevertheless, the idea of utilizing multi-
source information for learning cross-lingual word embeddings makes great sense. More recently,
Duong et al. (2015a, 2015b) also utilized the neural network architecture with parameter sharing
between parsers of different languages. However, their approach requires annotated treebanks from
the target language side, which makes it distinct from our transfer parsing framework. In addition
to representation learning, attempts were also made to integrate monolingual linguistic features in-
to the parsing models, such as manually constructed universal dependency parsing rules (Naseem,
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Chen, Barzilay, & Johnson, 2010) and manually specified typological features (Naseem, Barzilay,
& Globerson, 2012; Zhang & Barzilay, 2015).

Using neural networks for dependency parsing is not a new approach. To the best of our knowl-
edge, Mayberry and Miikkulainen (1999) presented the first work that explored neural networks
for shift-reduce constituent-based parsing. They used one-hot feature representations. Henderson
(2004) used a simple synchrony network to predict parse decisions in a constituency parser, and
was the first to use neural networks in a broad-coverage Penn Treebank parser. Titov and Hender-
son (2007) applied Incremental Sigmoid Belief Networks to constituent-based parsing. Garg and
Henderson (2011) later extended this work to transition-based dependency parsing using a Tem-
poral Restricted Boltzman Machine. These parsers, however, are much less scalable in practice.
Earlier progress made in using deep learning for parsing includes work by Collobert (2011) and
Socher et al. (2013) for constituent-based parsing, and Stenetorp (2013) who built recursive neural
networks for transition-based dependency parsing.

8. Conclusion

This paper proposes a novel framework based on distributed representations for cross-lingual depen-
dency parsing. Two algorithms are proposed for the induction of cross-lingual word representations,
namely robust projection and CCA, which bridge the lexical feature gap.

Experiments show that by using cross-lingual word embeddings derived from either approach,
the transferred parsing performance can be improved significantly against the delexicalized system.
A notable observation is that our projection method performs significantly better than CCA. Addi-
tionally, our framework is flexibly able to incorporate the cross-lingual word cluster features, with
further significant gains in each use. The combined system significantly outperforms the delex-
icalized systems on all languages, by an average of 10.9% error reduction on LAS, and further
significantly outperforms the models of McDonald et al. (2013) augmented with projected word
cluster features.

Furthermore, we show that the performance of our cross-lingual transfer system on a specif-
ic target language can be boosted by minimal supervision from that language, which is of great
significance for practical usage.

Acknowledgments

We are grateful to Manaal Faruqui for providing the bilingual resources. We thank Ryan McDonald
for pointing out the evaluation issue in the experiment. We also thank Sharon Busching for the
proofreading and the anonymous reviewers for the insightful comments and suggestions. This work
was supported by the National Key Basic Research Program of China via grant 2014CB340503
and the National Natural Science Foundation of China (NSFC) via grant 61133012 and 61370164.
Corresponding author: Wanxiang Che, E-mail: car@ir.hit.edu.cn.

References

Bansal, M., Gimpel, K., & Livescu, K. (2014). Tailoring continuous word representations for depen-
dency parsing. In Proceedings of the 52nd Annual Meeting of the Association for Computa-

1016



REPRESENTATION LEARNING FOR CROSS-LINGUAL TRANSFER PARSING

tional Linguistics (Volume 2: Short Papers), pp. 809–815, Baltimore, Maryland. Association
for Computational Linguistics.

Brown, P. F., Desouza, P. V., Mercer, R. L., Pietra, V. J. D., & Lai, J. C. (1992). Class-based n-gram
models of natural language. Computational linguistics, 18(4), 467–479.

Buchholz, S., & Marsi, E. (2006). Conll-x shared task on multilingual dependency parsing. In
Proceedings of the Tenth Conference on Computational Natural Language Learning (CoNLL-
X), pp. 149–164, New York City. Association for Computational Linguistics.

Cao, Y., & Khudanpur, S. (2014). Online learning in tensor space. In Proceedings of the 52nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 666–675, Baltimore, Maryland. Association for Computational Linguistics.

Carreras, X. (2007). Experiments with a higher-order projective dependency parser. In Proceedings
of the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pp. 957–961, Prague, Czech
Republic. Association for Computational Linguistics.

Chandar A P, S., Lauly, S., Larochelle, H., Khapra, M., Ravindran, B., Raykar, V. C., & Saha, A.
(2014). An autoencoder approach to learning bilingual word representations. In Advances in
Neural Information Processing Systems 27, pp. 1853–1861. Curran Associates, Inc.

Chen, D., & Manning, C. (2014). A fast and accurate dependency parser using neural networks. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 740–750, Doha, Qatar. Association for Computational Linguistics.

Choi, J. D., & McCallum, A. (2013). Transition-based dependency parsing with selectional branch-
ing. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pp. 1052–1062, Sofia, Bulgaria. Association for Computational
Linguistics.

Collobert, R. (2011). Deep learning for efficient discriminative parsing. In Proceedings of the 14th
International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 224–232,
Fort Lauderdale, FL, USA. JMLR.org.

Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing: Deep
neural networks with multitask learning. In Proceedings of the 25th International Conference
on Machine Learning, ICML ’08, pp. 160–167, Helsinki, Finland. ACM.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural
language processing (almost) from scratch. Journal of Machine Learning Research, 12, 2493–
2537.

Covington, M. A. (2001). A fundamental algorithm for dependency parsing. In Proceedings of the
39th annual ACM southeast conference, pp. 95–102.

De Marneffe, M.-C., MacCartney, B., Manning, C. D., et al. (2006). Generating typed dependency
parses from phrase structure parses. In Proceedings of the Fifth International Conference
on Language Resources and Evaluation (LREC’06), pp. 449–454, Genoa, Italy. European
Language Resources Association (ELRA).

De Marneffe, M.-C., & Manning, C. D. (2008). The stanford typed dependencies representation. In
COLING 2008: Proceedings of the workshop on Cross-Framework and Cross-Domain Parser
Evaluation, pp. 1–8, Manchester, UK. Association for Computational Linguistics.

1017



GUO, CHE, YAROWSKY, WANG & LIU

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12, 2121–2159.

Duong, L., Cohn, T., Bird, S., & Cook, P. (2015a). Low resource dependency parsing: Cross-lingual
parameter sharing in a neural network parser. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short Papers), pp. 845–850, Beijing, China.
Association for Computational Linguistics.

Duong, L., Cohn, T., Bird, S., & Cook, P. (2015b). A neural network model for low-resource uni-
versal dependency parsing. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pp. 339–348, Lisbon, Portugal. Association for Computational
Linguistics.

Durrett, G., Pauls, A., & Klein, D. (2012). Syntactic transfer using a bilingual lexicon. In Proceed-
ings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, pp. 1–11, Jeju Island, Korea. Association
for Computational Linguistics.

Dyer, C., Ballesteros, M., Ling, W., Matthews, A., & Smith, N. A. (2015). Transition-based depen-
dency parsing with stack long short-term memory. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pp. 334–343, Beijing, China. As-
sociation for Computational Linguistics.

Dyer, C., Lopez, A., Ganitkevitch, J., Weese, J., Ture, F., Blunsom, P., Setiawan, H., Eidelman, V.,
& Resnik, P. (2010). cdec: A decoder, alignment, and learning framework for finite-state and
context-free translation models. In Proceedings of the ACL 2010 System Demonstrations, pp.
7–12, Uppsala, Sweden. Association for Computational Linguistics.

Eisner, J. M. (1996). Three new probabilistic models for dependency parsing: An exploration. In
Proceedings of the 16th conference on Computational linguistics-Volume 1, pp. 340–345,
Copenhagen, Denmark. Association for Computational Linguistics.

Faruqui, M., & Dyer, C. (2014). Improving vector space word representations using multilingual
correlation. In Proceedings of the 14th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pp. 462–471, Gothenburg, Sweden. Association for
Computational Linguistics.

Firth, J. R. (1957). A synopsis of linguistic theory 1930–1955. In Studies in linguistic analysis, pp.
1–32. Blackwell.

Garg, N., & Henderson, J. (2011). Temporal restricted boltzmann machines for dependency parsing.
In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, pp. 11–17, Portland, Oregon, USA. Association for Compu-
tational Linguistics.

Gouws, S., Bengio, Y., & Corrado, G. (2015). Bilbowa: Fast bilingual distributed representations
without word alignments. In Proceedings of the 32nd International Conference on Machine
Learning (ICML), pp. 748–756, Lille, France.

Guo, J., Che, W., Wang, H., & Liu, T. (2014). Revisiting embedding features for simple semi-
supervised learning. In Proceedings of the 2014 Conference on Empirical Methods in Natural

1018



REPRESENTATION LEARNING FOR CROSS-LINGUAL TRANSFER PARSING

Language Processing (EMNLP), pp. 110–120, Doha, Qatar. Association for Computational
Linguistics.

Guo, J., Che, W., Yarowsky, D., Wang, H., & Liu, T. (2015). Cross-lingual dependency parsing
based on distributed representations. In Proceedings of the 53rd Annual Meeting of the Asso-
ciation for Computational Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 1234–1244, Beijing, China. Association
for Computational Linguistics.

Haghighi, A., Liang, P., Berg-Kirkpatrick, T., & Klein, D. (2008). Learning bilingual lexicons
from monolingual corpora. In Proceedings of ACL-08: HLT, pp. 771–779, Columbus, Ohio.
Association for Computational Linguistics.

Hardoon, D. R., Szedmak, S., & Shawe-Taylor, J. (2004). Canonical correlation analysis: An
overview with application to learning methods. Neural computation, 16(12), 2639–2664.

Henderson, J. (2004). Discriminative training of a neural network statistical parser. In Proceed-
ings of the 42nd Meeting of the Association for Computational Linguistics (ACL’04), Main
Volume, pp. 95–102, Barcelona, Spain.

Hermann, K. M., & Blunsom, P. (2014). Multilingual models for compositional distributed se-
mantics. In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 58–68, Baltimore, Maryland. Association for Com-
putational Linguistics.

Hwa, R., Resnik, P., Weinberg, A., Cabezas, C., & Kolak, O. (2005). Bootstrapping parsers via
syntactic projection across parallel texts. Natural language engineering, 11(03), 311–325.

Jiang, W., Liu, Q., & Lv, Y. (2011). Relaxed cross-lingual projection of constituent syntax. In
Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing,
pp. 1192–1201, Edinburgh, Scotland, UK. Association for Computational Linguistics.

Kim, Y. (2014). Convolutional neural networks for sentence classification. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), p-
p. 1746–1751, Doha, Qatar. Association for Computational Linguistics.

Klein, D., & Manning, C. (2004). Corpus-based induction of syntactic structure: Models of depen-
dency and constituency. In Proceedings of the 42nd Meeting of the Association for Computa-
tional Linguistics (ACL’04), Main Volume, pp. 478–485, Barcelona, Spain.

Klementiev, A., Titov, I., & Bhattarai, B. (2012). Inducing crosslingual distributed representations
of words. In Proceedings of COLING 2012, pp. 1459–1474, Mumbai, India. The COLING
2012 Organizing Committee.

Koehn, P., & Knight, K. (2002). Learning a translation lexicon from monolingual corpora. In Pro-
ceedings of the ACL-02 Workshop on Unsupervised Lexical Acquisition, pp. 9–16, Philadel-
phia, Pennsylvania, USA. Association for Computational Linguistics.

Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM review, 51(3),
455–500.

Koo, T., & Collins, M. (2010). Efficient third-order dependency parsers. In Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics, pp. 1–11, Uppsala,
Sweden. Association for Computational Linguistics.

1019



GUO, CHE, YAROWSKY, WANG & LIU

Kozhevnikov, M., & Titov, I. (2014). Cross-lingual model transfer using feature representation
projection. In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 579–585, Baltimore, Maryland. Association for
Computational Linguistics.

Lei, T., Xin, Y., Zhang, Y., Barzilay, R., & Jaakkola, T. (2014). Low-rank tensors for scoring
dependency structures. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 1381–1391, Baltimore, Maryland.
Association for Computational Linguistics.

Li, Z., Zhang, M., & Chen, W. (2014). Soft cross-lingual syntax projection for dependency pars-
ing. In Proceedings of COLING 2014, the 25th International Conference on Computational
Linguistics: Technical Papers, pp. 783–793, Dublin, Ireland. Dublin City University and As-
sociation for Computational Linguistics.

Ma, X., & Xia, F. (2014). Unsupervised dependency parsing with transferring distribution via
parallel guidance and entropy regularization. In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1337–1348,
Baltimore, Maryland. Association for Computational Linguistics.

Mann, G. S., & Yarowsky, D. (2001). Multipath translation lexicon induction via bridge languages.
In Proceedings of the Second Meeting of the North American Chapter of the Association
for Computational Linguistics on Language Technologies, NAACL ’01, pp. 1–8, Pittsburgh,
Pennsylvania. Association for Computational Linguistics.

Marcus, M. P., Marcinkiewicz, M. A., & Santorini, B. (1993). Building a large annotated corpus of
english: The penn treebank. Computational linguistics, 19(2), 313–330.

Mayberry, M. R., & Miikkulainen, R. (1999). Sardsrn: a neural network shift-reduce parser. In
Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, pp.
820–827. Morgan Kaufmann Publishers Inc.

McDonald, R., Crammer, K., & Pereira, F. (2005). Online large-margin training of dependency
parsers. In Proceedings of the 43rd Annual Meeting of the Association for Computational
Linguistics (ACL’05), pp. 91–98, Ann Arbor, Michigan. Association for Computational Lin-
guistics.

McDonald, R., & Nivre, J. (2007). Characterizing the errors of data-driven dependency parsing
models. In Proceedings of the 2007 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pp.
122–131, Prague, Czech Republic. Association for Computational Linguistics.

McDonald, R., Nivre, J., Quirmbach-Brundage, Y., Goldberg, Y., Das, D., Ganchev, K., Hall, K.,
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