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Learning Semantic Hierarchies: A Continuous
Vector Space Approach

Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng Wang, and Ting Liu

Abstract—Semantic hierarchy construction aims to build struc-
tures of concepts linked by hypernym–hyponym (“is-a”) relations.
A major challenge for this task is the automatic discovery of such
relations. This paper proposes a novel and effective method for the
construction of semantic hierarchies based on continuous vector
representation of words, named word embeddings, which can be
used tomeasure the semantic relationship betweenwords.We iden-
tify whether a candidate word pair has hypernym–hyponym re-
lation by using the word-embedding-based semantic projections
between words and their hypernyms. Our result, an F-score of
73.74%, outperforms the state-of-the-art methods on a manually
labeled test dataset. Moreover, combining our method with a pre-
vious manually built hierarchy extension method can further im-
prove F-score to 80.29%.

Index Terms—Piecewise linear projections, semantic hierarchy,
word embedding.

I. INTRODUCTION

S EMANTIC hierarchies are natural ways to organize
knowledge. They are the main components of ontologies

or semantic thesauri [1], [2]. In the WordNet hierarchy, senses
are organized according to the “is-a” relations. For example,
“ ” and “ ” are connected by a directed edge. Here,
“ ” is called a hypernym of “ .” Conversely, “ ”
is a hyponym of “ .” As key sources of knowledge,
semantic thesauri and ontologies can support many natural
language processing applications. However, these semantic
resources are limited in its scope and domain, and their manual
construction is knowledge intensive and time consuming.
Therefore, many researchers have attempted to automatically
extract semantic relations or to construct taxonomies.
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Fig. 1. An example of semantic hierarchy construction.

A major challenge for this task is the automatic discovery of
hypernym-hyponym relations. In our previous work [3], we pro-
pose a distant supervision method to extract hypernyms for en-
tities from multiple sources. The output of the model is a list of
hypernyms for a given entity (left panel, Fig. 1). However, there
usually also exists hypernym–hyponym relations among these
hypernyms. For instance, “ ( )” and “ ( )”
are both hypernyms of the entity “ ( ),” and “; ( )”
is also a hypernym of “ ( ).” Given a list of hy-
pernyms of an entity, our goal in the present work is to construct
a semantic hierarchy of these hypernyms (right panel, Fig. 1).1
Some previous works extend and refine manually-built se-

mantic hierarchies by using other resources (e.g., Wikipedia)
[2]. However, the coverage is limited by the scope of the re-
sources. Several other works relied heavily on lexical patterns,
which would suffer from deficiency because such patterns can
only cover a small proportion of complex linguistic circum-
stances [4], [5]. Besides, distributional similarity methods [6],
[7] are based on the assumption that a term can only be used
in contexts where its hypernyms can be used and that a term
might be used in any contexts where its hyponyms are used.
However, it is not always rational. Our previous method based
on web mining [3] works well for hypernym extraction of entity
names, but it is unsuitable for semantic hierarchy construction
which involves many words with broad semantics. Moreover,
all of these methods do not use the word semantics effectively.
This paper proposes a novel approach for semantic hierarchy

construction based on a special kind of word representations,
named word embeddings.Word embeddings, also known as dis-
tributed word representations, typically represent words with
dense, low-dimensional and continuous-valued vectors (more
details will be introduced in Section III-B). Word embeddings
have been empirically shown to preserve linguistic regularities,

1In this study, we focus on Chinese semantic hierarchy construction. The pro-
posed method can be easily adapted to other languages.
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such as the semantic relationship between words [8]. For ex-
ample, , where

is the embedding of the word . We observe that a sim-
ilar property also applies to the hypernym–hyponym relation-
ship (Section III-C), which is the main inspiration of the present
study.
However, we further observe that hypernym–hyponym rela-

tions are more complicated than a single offset can represent.
To address this challenge, we propose a more sophisticated
and general method—learning a linear projection which maps
words to their hypernyms (Section III-C1). Furthermore, we
propose a piecewise linear projection method based on rela-
tion clustering to better model hypernym–hyponym relations
(Section III-C2). Subsequently, we identify whether an un-
known word pair is a hypernym–hyponym relation using the
projections (Section III-D). To the best of our knowledge, we
are the first to apply word embeddings to this task.
For evaluation, we manually annotate a dataset containing

418 Chinese entities and their hypernym hierarchies, which is
the first dataset for this task as far as we know. The experimental
results show that our method achieves an F-score of 73.74%
which significantly outperforms the previous state-of-the-art
methods. Moreover, combining our method with the manu-
ally-built hierarchy extension method proposed by [2] can
further improve F-score to 80.29%.
Some preliminary results have been reported at our previous

paper [9]. This paper is an extended version. In this paper, we
expand more details of our method, more background of word
embeddings, detailed step descriptions of construction of eval-
uation data, more experiments and analysis.

II. BACKGROUND

A. Semantic Hierarchies

As main components of ontologies, semantic hierarchies
have been studied by many researchers. Some have estab-
lished concept hierarchies based on manually-built semantic
resources such as WordNet [1]. Such hierarchies have good
structures and high accuracy, but their coverage is limited to
fine-grained concepts (e.g., “ ” is not included
in WordNet.). We have made similar observation that about a
half of hypernym–hyponym relations are absent in a Chinese
semantic thesaurus. Therefore, a broader range of resources
is needed to supplement the manually built resources. In the
construction of the famous ontology YAGO, [2] link the cate-
gories in Wikipedia onto WordNet. However, the coverage is
still limited by the scope of Wikipedia.
Several other methods are based on lexical patterns. They use

manually or automatically constructed lexical patterns to mine
hypernym–hyponym relations from text corpora. A hierarchy
can then be built based on these pairwise relations. The pioneer
work by [4] has found out that linking two noun phrases (NPs)
via certain lexical constructions often implies hypernym rela-
tions. For example, is a hypernym of in the lexical
pattern “such as .” [5] propose to automatically extract
large numbers of lexico-syntactic patterns and subsequently de-
tect hypernym relations from a large newswire corpus. Their

method relies on accurate syntactic parsers, and the quality of
the automatically extracted patterns is difficult to guarantee.
Generally speaking, these pattern-based methods often suffer
from low recall or precision because of the coverage or the
quality of the patterns.
The distributional methods assume that the contexts of hy-

pernyms are broader than the ones of their hyponyms. For dis-
tributional similarity computing, each word is represented as
a semantic vector composed of the pointwise mutual informa-
tion (PMI) with its contexts. [6] design a directional distribu-
tional measure to infer hypernym–hyponym relations based on
the standard IR Average Precision evaluation measure. [7] pro-
pose another measure focusing on the contexts that hypernyms
do not share with their hyponyms. However, broader semantics
may not always infer broader contexts. For example, for terms “

” and “ ”, it is hard to say whose con-
texts are broader.
Our previous work [3] applies a web mining method to dis-

cover the hypernyms of Chinese entities from multiple sources.
They assume that the hypernyms of an entity co-occur with it
frequently. It works well for named entities. But for class names
(e.g., singers in Hong Kong, tropical fruits) with wider range of
meanings, this assumption may fail.
In this paper, we aim to identify hypernym–hyponym rela-

tions using word embeddings, which have been shown to pre-
serve good properties for capturing semantic relationship be-
tween words.

B. Word Embeddings

Different from the conventional one-hot word representa-
tion,2 words can also be embedded into a low-dimensional (e.g.
300) and continuous vector space using either context-pre-
dicting models, such as neural network language models [8],
[10]–[12], or spectral methods such as canonical correlation
analysis [13].
Such kind of word representation is called word embedding,

which is first proposed by [10]. In general, word embeddings
are designed to capture attributional similarities [14] between
words in the vocabulary: words that appear in similar contexts
will be distributed close to each other in the embedding space.
In recent years, word embeddings have gainedmore andmore

interest in natural language processing for several reasons, one
of which is that word embeddings preserve rich and useful lin-
guistic regularities. [8] first demonstrated that many syntactic/
semantic relations of words can be recovered bymeans of vector
arithmetic in the embedding space learned by recurrent neural
network language models. For example, let’s again denote the
embedding of a word as , then we have

, which indicates a se-
mantic relational similarity. On the other hand, we also have

, which indicates a
syntactic relational similarity. It was later shown that relational
similarities can also be recovered by other context-predicting
architectures [12], [15]. [16] further studied this problem and

2A feature vector of the same size of the vocabulary, and only one dimension
is on.
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showed that the sparse and explicit word vectors learned by dis-
tributional semantic approach also capture the relational simi-
larities well.
Therefore, by using simple vector arithmetic, one could apply

the relation and solve analogy questions of the form “ is to
as is to _ “ by finding the nearest word to the vector

. We can also answer questions like “does and satisfy
a specific relation ?” if we already have some seeded word
pairs of relation . Here, a specific relation is represented by
the vector offset of a word pair ( , ).
In this study, we will show how to effectively exploit word

embeddings to model the hypernym-hyponym relations. We
show that the hypernym-hyponym relations are much more
complicated than simple vector offsets can capture. They
should be decomposed to more fine-grained relations and then
be modeled separately. Due to the complexity of hypernym-hy-
ponym relation, solving the analogy question mentioned above
is not straightforward, since we cannot accurately sample a
word pair ( , ) that is exactly representative of the specific
hypernym-hyponym relation we are interested in. To address
this problem, we propose a learning-based framework for
determining hypernym-hyponym relationship in this study
(Section III).

III. METHOD

In this section, we first define the task formally. Thenwe elab-
orate on our proposed method composed of three major steps,
namely, word embedding training, projection learning, and hy-
pernym–hyponym relation identification.

A. Task Definition

Given a list of hypernyms of an entity, our goal is to construct
a semantic hierarchy on it (Fig. 1). We represent the hierarchy
as a directed graph , in which the nodes denote the words, and
the edges denote the hypernym–hyponym relations. Hypernym-
hyponym relations are asymmetric and transitive when words
are unambiguous:
•
•
Here, denotes the list of hypernyms. , and denote the

hypernyms in . We use to represent a hypernym–hyponym
relation in this paper. Actually, , and are unambiguous
as the hypernyms of a certain entity. Therefore, should be
a directed acyclic graph (DAG).

B. Word Embedding Training

Various models for learning word embeddings have been pro-
posed, including neural net language models [8], [10], [11] and
spectral models [13]. More recently, [12] propose two log-linear
models, namely the Skip-gram and CBOW model, to efficiently
induce word embeddings. These two models can be trained very
efficiently on a large-scale corpus because of their low time
complexity. Additionally, their experiment results have shown
that the Skip-gram model performs best in identifying semantic
relationship among words. Therefore, we employ the Skip-gram
model for estimating word embeddings in this study.

Fig. 2. The architecture of Skip-gram model [12].

The Skip-gram model adopts log-linear classifiers to predict
context words given the current word as input. First, is
projected to its embedding . Then, a log-linear classifier is
employed, taking the embedding as input and predict the con-
ditional probability distribution of ’s context words within a
certain range, e.g. words in the left and words in the right.

(1)

where is one of the context words of . The parameters are
, for and . Then, the log-likelihood

over the entire dataset can be computed as:

(2)

where is the training datasest. The architecture of Skip-gram
model can be illustrated as Fig. 2. After maximizing the
log-likelihood, the embeddings are learned. We use the negative
sampling [15] method for optimization,3 and the asynchronous
stochastic gradient descent algorithm (Asynchronous SGD)
[18] for parallel weight updating.

C. Projection Learning
[8] observe that word embeddings preserve interesting lin-

guistic regularities, capturing a considerable amount of syn-
tactic/semantic relations. Looking at the well-known example:

, it indicates that
the embedding offsets indeed represent the shared semantic re-
lation between the two word pairs.
We observe that the same property also applies to some hy-

pernym–hyponym relations. As a preliminary experiment, we
compute the embedding offsets between some randomly sam-
pled hypernym–hyponym word pairs and measure their simi-
larities. The results are shown in Table I.
The first two examples imply that a word can also be mapped

to its hypernym by utilizing word embedding offsets. However,
the offset from “ ” to “ ” is distant from
the one from “ ” to “ ,” indicating that hy-
pernym–hyponym relations should be more complicated than a
single vector offset can represent. To verify this hypothesis, we
compute the embedding offsets over all hypernym–hyponym

3In fact, negative sampling optimizes a different objective from the original
Skip-gram log-likelihood. More details are analyzed in [17].
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Fig. 3. Clusters of the vector offsets in training data. The figure shows that the vector offsets distribute in some clusters. The left cluster shows some hypernym–hy-
ponym relations about animals. The right one shows some relations about people’s occupations.

TABLE I
EMBEDDING OFFSETS ON A SAMPLE OF HYPERNYM-HYPONYM WORD PAIRS

word pairs in our training data and visualize them.4 Fig. 3 shows
that the relations are well distributed in groups, which implies
that hypernym–hyponym relations indeed can be decomposed
into more fine-grained relations. Moreover, the relations about
animals are spatially close, but separate from the relations
about people’s occupations.
To address this challenge, we propose to model the hy-

pernym–hyponym relations by learning projection matrices
which map the hypernyms to their hyponyms in continuous
vector space.
A Uniform Linear Projection: Intuitively, we assume that all

words can be projected to their hypernyms based on a uniform
transition matrix. That is, given a word and its hypernym ,
there exists a matrix so that . For simplicity, we use
the same symbols as the words to represent the embedding vec-
tors. Obtaining a consistent exact for the projection of all hy-
pernym–hyponym pairs is difficult. Instead, we can learn an ap-
proximate using Equation (3) on the training data, which min-
imizes the mean-squared error:

(3)

where is the number of ( ) word pairs in the training data.
This is a typical linear regression problem. The only difference
is that our predictions are multi-dimensional vectors instead of
scalar values. We use SGD for optimization.
Piecewise Linear Projections: A uniform linear projection

may still be under-representative for fitting all of the hy-
pernym–hyponym word pairs, because the relations are rather
diverse, as shown in Fig. 3. To better model the various kinds of

4Principal Component Analysis (PCA) is applied for dimensionality reduc-
tion.

hypernym–hyponym relations, we apply the idea of piecewise
linear regression [19] in this study.
Specifically, the input space is first segmented into several re-

gions. That is, all word pairs ( ) in the training data are first
clustered into several groups, where word pairs in each group
are expected to exhibit similar hypernym–hyponym relations.
Each word pair ( ) is represented with their vector offsets:

for clustering. The reasons are twofold: (1) Mikolov’s
work has shown that the vector offsets imply a certain level of
semantic relationship. (2) The vector offsets distribute in clus-
ters well, and the word pairs which are close indeed represent
similar relations, as shown in Fig. 3.
Then we learn a separate projection for each cluster, respec-

tively (Equation (4)).

(4)

where is the amount of word pairs in the th cluster .
We use the -means algorithm for clustering, where is tuned

on a development dataset.
Training Data: To learn the projection matrices, we extract

training data from a Chinese semantic thesaurus, Tongyi Cilin
(Extended) (CilinE for short) which contains 100,093 words
[20].5 CilinE is organized as a hierarchy of five levels, in which
the words are linked by hypernym–hyponym relations (right
panel, Fig. 4). Each word in CilinE has one or more sense codes
(some words are polysemous) that indicate its position in the
hierarchy.
The senses of words in the first level, such as “ ( )”

and “ ( ),” are very general. The fourth level only has sense
codes without real words. Therefore, we extract words in the
second, third and fifth levels to constitute hypernym–hyponym
pairs (left panel, Fig. 4).
Note that mapping one hyponym to multiple hypernyms with

the same projection ( is unique) is difficult. Therefore, the
pairs with the same hyponym but different hypernyms are ex-
pected to be clustered into separate groups. Fig. 4 shows that
the word “ ” in the fifth level has two hypernyms:
“ ” in the third level and “ ” in the second level.
Hence the relations insect and

should fall into different clusters.

5www.ltp-cloud.com/download/
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Fig. 4. Hierarchy of CilinE and an Example of Training Data Generation.

Fig. 5. In this example, is located in the circle with center and radius .
So is considered as a hypernym of . Conversely, is not a hypernym of .

In our implementation, we apply this constraint by simply
dividing the training data into two categories, namely, direct and
indirect. Hypernym-hyponym word pair ( ) is classified into
the direct category, only if there doesn’t exist another word in
the training data, which is a hypernym of and a hyponym of .
Otherwise, ( ) is classified into the indirect category. Then,
data in these two categories are clustered separately.

D. Hypernym-Hyponym Relation Identification

Upon obtaining the clusters of training data and the corre-
sponding projections, we can identify whether two words have
a hypernym–hyponym relation. Given two words and , we
find cluster whose center is closest to the offset , and
obtain the corresponding projection . For to be considered
a hypernym of , one of the two conditions below must hold.
Condition 1: The projection puts close enough to

(Fig. 5). Formally, the euclidean distance between and :
must be less than a threshold .

(5)

Condition 2: There exists another word satisfying
and . In this case, we use the transitivity of hypernym–hy-
ponym relations.
Besides, the final hierarchy should be a DAG as discussed

in Section III-A. However, the projection method cannot guar-
antee that theoretically, because the projections are learned from
pairwise hypernym–hyponym relations without the whole hier-
archy structure. All pairwise hypernym–hyponym relation iden-
tification methods would suffer from this problem actually. It is

Fig. 6. (a) If , we remove the path from to ; (b) if
and , we reverse the path

from to .

an interesting problem how to construct a globally optimal se-
mantic hierarchy conforming to the form of a DAG. But this is
not the focus of this paper. So if some conflicts occur, that is,
a relation circle exists, we remove or reverse the weakest path
heuristically (Fig. 6). If a circle has only two nodes, we remove
the weakest path. If a circle has more than two nodes, we re-
verse the weakest path to form an indirect hypernym–hyponym
relation.

IV. EXPERIMENTAL SETUP

A. Settings for Training

In this work, we learn word embeddings from a Chinese
encyclopedia corpus named Baidubaike6, which contains about
30 million sentences (about 780 million words). The Chinese
segmentation and part of speech tagging is provided by the
open-source Chinese language processing platform LTP7[20].
Then, we employ the Skip-gram method (Section III-B) to train
word embeddings. Finally we obtain the embedding vectors of
0.56 million words.
The training data for projection learning is collected from

CilinE (Section III-C3). We obtain 15,247 word pairs of hy-
pernym–hyponym relations (9,288 for direct relations and 5,959
for indirect relations).

B. Construction of Evaluation Data

For evaluation, we collect the hypernyms for 418 entities,
which are selected randomly from Baidubaike, following [3].
In that paper, we propose a method for finding hypernyms of
Chinese open-domain entities from multiple sources. First, we
collect candidate hypernyms from multiple sources for a given
entity. Then, a statistical model is built for hypernym ranking
based on a set of effective features.
Candidate Hypernym Collection: We collect candidate hy-

pernyms with wide coverage from search results, encyclopedia
category tags and the head word for a given entity. We search
the entity using a search engine and count the co-occurrence
frequency between the target entity and other words in the re-
turned snippets and titles. We select top 10 frequent nouns (or
noun phrases) as the main candidates.
Furthermore, the user-generated encyclopedia category tags

are important clues if the entity exists in a encyclopedia. Thus
we add these tags into the candidates. In this work, we consider

6Baidubaike (baike.baidu.com) is one of the largest Chinese encyclopedias
containing more than 9.26 million entries as of July, 2014.

7www.ltp-cloud.com
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TABLE II
THE FEATURES FOR HYPERNYM RANKING

two Chinese encyclopedias, Baidubaike and another Chinese
encyclopedia Hudongbaike8, as hypernym sources.
In addition, the head words of entities are also their hyper-

nyms sometimes. For example, the head word of “ (Emperor
Penguin)” indicates that it’s a kind of “ (penguins)”. Thus we
put head words into the hypernym candidates. In Chinese, head
words are often laid after their modifiers. Therefore, we try to
segment a given entity. If it can be segmented and the last word
is a noun, we take the last word as the head word.
Hypernym Ranking: We propose a set of features (Table II)

to build a Logistic Regression (LR) model to rank the candidate
hypernyms on the training data collected automatically. The fea-
tures include hypernym prior, source information (i.e. Is_Tag,
Is_Head, and Source_Num), lexicon, and other additional in-
formation. Our previous work [3] shows that these features are
effective for hypernym ranking models.
Hypernym Prior: Intuitively, different words have different

probabilities as hypernyms of some other words. Some are more
probable as hypernyms, such as animal, plant and fruit. Some
other words such as sun, nature and alias, are not usually used
as hypernyms. Thus we use a prior probability to express this
phenomenon. The assumption is that if the more frequent that a
noun appears as category tags, the more likely it is a hypernym.
We extract category tags from 2.4 million pages in Baidubaike,
and compute the prior probabilities for a word being
a potential hypernym using Equation (6). denotes
the times a word appeared as a category tag in the encyclopedia
pages.

(6)

In Titles: When we enter a query into a search engine, the
engine returns a search result list, which contains document ti-
tles and their snippet text. The distributions of hypernyms and
non-hypernyms in titles are compared with that in snippets re-
spectively in our training data. We discover that the average fre-
quency of occurrence of hypernyms in titles is 15.60 while this
number of non-hypernyms is only 5.18, while the difference in
snippets is very small (Table III). Thus the frequency of candi-
dates in titles can be used as features. In this work the frequency
is divided into three cases: greater than 15.60, less than 5.18, and

8www.baike.com

TABLE III
DISTRIBUTIONS OF CANDIDATE HYPERNYMS IN TITLES AND SNIPPETS

between 5.18 and 15.60. Three binary features are used to rep-
resent these cases.
Synonyms: If there exist synonyms of a candidate hypernym

in the candidate list, the candidate is probably correct answer.
For example, when “ (medicine)” and “ (medicine)” both appear
in the candidate list of an entity, the entity is probably a kind
of medicine. We get synonyms of a candidate from a Chinese
semantic thesaurus–Tongyi Cilin (Extended) (CilinE for short)9
and compute the score as a feature using Equation (7).

(7)

Given a hypernym candidate of an entity and the list of all
candidates , we compute the ratio of the synonyms of in .

denotes the count of the synonyms of in .
is the total count of candidates.

Radicals: Chinese characters are a form of ideogram. By far,
the bulk of Chinese characters were created by linking together
a character with a related meaning and another character to in-
dicate its pronunciation. The character with a related meaning is
called radical. Sometimes, it is a important clue to indicate the
semantic class of the whole character. For example, the radical
“ means insects, so it hints “” (dragonfly)” is a kind of insects.
Similarly “ hints “ (lymphoma)” is a kind of diseases. Thus we
use radicals as a feature the value of which is computed by using
Equation (8).

(8)

Here denotes the ratio of characters rad-
ical-matched with the last character of the entity in the
hypernym . denotes the count of the rad-
ical-matched characters in . denotes the total count of
the characters in .

9CilinE contains synonym and hypernym relations among 77 thousand words,
which is manually organized as a hierarchy of five levels.
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Fig. 7. An example for annotation of evaluation data.

Hierarchy Annotation: We then ask two annotators to manu-
ally label the semantic hierarchies of the correct hypernyms. For
example, the extracted correct hypernyms of “Lionel Messi” in-
clude “footballer”, “sportsperson” and “sports star”. We anno-
tated all of the six directed pairs as Fig. 7 shows.
The final data set contains 655 unique hypernyms and 1,391

hypernym–hyponym relations among them. We randomly split
the labeled data into 1/5 for development and 4/5 for testing
(Table IV). The hierarchies are represented as relations of pair-
wise words. We measure the inter-annotator agreement using
the kappa coefficient [21]. The kappa value is 0.96, which indi-
cates a good strength of agreement.

C. Evaluation Metrics
We use the widely adopted precision (P), recall (R), and

F-score (F) as our metrics to evaluate the performances of the
methods:

# of correct hypernym hyponym relations identified
# of hypernym hyponym relations identified

# of correct hypernym hyponym relations identified
# of gold hypernym hyponym relations

Since hypernym–hyponym relations and its reverse (hy-
ponym–hypernym) have one-to-one correspondence, their
performances are equal. For simplicity, we only report the
performance of the former in the experiments.

V. RESULTS AND ANALYSIS

A. Varying the Amount of Clusters
We first evaluate the effect of different number of clusters

based on the development data. We vary the numbers of the
clusters both for the direct and indirect training word pairs.
As shown in Fig. 8, the performance of clustering is better

than non-clustering (when the cluster number is 1), thus pro-
viding evidences that learning piecewise projections based on
clustering is reasonable. We finally set the numbers of the clus-
ters of direct and indirect to 20 and 5, respectively, where the
best performances are achieved on the development data.

B. Comparison with Previous Work
In this section, we compare the proposed method with pre-

vious methods, including manually-built hierarchy extension,

TABLE IV
THE EVALUATION DATA. SINCE HYPERNYM–HYPONYM RELATIONS AND
HYPONYM–HYPERNYM RELATIONS HAVE ONE-TO-ONE CORRESPONDENCE,

THEIR NUMBERS ARE THE SAME

Fig. 8. Performance on development data w.r.t. cluster size. (a) The number of
the clusters of indirect hypernym–hyponym relations (b) The number
of the clusters of indirect hypernym–hyponym relations (c) The
number of the clusters of indirect hypernym–hyponym relations
(d) The number of the clusters of indirect hypernym–hyponym relations

.

TABLE V
COMPARISON OF THE PROPOSED METHOD WITH

EXISTING METHODS IN THE TEST SET

pairwise relation extraction based on patterns, word distri-
butions, and web mining (Section II). Results are shown in
Table V.
Overall Comparison: refers to the manually-

built hierarchy extension method of [2]. In our experiment, we
use the category taxonomy of Chinese Wikipedia10 to extend

10dumps.wikimedia.org/zhwiki/20131205/
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TABLE VI
CHINESE HEARST-STYLE LEXICAL PATTERNS. THE CONTENTS

IN SQUARE BRACKETS ARE OMISSIBLE

CilinE. Table V shows that this method achieves a high preci-
sion but also a low recall, mainly because of the limited scope
of Wikipedia.

refers to the pattern-based method of [4]. We ex-
tract hypernym–hyponym relations in the Baidubaike corpus,
which is also used to train word embeddings (Section IV-A).
We use the Chinese Hearst-style patterns (Table VI) proposed
by [3], in which w represents a word, and h represents one of its
hypernyms. The result shows that only a small part of the hy-
pernyms can be extracted based on these patterns because only
a few hypernym relations are expressed in these fixed patterns,
and many are expressed in highly flexible manners.
In the same corpus, we apply the method originally

proposed by [5]. The same training data for projections learning
from CilinE (Section III-C3) is used as seed hypernym–hy-
ponym pairs. Lexico-syntactic patterns are extracted from
the Baidubaike corpus by using the seeds. We then develop
a logistic regression classifier based on the patterns to recog-
nize hypernym–hyponym relations. This method relies on an
accurate syntactic parser, and the quality of the automatically
extracted patterns is difficult to guarantee.
We re-implement two previous distributional methods

[6] and [7] in the Baidubaike corpus. Each
word is represented as a feature vector in which each dimension
is the PMI value of the word and its context words. We compute
a score for each word pair and apply a threshold to identify
whether it is a hypernym–hyponym relation.

refers to our previous web mining method [3]. This
method mines hypernyms of a given word from multiple
sources and returns a ranked list of the hypernyms. We select
the hypernyms with scores over a threshold of each word in the
test set for evaluation. This method assumes that frequent co-oc-
currence of a noun or noun phrase in multiple sources with
indicate possibility of being a hypernym of . The results pre-
sented in [3] show that the method works well when is an en-
tity, but not when is a word with a common semantic concept.
The main reason may be that there are relatively more introduc-
tory pages about entities than those about common words in the
Web.

is the proposed method based on word embeddings.
Table III shows that the proposedmethod achieves a better recall
and F-score than all of the previous methods do. It can signifi-
cantly ( )11 improve the F-score over the state-of-the-art
method .

and CilinE can also be combined. The combination
strategy is to simply merge all positive results from the two

11We use the method proposed in [22] to test significance.

Fig. 9. Precision-Recall curves on the out-of-CilinE data in the test set.

methods together, and then to infer new relations based on the
transitivity of hypernym–hyponym relations. The F-score is fur-
ther improved from 73.74% to 76.29%. Note that, the combined
method achieves a 4.43% recall improvement over , but
the precision is almost unchanged. The reason is that the infer-
ence based on the relations identified automatically may lead
to error propagation. For example, the relation is in-
correctly identified by . When the relation from
CilinE is added, it will cause a new incorrect relation .
Combining with achieves a 7%

F-score improvement over the best baseline .
Therefore, the proposed method is complementary to the man-
ually-built hierarchy extension method [2].
Comparison on the Out-of-CilinE Data: We are greatly

interested in the practical performance of the proposed method
on the hypernym–hyponym relations outside of CilinE. We
say a word pair is outside of CilinE, as long as there is one
word in the pair not existing in CilinE. In our test data, about
62% word pairs are outside of CilinE. Table VII shows the
performances of the best baseline method and our method on
the out-of-CilinE data. The method exploiting the taxonomy in
Wikipedia, , achieves the highest precision but
has a low recall. By contrast, our method can discover more
hypernym–hyponym relations with some loss of precision,
thereby achieving a more than 29% F-score improvement. The
combination of these two methods achieves a further 4.5%
F-score improvement over . Generally speaking,
the proposed method greatly improves the recall but damages
the precision.
Actually, we can get different precisions and recalls by

adjusting the threshold (Equation (5)). Fig. 9 shows that
achieves a higher precision than

when their recalls are the same. When they achieve the same
precision, the recall of is higher.

C. Effect of the Word Embedding Dimensionality

To analyze the effect of the word embedding dimensionality
on the final performance, we train word embeddings with di-
mensions ranging from 100 to 500 and learn projections respec-
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TABLE VII
PERFORMANCE ON THE OUT-OF-CILINE DATA IN THE TEST SET

Fig. 10. The performance w.r.t. different dimensions of word embeddings on
the test data. We show the mean, max, min values for each dimension under dif-
ferent clustering settings, i.e., the number of clusters for the direct and indirect
training word pairs.

tively based on different clustering settings. The performances
are shown in Fig. 10.
Higher dimensions of word embeddings are expected to pre-

serve stronger expression ability. However, we should note that
the number of parameters in our projection learning model is

for each cluster where is the dimension of word embed-
ding. This can be a very high-dimensional model as increases
and thus difficult to learn due to the curse of dimensionality.
Hence, as we observed in Fig. 10, when we increase the word
embedding dimension from 100 to 300, the performance can be
improved. But when the dimension goes beyond 300, the per-
formance decreases.

D. Error Analysis and Discussion
We analyze error cases after experiments. Some cases are

shown in Fig. 11. We can see that there is only one general rela-
tion “ ( )” “ ( )” existing in CilinE. Some
fine-grained relations exist in Wikipedia, but the coverage is
limited. Our method based on word embeddings can discover
more hypernym–hyponym relations than the previous methods
can. When we combine the methods together, we get the correct
hierarchy.
Fig. 11 shows that our method loses the relation

“ ( )” “ ( ).” It is because they are
very semantically similar (their cosine similarity is 0.9038).
Their representations are so close to each other in the embed-
ding space that we have not find projections suitable for these
pairs. The error statistics show that when the cosine similarities
of word pairs are greater than 0.8, the recall is only 9.5%. This
kind of error accounted for about 10.9% among all the errors in
our test set. But the amount of this kind of data (the similarity
is greater than 0.8) is only 82 (0.5%) in the training data. The
corresponding projections therefore are not learned fully. One

Fig. 11. An example for error analysis. The red paths refer to the relations
between the named entity and its hypernyms extracted using the web mining
method [3]. The black paths with hollow arrows denote the relations identi-
fied by the different methods. The boxes with dotted borders refer to the con-
cepts which are not linked to correct positions. (a) CilinE (b) Wikipedia+CilinE
(c) Embedding (d) Embedding+Wikipedia+CilinE.

possible solution may be adding more data of this kind to the
training set.

VI. RELATED WORK

In addition to the worksmentioned in Section II, we introduce
another set of related studies in this section.
[23], [24], and [25] consider web data as a large corpus and

use search engines to identify hypernyms based on the lexical
patterns of [4]. However, the low quality of the sentences in the
search results negatively influence the precision of hypernym
extraction.
Following the method for discovering patterns automatically

[5], [26] apply the same method to extract hypernyms of enti-
ties in order to improve the performance of a question answering
system. [27] propose a method based on patterns to find hyper-
nyms on arbitrary noun phrases. They use a support vector ma-
chine classifier to identify the correct hypernyms from the can-
didates that match the patterns. As our experiments show, pat-
tern-based methods suffer from low recall because of the low
coverage of patterns.
Besides [6] and [7], other researchers also propose direc-

tional distributional similarity methods [28]–[32]. However,
their basic assumption that a hyponym can only be used in
contexts where its hypernyms can be used and that a hypernym
might be used in all of the contexts where its hyponyms are
used may not always rational.
[33] provides a global optimization scheme for extending

WordNet, which is different from the above-mentioned pairwise
relationships identification methods.
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Various deep learning methods have been applied to fields
such as computer vision [34], [35], automatic speech recogni-
tion [36], [37], and natural language processing where they have
been shown to produce state-of-the-art results on various tasks.
In the field of natural language processing, the most widely re-
searched tasks based on deep learning are word embeddings.
Word embeddings have been successfully applied in many ap-
plications, such as in language modeling [38]–[40], sentiment
analysis [41], paraphrase detection [42], chunking, and named
entity recognition [43], [44]. These applications mainly utilize
the representing power of word embeddings to alleviate the
problem of data sparsity. [12] and [8] further observe that the
semantic relationship of words can be induced by performing
simple algebraic operations with word vectors. Their work in-
dicates that word embeddings preserve some interesting lin-
guistic regularities, which might provide support for many ap-
plications. In this paper, we improve on their work by learning
multiple linear projections in the embedding space, to model hy-
pernym–hyponym relationships within different clusters.

VII. CONCLUSION AND FUTURE WORK

This paper proposes a novel method for semantic hierarchy
construction based on word embeddings, which are trained
using a large-scale corpus. Using the word embeddings, we
learn the hypernym–hyponym relationship by estimating
projection matrices which map words to their hypernyms.
Further improvements are made using a cluster-based approach
in order to model the more fine-grained relations. Then we
propose a few simple criteria to identity whether a new word
pair is a hypernym–hyponym relation. Based on the pairwise
hypernym–hyponym relations, we build semantic hierarchies
automatically.
In our experiments, the proposedmethod significantly outper-

forms state-of-the-art methods and achieves the best F1-score of
73.74% on a manually labeled test dataset. Further experiments
show that our method is complementary to the previous manu-
ally-built hierarchy extension methods.
For future work, we aim to improve word embedding

learning under the guidance of hypernym–hyponym relations.
By including the hypernym–hyponym relation constraints
while training word embeddings, we expect to improve the
embeddings such that they become more suitable for this task.
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