Active Learning for Software Engineering

José P. Cambronero Thurston H. Y. Dang Nikos Vasilakis*
CSAIL MIT CSAIL MIT CSAIL MIT
USA USA USA

jcamsan@mit.edu

tdang@mit.edu

nikos@vasilak.is

Jiasi Shen Jerry wu' Martin C. Rinard
CSAIL MIT Google CSAIL MIT
USA USA USA

jiasi@csail.mit.edu

Abstract

Software applications have grown increasingly complex to
deliver the features desired by users. Software modularity
has been used as a way to mitigate the costs of developing
such complex software. Active learning-based program in-
ference provides an elegant framework that exploits this
modularity to tackle development correctness, performance
and cost in large applications. Inferred programs can be used
for many purposes, including generation of secure code, code
re-use through automatic encapsulation, adaptation to new
platforms or languages, and optimization. We show through
detailed examples how our approach can infer three mod-
ules in a representative application. Finally, we outline the
broader paradigm and open research questions.

CCS Concepts -« Software and its engineering — Soft-
ware development techniques.

Keywords program inference, program modeling, active
learning

ACM Reference Format:

José P. Cambronero, Thurston H. Y. Dang, Nikos Vasilakis, Jiasi
Shen, Jerry Wu, and Martin C. Rinard. 2019. Active Learning for
Software Engineering. In Proceedings of the 2019 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software (Onward! ’19), October 23—24,
2019, Athens, Greece. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3359591.3359732

“Work was done while the author was with the University of Pennsylvania.
TWork was done while the author was with MIT.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Onward! °19, October 23-24, 2019, Athens, Greece

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6995-4/19/10...$15.00
https://doi.org/10.1145/3359591.3359732

werryju@mit.edu

62

rinard@csail.mit.edu

1 Introduction

Software engineering as practiced today is a laborious and
error-prone process. Programmers are faced with large, poorly
documented (and hard to inspect) systems. This makes work-
ing with such codebases an unwieldy exercise, negatively
impacting correctness, runtime performance, and develop-
ment cost.

We propose an alternative paradigm: using active learning
to automatically infer program functionality. By feeding a
program carefully crafted inputs and observing its behav-
ior, we can capture the program’s core semantics in a form
amenable to analysis, augmentation, and engineering.

1.1 Dimensions

Our work aims to improve three key dimensions of software
engineering artifacts: correctness, runtime performance, and
development cost.

Correctness:

Inferring the semantics of an application from its execu-
tion facilitates creating an inferred program that satisfies
the de facto specification [8], which reflects the behavior
experienced and expected by its end-users.

Depending on the application and our inference process,
the inferred program will not identically replicate the origi-
nal application. However, this behavior can be an advantage.
For example, an application could be hard-coded to only pro-
cess images of a fixed width and height, while the inferred
application can be generalized to varying sizes.

Security can be considered a special case of correctness.
Vulnerabilities such as buffer overflows can be exploited to
corrupt the data or control-flow of the program, causing
unintended behavior. Our framework can use a subset of
inputs to reduce the attack surface and the regenerated code
can be designed to be safe-by-construction.

Runtime Performance:

Our systems infer the functionality of a program, divorced
from its underlying implementation or language. This frees
our techniques from the constraints of legacy codebases, al-
lowing generation of new code that can be highly optimized
by the latest compilers.

https://doi.org/10.1145/3359591.3359732
https://doi.org/10.1145/3359591.3359732
https://doi.org/10.1145/3359591.3359732

Onward! ’19, October 23-24, 2019, Athens, Greece

Moreover, in principle, our inference systems can perform
more fundamental optimizations at the algorithmic level. For
example, consider a legacy binary that performs bubble sort.
An inference system that only observes the active behavior
of the program could determine that a sorting operation was
performed, and emit code that uses a more efficient sorting
algorithm, such as mergesort.

Development Cost: Software engineering with active learn-
ing can help bridge the gap between the intent of the pro-
grammer and the concrete instantiation of their vision. By
viewing the active behavior as the specification, our para-
digm allows the programmer to code their system in any
language and then have its semantics extracted and automat-
ically re-expressed in any other target language.

1.2 Limitations of Current State of the Art

Prior efforts to improve on these dimensions have encoun-
tered difficulties—e.g., non-trivial generalization challenges
across languages [41]—addressed using a combination of

manual annotations [24, 25], full formal specifications [45,
54], and significant human intervention or source code access
for reverse engineering [44],

The active-learning-based approach to software engineer-
ing that we propose allows us to circumvent such difficulties:
as we infer the application, there is no need for a specifica-
tion beyond the one captured by the program’s behavior;
and since we can modify the inferred application freely, we
can add (or remove) checks as appropriate, reducing per-
formance costs. We provide further details on the current
state of the art and how it compares with our approach in
Section 9.

1.3 Structure of the Paper

We begin by introducing key background concepts in active
learning and program inference (Section 2). We then outline
our paradigm by considering a social network application
(Section 3), and show how to infer a small, but diverse, set of
its components using three different techniques and systems
(Section 4-6):

e Section 4 presents a technique to infer and regenerate
binary data parsers, similar to the one needed by the social
network application.

e Section 5 discusses Shen and Rinard’s [73] technique for
inferring programs that use databases, and how this can
be applied to the account management back-end of our
social network application.

e Section 6 presents a technique for upgrading a program
that uses in-memory data structures such as maps and
lists to one that uses a database. This upgrade is done
without changing the original program to use an external
framework, such as one for Object-Relational Mapping
(ORM).

63

J. Cambronero, T. Dang, N. Vasilakis, J. Shen, J. Wu, and M. Rinard

These example components illustrate several benefits of
our proposed approach. For example, parsers are a signifi-
cant source of security vulnerabilities in programs [53, 61];
and database interfaces are known sources of development
and maintenance cost. Our regenerated programs can be
safe-by-construction—automatically augmented with secu-
rity checks—while significantly simplifying the development
process.

We present the general paradigm of active learning for
software engineering (Section 7), including design choices
for the observation, inference and generation models, discuss
research challenges and threats to validity (Section 8), and
compare with prior work (Section 9).

2 Background

We introduce background concepts employed throughout the
remainder of the paper. We outline program inference, active
learning broadly and its application to program inference.

2.1 Program Inference

We define program inference as the task of modeling a com-
putation by repeatedly interacting with, and observing the
behavior of, an existing implementation of that computa-
tion. The inference technique interacts with the existing
implementation by executing a command, i.e., a procedure
or function, that has been exposed by the implementation’s
API (e.g., the main function of a program written in C).

A hypothesis corresponds to a possible model of that com-
putation (e.g., a partial program), which is said to be con-
sistent with an execution if the execution’s behavior under
the model matches the behavior in the original program. We
say there is inference ambiguity when there are two or more
hypotheses that are consistent with the implementation’s
observed executions and may not be equivalent to each other.
Absent any additional information, either hypothesis could
represent the target computation. To resolve this ambiguity
we may attempt to induce an execution that can rule out
competing hypotheses.

A crucial difference between program inference and other
automated programming techniques, such as inductive pro-
gram synthesis [62], is that program inference assumes an
implementation of the desired computation already exists
and is available during inference. This reference implemen-
tation eliminates the need for examples or a formal specifi-
cation.

2.2 Active Learning

Active learning refers to a setting in which a learning algo-
rithm is free to query an oracle or environment to obtain
additional information for the learning task [69]; often this
information comes in the form of ground-truth labels asso-
ciated with examples. For example, a system may request
labels for examples with low-confidence predictions [46] or

Active Learning for Software Engineering

Existing
Program
Implementation

command

Execution |
Feedback :

Core

H Input
E Generator/Acquirer

Inputs Algorithm

Program Inference Technique

Figure 1. Active learning in program inference. At a
high-level, the program inference technique incorporates ex-
ecution feedback from the existing program implementation
and then actively picks new inputs to refine the hypothesized
model of the underlying computation.

examples that most reduce the space of possible models [37].
The goal of active learning, broadly construed, is to improve
the ability of the learning algorithm to efficiently use the
available data. It is important to note that active learning
is an addition to, not a replacement of, the core learning
technique (e.g., a standard classifier can be trained with or
without active learning).

2.3 Program Inference and Active Learning

As discussed previously, a core challenge in program infer-
ence is to resolve the ambiguity between possible hypotheses.
Rather than depending on a fixed corpus of inputs, program
inference has the advantage of having access to a “cheap”
oracle: the existing implementation. This oracle can be used
to actively “label” different inputs with their corresponding
ground-truth behavior. Furthermore, the inference technique
can actively construct inputs that are devised to increase the
likelihood that the hypothesized model can be refined. Active
learning, thus, provides a grounded approach to exploring
and refining the inferred program.

Figure 1 provides a schematic of this high-level algorithm,
which motivates the rest of our paper. The program infer-
ence technique consists of a core inference algorithm, which
incorporates execution feedback from the existing imple-
mentation, and a method for acquiring/generating inputs to
improve the hypothesis. In the following sections we discuss
three different techniques that instantiate this higher-level
algorithm to infer different types of programs.

For reference purposes, Figure 2 presents a summary of
key terms introduced.

3 Active Learning at Scale

We use a modern social network application to illustrate the
challenges of active learning at the scale of a production-
grade application (Section 3.1), explain how module-level
decomposition can make such active learning tractable (Sec-
tion 3.2), and showcase an end-to-end example of learning
and regeneration (Section 3.3).

64

Onward! ’19, October 23-24, 2019, Athens, Greece

program inference: Producing a model of a computa-
tion, in the form of a program, by repeatedly interact-
ing with, and deriving hypotheses from, an existing
implementation of that computation.

command: An API function or procedure that can be
invoked to interact with an existing program imple-
mentation and execute the target behavior (e.g., the
main function in a program written in C).

consistency: We say an inferred model is consistent
with an execution, if the behavior when executing the
inferred model matches that of the original program.

inference ambiguity: When two or more program hy-
potheses are consistent with observed executions, but
may not be equivalent to each other.

active learning: Augmenting a learning algorithm to
query/obtain information from an oracle or environ-
ment in a directed manner.

Figure 2. Glossary. A summary of key background terms.

3.1 Challenges and Opportunities

Consider a modern social network application like Face-
book. Such an application must provide a dizzying array of
functionality—e.g., user accounts, news feeds, photos, group
events, search queries—accounting for millions of lines of
code. For example, Facebook’s source code in 2011 totaled
more than nine million lines [63], spanning different logical
subsystems and semantic levels, and supported by thousands
of engineers (and open-source backing). How could active
learning infer and regenerate such an application?

A key insight is that modern applications, even when
seemingly monolithic, are highly modular—just the front-
end code of the aforementioned Facebook example was over
10K modules in 2011 [67]. Software modules are development-
time constructs that abstract away inessential details and
present well-encapsulated interfaces to their consumers. They
provide implicit, fine-grained guidelines for breaking down
the complexity of active learning.

Pervasive modularization is a relatively recent phenome-
non. Recent research [80, 89] shows that today’s software is
primarily composed of third-party modules, with large appli-
cations numbering in the thousands to tens of thousands of
modules. Even more impressive are the statistics of language-
specific package repositories. JavaScript hosts more than 1M
packages from over 100K authors and serves billions of pack-
age downloads per day [68]. Such extensive modularity, the
use of encapsulation, and pervasive reuse of code in today’s
applications translates to several opportunities for active
learning:

e Divide and Conquer: Recursive module imports simplify
active learning and regeneration, as complex modules are

Onward! ’19, October 23-24, 2019, Athens, Greece

Format .
Dates O*}oPaddmg
Posts . Bols (§2.3)
O o Parsing
ROUting : /'o (§3)
Social (§4 -0
Networking O — Q — O~ ~Photos O Compression
: . LA
Service \User“ yo DB (§5)
o
Groups > (OEvents

Figure 3. Active learning of a complex application. De-
composition into smaller modules is accomplished top-to-
bottom (root-to-leaves), whereas regeneration is bottom-to-
top (leaves-to-root). Non-shaded vertices denote vanilla com-
ponents, shaded vertices denote regenerated components,
and dotted edges denote omission of layers. The modules
highlighted in bold are exemplified in Sections 4-6.

composed by many simpler ones—to the point that leaf-
level, elementary modules can be inferred directly.

o Interface Reuse: Module re-use within a single applica-
tion translates to observing active program behavior in
multiple settings, significantly aiding active learning.

e Fine Granularity: Multi-thousand-module dependency
trees enable visibility into an application’s behavior at a
high resolution in time and space: (i) at every function
call entering a module, and (ii) on thousands of modules
across an application.

e Clear Boundaries: Modules today encapsulate state be-
hind small and tight interfaces, with clear self-contained
components. This structure simplifies capturing every ob-
servable behavior, and lowers the cost of interacting with
the target program.

e Parallel Learning: Module state at the same level in a de-
pendency tree is independent, allowing parallel inference
and regeneration.

The next section returns to the social-network applica-
tion, illustrating one possible way of putting these ideas into
practice.

3.2 Breaking Down into Modules

We start by unfolding a complex application or module into
smaller modules (top-down), so as to leverage recursive ac-
tive learning and regeneration. Inferred modules are then
composed into larger modules, leading to regeneration of
the entire application.

Figure 3 presents an overview of this process using the
(simplified) module structure of a social network applica-
tion. Vertices represent modules. Edges depict their interde-
pendencies: parent (caller) modules importing child (callee,
consumer) modules. Dotted edges imply multiple levels of
depth, and thicker vertices highlight modules used as de-
tailed examples of active learning in the rest of the paper.
Features such as user accounts are implemented as separate

65

J. Cambronero, T. Dang, N. Vasilakis, J. Shen, J. Wu, and M. Rinard

txfm (e: Field) : Field « match e with
| L.f — (...args){v < f(args) // alr(args, v)}
[{(s, v) : vS} — {(s, txfm v) :: txfm vs}
| [v:vs] — [(txfm v) i txfm vs]
| __ — interpose(e)
end

Figure 4. Interposition transformation for module-
level active learning. The type structure (in turquoise) of
module interface elements is used for pattern matching. In
the first pattern, alr () passes the input arguments and re-
turn value (args, v) of every function f at the module bound-
ary to the active learning algorithm of choice; this learning
executes concurrently with the main call without blocking
calls into the module (Cf.§3.2). The next two patterns ap-
ply this transformation recursively, as module return values
are objects of arbitrary nesting. Finally, interpose wraps
any primitive-value entry points to the module (e.g., assign-
ments).

modules that draw their functionality from other modules
further down in the dependency tree. For example, Photos
imports functionality to parse and compress images.

A first step towards module-level active learning is to in-
terpose at the module boundaries. Such interposition can be
achieved automatically, for example, by detecting and trans-
forming module interfaces. The specifics of these transfor-
mations depend on the language setting, with compiled and
dynamic languages providing appropriate mechanisms (e.g.,
Template Haskell, Rust’s macro system, name (re-)binding,
and dynamic code evaluation).

In both language settings, a module’s return value is trans-
formed to automatically capture active program behavior, in
this case in the form of input-output pairs. This transforma-
tion is structured similar to Figure 4: the module interface is
augmented to pass call arguments and return values to the
active learning infrastructure (alr). (The complexity of trans-
formation stems from the fact that a module return value
can be an object of arbitrary nesting.) The active learning
infrastructure could (i) generate a preliminary template for
the module, and (ii) instantiate the correct subsystem—e.g.,
Nero (Section 6), Konure (Section 5), etc.

Further transformations (not detailed) aim to detect mod-
ule accesses to their surrounding environment—including ac-
cesses to global variables, top-level objects, etc.—and capture
amodule’s full observable behavior. One way to achieve this
is by shadowing and transforming free variables in the mod-
ule environment during the module-loading process [79, 81].

Once the learning and regeneration completes, the decom-
posed structure can be used to replace the module at runtime.
To achieve this, the active learning subsystem sends a notifi-
cation to the transformation system that a module has been
generated. The process could overwrite the pointer to the
wrapper-internal module so that (i) the consumer modules

Active Learning for Software Engineering
let pad = import("Padding"); f = (str, len, c) => {
let p = c.repeat(len);

year: pad(year, 2, ' '), return p + str;

day: pad(day, 2, ' '), ¥
export = f;

Format Padding

Figure 5. Zooming into Figure 3’s Format-Padding bound-
ary. Padding exports a single function, which is used several
times in Format (Cf.§3.3).

remain intact, and (ii) the system keeps feeding the active
learning subsystem with data from subsequent calls.

3.3 A Teensy Module: String Padding

To further understand these transformations, we zoom into
the Format module within the larger social networking ap-
plication. The interaction between Format and one of its
dependencies, Padding, is shown in Figure 5: Format calls
Padding several times, padding different date-related strings.

Using the techniques described (Section 3.2), our system
first interposes on all imports of the application—including
the Padding import (Figure 5 left, line 1). Instead of returning
the original return value, our system introspects on the re-
turn value and applies a transformation pass over it. A first
pass infers a coarse type signature for Padding—essentially
that the module returns a single function, as opposed to, say,
a set of functions or a list of Date objects.

A second transformation pass wraps Padding with a func-
tion that interposes on all calls, recording inputs and outputs.
The wrapper observes that the function is always provided
two arguments (string and int), and at times a third argu-
ment (string). Leveraging active learning over the program’s
behavior, in this case captured through input-output pairs,
the inference algorithm is able to detect that the first argu-
ment is always the suffix of the result, the second argument
denotes the spaces prefixing the string, and that the third ar-
gument alters the padding character. Replacing Padding with,
say, the recently ES7-standardized padEnd method would im-
prove both the performance and the security of the larger
application.

The Format-Padding duo is a trivial case—their implemen-
tation code amounts to less than 50 lines—used to illustrate
the application of transformations and tangible benefits of
regeneration. The next three sections walk through the ac-
tive learning process of modules that are significantly more
complex. These are highlighted in Figure 3: a binary data
parser for photos (Section 4), a module that accesses the
database of users’ posts (Section 5), and a stateful seed for a
new module with lists and maps (Section 6).

4 Inferring Binary Data Parsers

The social networking application, introduced in Section 3,
provides image sharing functionality. These images are stored
as binary data, with parsing details that vary by image type

66

Onward! ’19, October 23-24, 2019, Athens, Greece

and their end-use. The social network application must vali-
date input and populate key data structures, defined across
different functions, with values from the input.

Writing parsers and data processors is a notoriously dif-
ficult software engineering task [11, 12, 29, 72]. Often this
logic is scattered throughout a program, yielding what is
commonly termed a “shotgun” parser, a known source of se-
curity vulnerabilities [53]. Other times, the input validation
performed is insufficient to remove vulnerabilities [61].

Our active learning approach provides a framework to
infer the original parsing functionality from the application
and a collection of inputs. In particular, by exploring the
data structure definitions produced by different inputs, we
can build up a generalization for these definitions, which
represents the desired parsing functionality.

4.1 Image Sharing Service

The image service uses a library, stb, to load bitmap (.BMP)
images. The application calls the stbi__bmp_load func-
tion defined in stb_image.h. stbi__bmp_load parses the im-
age file header using stbi__bmp_parse_header and then
parses the remainder of the file using stbi__bmp_load_cont
. stbi__bmp_load_cont populates two struct pointers and
three integer pointers, and returns a pointer to an array
containing the image pixel data.

Figure 6 shows a (simplified) excerpt of code from the
stbi__bmp_load_cont function that highlights some of the
parsing challenges. The code reads the image’s pixel data
and stores it in an output array out. To do so, the code must
branch between different parsing definitions, extract the ap-
propriate number of bytes (and keep track of the file pointer)
based on the image’s rows and columns, cast these bytes to
the correct type, store them in the correct position in the
output array, and keep track of certain image properties (in
this case, the use of the alpha channel).

We now walk through the steps that an active learning
technique can use to infer this parsing functionality. We
implemented these steps in a prototype system called BDP
(short for Binary Data Parser).

4.2 Approach

Figure 7 presents a block diagram outlining our technique.
We begin with a set of example images. The original image
parsing module, depicted in gray with bold dotted edges,
takes input files (images), reads their data and populates the
data structures used later on by the compression function.
Our technique, depicted in blue boxes with dashed outlines,
layers on additional components to extract behavioral in-
formation from this execution and recover patterns that
yield the parsing function. We walk through each step in the
pipeline and its use in the broader technique.

Dynamic Analysis: Each input file is executed through
the parsing function. The application has been modified with

Onward! ’19, October 23-24, 2019, Athens, Greece

for (j=0; j < (int) s->img_y;
// Branch between parsing cases.
if (easy) { // No bitpacking

++3) {

for (i=0; i < (int) s->img_x; ++i) {
out[z+2] = read8Bits(s); // blue
out[z+1] = read8Bits(s); // green
out[z+0] = read8Bits(s); // red
z += 3;
// Optional alpha channel
unsigned char alpha = (easy == 2 ? read8Bits(s) 255);

all_alpha |= alpha;
if (out_bytes_per_pixel == 4) out[z++] = alpha;
}
} else { // Bitpacking e.g., 16-bit images.
// Use header information
int in_bytes_per_pixel = info->bpp;
for (i=0; i < (int) s->img_x; ++i) {
// Decode appropriate number of bytes
uint32 pixel = (in_bytes_per_pixel == 16
? read16Bits(s)
read32Bits(s));
unsigned int a;
// shiftsigned extracts the bits corresponding to the red/green/blue
// channels, and scales it to between [0,255]

out[z++] = shiftsigned(pixel & mask_red,
red_shift, red_count));
out[z++] = shiftsigned(pixel & mask_green,
green_shift, green_count));
out[z++] = shiftsigned(pixel & mask_blue,

blue_shift, blue_count));
alpha = (mask_alpha
? shiftsigned(v & mask_alpha,
alpha_shift, alpha_count)

: 255);
// Track properties of input read so far
all_alpha |= alpha;
if (out_bytes_per_pixel == 4) out[z++] = alpha;
3}
}
stbi__skip(s, pad);
3
return (out);
Figure 6. Simplified excerpt from

stbi__bmp_load_cont, which reads in the image’s
pixel data into an array. This requires that the developer
distinguish between different parsing cases, read at the
appropriate file offset, cast sequences of bytes into the
appropriate type, and store these in the correct order in the
output array.

dynamic instrumentation tools to produce execution traces.
These traces contain concrete expressions relating the input
and output data structure bytes. After executing each input
file, we have a collection of such traces.

Our technique relies on observing a large space of input ex-
amples and their corresponding execution traces. However,
rather than randomly acquiring new examples, the inference
procedure guides the choice of examples that provide new
information by choosing input files that cannot be parsed
with the current inferred model, and input files that match
conditions for which we have few existing examples.

Domain-Specific Language: Effective inference, across
the techniques we present in this paper, relies on having a
productive representation of the input and the application

67

J. Cambronero, T. Dang, N. Vasilakis, J. Shen, J. Wu, and M. Rinard

Input space:
BMP images

Images

Instrumentation

Application:
image parser

enmuEN
enmmm®

Constraints
EssEEEEEEES

l Traces

Intermediate

| representation: <—

: DDPs :
l Feedback

: T u
New Input : : :
Criteria % Inference :

: New co
Generation regenerated

777777777777777777777 parser

Figure 7. BDP system. BDP is an active learning technique
(and system) used to infer the image parsing functionality
and generate code that implements that parsing function.
Our technique combines: dynamic program analysis, DSL
design, inference, and code generation. With respect to the
high-level paradigm (Figure 1): the Intermediate representa-
tion and Inference boxes instantiate the Core Inference Algo-
rithm, and the New Input Criteria box and Constraints arrow
instantiate the Input Generator/Acquirer.

behavior we want to capture. As shown in this and other
techniques here, carefully designing a domain-specific lan-
guage (DSL) that enables expression of important program
features and appropriately constrained generalization is a
key technical contribution.

BDP uses such a DSL, which describes sequences of mem-
ory and maps input/output bytes, to describe the data struc-
tures built up by the target application. This DSL abstracts
away implementation details such as field names and allows
us to implement a simple inference procedure. We refer to
programs in our DSL as Data structure Definition Programs
(DDPs).

For example, the following DDP can describe a struct with
two integer fields that are read directly from the input file

out[0] =
out[1] =

ZeroExtend (64,
ZeroExtend (64,

Read (0,
Read (4,

4))
8))

where the word at index 0 is mapped to an expression that
reads an int stored in bytes 0 through 3 (inclusive) and ex-
tends it to a 64-bit word, similarly for index 1.

Single Input Inference: The DDPs produced by executing
the application and analyzing its traces can then be used to
infer common properties of the input files and how they are
parsed by the original module.

Active Learning for Software Engineering

Pixel Data in Input File

Bottom of Image

Topoflmage |[B G R A B G R

Output Array

Figure 8. Patterns between input files and data struc-
tures. Identifying repetitions requires inferring relationships
between the DDP and the input file, in particular identifying
shared expressions, strides in the data structure, and strides
in the input file.

We distinguish between properties that can be inferred
on the basis of each individual DDP and properties that can
only be resolved when multiple DDPs are considered.

For this parsing function, we can infer repetition in the
way groups of bytes are defined, which must account for the
strides in the data structure that is being populated and the
strides in the original input file. Figure 8 shows the layout of
pixel data in the array populated by the parsing function and
compares this with the layout for that data in the original
input file. Bitmaps are commonly stored “bottom-up” (upside-
down), with the file starting with the bottom row of the
image. The output array, however, is “top-down”, so it is
necessary to iterate in the zig-zag pattern shown with dashed
lines. Additionally, while the input file has color channel
information laid out as blue-green-red—alpha (BGRA), this
must be laid out as "RGBA" in the output array. Our inference
procedure learns these kinds of relationships and generalizes
them where appropriate.

We can carry out the repetition inference procedure re-
peatedly to identify nested repetition patterns.

At this point, we can represent a portion of that input file
as a DDP with repetition. We can also automatically annotate
each number of repetitions with candidate expressions over
the input images’ bytes. This means that rather than provide
only a concrete number of iterations for a repetition, we can
associate it with values in the input file. However, there may
be multiple expressions that yield the same concrete number
of iterations, so this must be refined later on.

Multiple Input Inference: Multiple key parsing features
cannot be inferred from a single example. A typical case is
parsing flags, values in the input file that are used to switch
between data structure definitions in the original parsing
function. For example, Figure 6’s easy is defined over file
values (elided in the figure for simplicity), branching between
two possible ways of populating the out output array.
Parsing flags are useful as they allow us to partition the
input space. The intuition is that input files that share parsing

68

Onward! ’19, October 23-24, 2019, Athens, Greece

flag values should be parsed using the same set of operations.
Using this intuition, we formulate an iterative partitioning
algorithm, that partitions the input files into groups, infers
commonalities (e.g., shared expressions), and validates these
inferences.

The feedback automatically obtained by BDP allows us
to progressively improve the inferred partitions and their
shared representation. Once partitioning is finalized, com-
bining the inferred model for each partition with the flag
values fully represents the observed parsing behavior.

New Inputs for Active Learning: The advantage of ac-
tive learning is that we can acquire or produce new inputs
for our target application. For BDP, we can always produce
a parser that is guaranteed to parse at least a subset of the
training files. Rather than simply provide files at random
to the inference algorithm, we can use the partial parser to
identify files for which the current model fails, and we can
choose input files in different ways, such as the smallest file
or the file associated with a high-error partition.

Code Generation: Our model DSL can define the contents
of data structures in terms of input bytes, and provides a
limited set of control flow operations, such as bounded loops
(with bounds determined by concrete values or values based
on input file bytes) and branching on an equality expression
over the values of particular input file bytes (i.e., parsing
flags). This language is used to define a set of parsers that
can handle different input types, which are then grouped
into a single parser by defining branching conditions that
lead to each sub-parser.

During the code generation phase, we compile this DSL
program into a C program using a simple translation ap-
proach, as every construct in the DSL maps in a straightfor-
ward fashion to constructs in popular imperative languages.

Figure 9 shows an excerpt of the C code generated to
populate the pixel data array for a 16x16 32-bit bottom-up
bitmap.

The generated program can now replace the original pars-
ing function in the application. The code generated has mul-
tiple advantages over the original parsing function: it is more
compact, the mapping between input bytes and data struc-
ture contents is more explicit, and it uses simple array ex-
pressions instead of pointer arithmetic.

Evaluation: We implemented the technique presented here
in a system: BDP. We have successfully generated parsing
functions using BDP for two popular image applications:
catimg and potrace.

User Manual Input: Currently, to use BDP, the user must
provide a corpus of inputs that can be used to exercise the ap-
plication. The active learning process selects files to run from
this corpus during inference. Additionally, the user must in-
dicate the function (or functions) in the target application
that build the data structures of interest to facilitate their

Onward! ’19, October 23-24, 2019, Athens, Greece

int
int

MIN_X = @, MIN_Y =
LOOP_BOUND_A = 16,
MULTIPLIER_B_@ = 4,

78, MIN_Y0_0 =
LOOP_BOUND_B =
int MULTIPLIER_B_2
int
int

MULTIPLIER_C_0 = 64,
ADDEND_C_1 = -15;

MULTIPLIER_C_1 =

(int indexB = 0;
int NUMERIC_B_1 =
int NUMERIC_B_3 =

indexB < LOOP_BOUND_B; indexB++) {
indexB * MULTIPLIER_C_O;

(indexB + ADDEND_C_1) % MULTIPLIER_C_1;
for (int indexA = 0;

indexA < LOOP_BOUND_A; indexA++) {

int NUMERIC_A_Q = indexA * MULTIPLIER_B_©@ + NUMERIC_B_1;
int NUMERIC_A_1 = indexA % MULTIPLIER_B_2 + NUMERIC_B_3;
int x@ = NUMERIC_A_Q + MIN_X;

int y0_@ = NUMERIC_A_1 + MIN_Y0_0;

out [x0] = expr_0 (yo_o, file);

int x1 = x0 + 1;

int y1.0 = yo_0 + (-1);

out [x1] = expr_0 (yl_e, file);

int x2 = x0 + 2;

int y2_0 = yo_0 + (-2);

out [x2] = expr_@ (y2_0, file);

int x3 = x0 + 3;

int y3_0 = yo_0 + (1);

out [x3] = expr_0 (y3_e, file);}

Figure 9. Generated parsing code using BDP. Code to
load pixel data from an image for the application’s image
sharing service, generated from the inferred model. We ex-
clude the definition of expr_o for brevity.

instrumentation. Finally, the user must provide BDP with
the command used to execute the application (and which
BDP will repeatedly call with different input files).

5 Inferring Modules that Access Databases

Many applications access a database as an integral part of
their execution. Databases provide advantages such as op-
timized data retrieval and storage, and abstraction of the
underlying data structures and their layout. However, de-
veloping a database-backed module presents challenges: the
core functionality must be mapped to database operations,
database queries and inputs must be appropriately sanitized
to reduce security vulnerabilities [70], and the developer
must determine the appropriate database system to back
their application.

Shen and Rinard [73] addressed this challenge with their
Konure system, which observes the active behavior of the
module and pattern of database accesses, in order to infer
the module’s functionality.

In this section, we show how Konure can be viewed as
an instance of active learning for software engineering, by
demonstrating how we can apply Konure to infer the social
network application (Section 3) module that stores user login
and post information to a database.

5.1 Users’ Postings Service

The social network application uses a module to store users’
login information and posts in a database. The module ex-
poses a command line interface (CLI):

69

J. Cambronero, T. Dang, N. Vasilakis, J. Shen, J. Wu, and M. Rinard

Command
and Data
Specification

Command Konure >
+Input DB : Database
Values I
l Traces
,,,,,,,,,,,,,,,,,,, . Configuration
. Initialization

fffffffff =

Generation

New code:

regenerated
application

Figure 10. Konure system diagram. Konure can be used
to infer the functionality of applications that access a data-
base. With respect to the high-level paradigm (Figure 1):
the Inference box and Configuration Initialization arrow in-
stantiate the Core Inference Algorithm, and the Inference box
and Command + Input Values arrow instantiate the Input
Generator/Acquirer box.

listuserposts -u <user-id> -p <password>

which lists a user’s posting information, when given the
user ID and corresponding password. To implement this
command, the application queries the users table, which
contains user ID (primary key), name and password informa-
tion, and the posts table, which contains entries of the form
(user ID, post ID) to reflect the application’s post history
across all users.

Such an application could be written in any language, as
long as it reads from a MySQL database [83] and its behavior
can be expressed in Konure’s DSL.

5.2 Approach

Figure 10 shows a high-level diagram of the Konure technique
and how it infers the target commands. Similarly to the BDP
pipeline (Figure 7), the original application (along with the
database it uses) is detailed in grey boxes with bolded dotted
edges, while the inference components are detailed in light
blue boxes with dashed edges.

Application and Specifications: Konure takes the social
network application along with a command and data specifi-
cation. The command specification provides the command
line interface through which Konure can interact with the
application and the input parameter format expected. For
example, Konure can execute listuserposts with varying
values for user ID and password. The data specification pro-
vides database schema information, such as the tables and

Active Learning for Software Engineering

{// Data specification

"schema": [{"table":"users", "columns": [

{"name": "id", "type": "int", "key": "primary"},
{"name": "password", "type": "str"},
.. 13,
{"table":"posts", "columns": [...1},
-1,
// Command specification
"signature": {"platform": "shell",
"path": "/big-org/userdb/",
"apis": [
{"name": "listuserposts", "command": "java -cp src/java..
listuserposts -u [arg_ul, -p [arg_pl"},

13

Figure 11. Konure specification example. Konure takes a
data and command specification, such as the one shown here,
and uses the specification to configure interactions with the
application being inferred.

columns available with their datatypes, which Konure uses
to generate configurations for the database and its contents.
Figure 11 shows an example of such a command and data
specification.

Monitor Communications: Konure takes a greybox ap-
proach — monitoring a database proxy — to observe the ap-
plication’s execution. For each command execution, Konure
observes the inputs, the outputs, and the application’s com-
munications with its database. These interactions are trans-
parent to the original application.

Konure initially executes the command with parameters:
listuserposts -u @ -p 1. Future executions contain values
that allow Konure to explore the application. The command
is executed on an initially empty database. When it executes,
Konure’s database proxy records the SQL query SELECT *
FROM users WHERE id = '0',as well as the fact that the query
retrieves no data. This information constitutes the applica-
tion’s concrete trace for this command execution.

Domain-Specific Language: Konure uses a carefully de-
signed domain-specific language to represent applications in
a constrained search space and enable efficient inference. The
DSL can capture sequences of queries (which may reference
prior queries’ results), conditional statements which execute
based on a test condition for non-empty query results, and
iteration over query results in the form of bounded loops.
During inference, Konure maintains a hypothesized pro-
gram, expressed in this DSL, which is derived to be consis-
tent with all observed traces. In this case, having observed
the query SELECT * FROM users WHERE id = '@', Konure hy-
pothesizes that this query could either be a query followed by
a yet-to-be derived subprogram of additional statements or
be part of a conditional statement’s guard. The latter would
correspond to the following program hypothesis:

if y1 <- select users.id,
users.firstname,

where users.id = u

users.password,
users.lastname

70

Onward! ’19, October 23-24, 2019, Athens, Greece
then { ?? } else { ?? }

where each “??” is a yet-to-be-explored subprogram, or a
DSL non-terminal. Note that the concrete value '0' has been
replaced with a data origin (the input parameter u), and
the columns for users are explicitly included in the select
statement, rather than using the * wildcard. Konure identifies
such rewrites using a trace abstraction procedure.

Trace Rewriting: In addition to abstracting out concrete
values of a trace with their data origins, Konure also rewrites
the trace to summarize loop information. For example, if
a concrete trace contains the same query, repeated multi-
ple times, then Konure may hypothesize that the query is
executed as part of a loop body.

Inference Algorithm: Konure’s hypotheses contain unex-
plored subprograms (DSL non-terminals), marked ??. After
executing the command a few times, Konure expands a ??
with the appropriate DSL production that is consistent with
the execution traces. If this expansion produces more ?7s,
Konure executes the command more times and expands each
?? recursively. This recursive, hierarchical expansion contin-
ues until all non-terminals have been expanded and the final
program has been identified.

For any program that conforms to the DSL, the algorithm
terminates and produces a program that correctly models
the original functionality.

New Inputs: To exercise unexplored subprograms and re-
solve inference ambiguity, Konure generates input values
and database contents that induce different executions. In
our user posting example, Konure produces values such that
the select query from the users table does not produce empty
results. In this case, that corresponds to providing an input
parameter for user ID (u) that has a corresponding entry in
the users table. In the hypothesis that contains the condi-
tional statement, this would induce execution of the then
branch (which was previously unexplored).

Konure selects these values by generating suitable con-
straints and solving them with an SMT solver.

Generating Code: Inference terminates once all non-ter-
minals in the hypothesized program are expanded, indicating
that no unexplored paths remain. Konure’s inferred program
can express database queries, bounded loops over query re-
sults, and conditional statements based on non-empty query
results. These DSL constructs map straightforwardly to con-
structs in popular imperative languages. Konure currently
generates Python code.

Evaluation: Konure has been evaluated on five applica-
tions, including a chat room, task manager, blogging applica-
tion, and student registration [73], which have been written
in multiple programming languages, including Java and Ruby
on Rails. Konure inferred a subset of their commands, which
contain SQL queries, conditionals, loops, and outputs.

Onward! ’19, October 23-24, 2019, Athens, Greece

User Manual Input: To use Konure the user provides the
necessary command and data specifications. The command
specification identifies the API command to be inferred, and
the data specification provides information on the database
schema. Konure uses these to automate its exploration of the
application’s behavior and infer a model for it.

6 Automatically Replacing In-Memory
Data Structures with Databases

As discussed in Section 5, developing a module that inter-
acts with a database to access and persist data has many
advantages, but also implementation challenges.

In this example, we show how program inference can
infer a database replacement for existing in-memory data
structures in a program. This approach allows developers
to write a program in a plain imperative language, such as
Python, using familiar, standard programming constructs
and data structures (i.e., no need to develop a database model
or use database-related frameworks). The approach then
infers the program and regenerates a new program that
accesses data using a database (instead of the original data
structures).

A key distinction here is that while our previous exam-
ple demonstrated how Konure infers the use of an existing
database in an imperative program, this example (and the
corresponding system) focuses on a program that does not
yet use a database but rather performs computations that
can be modeled and replaced with a database.

We introduce Nero, an active learning system we devel-
oped to infer the use of standard in-memory data structures
(e.g., lists and dictionaries) in a program, model their use with
database queries, and replace the in-memory data structures
with a database in a regenerated program [84].

This approach presents multiple advantages: the developer
need not be familiar with databases, and similarly to the case
seen in Section 5, the module’s development does not become
tied to a particular database system, as the regenerated code
can be adapted to other database systems.

6.1 A New User Post Querying Service

A developer has been tasked with writing a new variant of
the module associated with users’ posting history (Section 5).
Figure 12 presents the module code written by the developer
for this new version.

The module uses a list, users, to track each user’s first/last
names, and uses the corresponding index position as an id.
Post information is stored in the post_contents dictionary,
which maps a post title to the corresponding post contents
(a string). The application uses another list, posts, to track
tuples of user ID and post titles, representing users’ posts.

Nero refers to the code written by the developer as a seed
program, which satisfies certain program properties that

71

J. Cambronero, T. Dang, N. Vasilakis, J. Shen, J. Wu, and M. Rinard

users: list of user information, index:

first_name, last_name)

user_id, entries: (

post_content: dictionary of post info, key: post title, entries:
contents

posts: list of user post info, entries: (user_id, post_title)

users = [], post_contents = {}, posts = []

def do_post(user_id_query, post_str, post_title):
first_name, last_name = users[user_id_query]
print(first_name, last_name)
posts.append((user_id_query,
post_contents[post_title] =

post_title))
post_str

do_listuserposts(user_id_query):
first_name, last_name = users[user_id_query]
print("User:_{},_ {}".format(first_name, last_name))
for user_id, post_title in posts:
if user_id_query == user_id:
post_str = post_contents[post_title]
print(user_id_query, post_title, post_str)

Figure 12. Inferring programs with lists/dicts. Nero in-
fers the data structures and their accesses used by a seed
program and models their behavior using database queries.

enable efficient inference. In this case, the code has two func-
tions: do_post and do_listuserposts. Function do_post takes
a user ID, a string representing the post contents, and a post
title. The user ID is used to query the users list, retrieving
and printing the user’s name. The function then registers the
user’s post by appending the user ID and the post title to the
posts list. Finally, the function inserts the corresponding post
contents (post_str) into a dictionary (post_contents) using
the post title as a key. Function do_listuserposts takes as
input a user ID, queries for the user’s name and prints it, and
then iterates over the posts list to identify the user’s posts
and prints out the corresponding post title and contents.

6.2 Approach

Nero treats a program’s control logic and data as two sepa-
rate components. This conceptual separation often occurs
in data-intensive programs. Nero uses data accesses to infer
the program’s control logic. To do so, Nero carefully chooses
the input values, data structure contents, and executes the
program multiple times.

Figure 13 provides an overview of the Nero system. As in
the BDP (Figure 7) and Konure (Figure 10) pipelines, the grey
box with bolded dotted edges corresponds to the original
application, while the light blue boxes with dashed edges
correspond to the inference components.

Our technique starts with a seed program. Nero restricts
the space of programs that it can infer through a domain-
specific language (DSL). In this case, that DSL can be ex-
pressed as a subset of Python. Additionally, Nero requires a
command specification, which outlines the commands we
want to infer, and a data specification, that details the types
for the global data structures used by the module and which
our inferred model will replace with a database.

Active Learning for Software Engineering

J

Instrumentation

and Data
Specification

querying

new user post
(seed program)

Command]

3 .
. REPL k
.
T T T
New
Data
lTraces
Randomized E
Input Solver] ! Inference]
‘.Dbata . .
Constraint: l

New code:
database-backed
application

Generation ~ ——>|

Figure 13. Nero system diagram. Nero can be used to infer
the behavior of programs that access data using lists/dicts
and regenerate them to use a database instead. With respect
to the high-level paradigm (Figure 1): the Inference box instan-
tiates the Core Inference Algorithm, and the Data Constraints
arrow and Randomized Input Solver box instantiate the Input
Generator/Acquirer.

In the posting module, a (partial) command specification
would correspond to

int", "str", "str"1]]

[["post", "do_post",

This specification states that the command post is imple-
mented by the do_post function in the seed program, and it
takes three arguments: an integer and two strings.

A (partial) data specification would be

{"users": [
[C"str", "str"11,
["id", "first_name", "last_name"],
"Users"]1}

This specification states that the users data structure con-
tains entries corresponding to two strings (first_name and
last_name). The corresponding database schema is a table
named Users, with three columns: a virtual primary key (id)
and the first and last name columns (corresponding to the
two strings in the original data structure’s entries).

Execution: Nero takes the seed program, along with the
two specification files, and generates boilerplate code to
produce a read-eval-print-loop (REPL) that can be used to
interact with the application. This REPL is used to execute
commands with new inputs and explore the application’s
behavior. This has the benefit of reducing the code that the
seed program developer has to write, as well as standardizing
the interface that Nero uses for inference.

Dynamic Analysis: Nero relies on dynamic instrumen-
tation to produce execution traces. These traces contain
information on the data structures accessed and assigned

72

Onward! ’19, October 23-24, 2019, Athens, Greece

to. To collect these traces Nero uses the REPL wrapper de-
scribed previously, and records any accesses (and parameters
used) to lists or dicts during execution (as well as certain
key functions, like print) by using instrumented variants of
lists/dicts.

For example, the expression users[user_id_query] in line
9 of Figure 12 would produce the following entry in the exe-
cution trace (assuming that user_id_query has a value of 2,
the users data structure has 1 as an instrumentation identi-
fier (UID), and the corresponding entry in the list contains
("john", "doe")):

list UID1 __getitem__ [2] [("john", "doe")]
Inferring Program Constructs: Nero collects the traces
of data accesses and infers the program’s data and control
flow. To do this Nero identifies the origin of different val-
ues observed in the trace, the presence of loops, and the
constraints for any conditional loops. Nero repeatedly exe-
cutes the program with new inputs to reduce ambiguity and
explore new paths.

For example, Nero can infer data structure accesses, such
as users[user_id_query], directly from the trace. If Nero ini-
tializes data structures and chooses input values carefully,
it will also be able to infer that the argument to this lookup
(user_id_query) corresponds to an input parameter to the
post command (implemented by do_post). However, the ori-
gin of values can be ambiguous if multiple possible locations
could have produced that value. This highlights the impor-
tance of repeated execution and inference for Nero’s success.

While the example presented here includes user identifiers
and post identifiers, Nero does not rely on knowing that these
are unique identifiers (and map to a database primary key).
The inference algorithm, however, does rely on accessing
the input parameters to the application and successfully
identifying that the input parameter is used as a index/key
to access a list/dict. We believe the number of programs that
take an input parameter value and then use it to access a
program data structure is significant.

Loops over data structures in the program are identified
through execution trace events creating iterators. Conditional
loops, on the other hand, require that Nero infer a predicate
that induces execution of the body. To do so, Nero uses a
randomized approach to inferring data constraints to gener-
ate input/data structure values. The algorithm is inspired by
simulated annealing [40]. It fine tunes the temperature pa-
rameter to balance the inherent tension in value generation:
Nero needs to induce repeated values across structures to
lead to the conditional loop’s execution, but inference also
requires unique values to resolve ambiguity in the program’s
logic.

Randomized Input Solver: While values are generated
randomly by Nero, they are subject to constraints that will
1) avoid application crashes, 2) reduce inference ambiguity,

Onward! ’19, October 23-24, 2019, Athens, Greece

and 3) explore program paths (by inducing conditional loop
execution). These constraints are discovered progressively
during inference and are used in a graph-based algorithm to
populate possible values.

Nero’s randomized value generation demonstrates the flex-
ibility of such an approach when the domain of values grows
and the application complexity increases, compared to a
deterministic, constraint-based solving approach.

Code Generation: Nero’s inferred model consists of data-
base queries that can effectively capture the original program
behavior. Nero can generate a skeleton program, consisting of
database boilerplate such as schema definitions and database
connection/cursor management, and integrate the queries
into this skeleton to produce an executable program. The
current implementation of Nero uses Python and its accom-
panying SQLite module [57].

Evaluation: We evaluated Nero by using it to infer four
Python seed programs, including a task management pro-
gram, a chat room program, and a blog program. These pro-
grams are adapted from database-backed applications [1-3],
by rewriting a subset of their functionality in Python using
standard in-memory data structures. For all these programs,
Nero fully inferred the target functionality and produced
regenerated programs that use a database.

Comparison to Object Relational Mapping: Object Re-
lational Mapping (ORM) frameworks [4, 5] facilitate access
to a database by providing objects which an imperative pro-
gram can use to query/modify a database. While both ORMs
and Nero share the goal of integrating database usage into
applications, they take orthogonal approaches. Namely, an
application that uses an ORM must already be implemented
to use the corresponding API. In contrast, Nero’s core focus
is the inference task: it infers the data usage information and
its relational mapping directly from executions of the seed
program, which can be written with standard data structures.
Additionally, the model that Nero infers, while represented
in terms of SQL queries, does not need to be limited to pro-
ducing database executions, as highlighted in Section 7.3.

User Manual Input: To use Nero the user must provide a
seed program, which has semantics corresponding to the de-
sired database-backed application but is written in a subset of
plain Python (i.e., the Nero’s DSL) using standard in-memory
data structures. The user also provides a data and command
specification. The user may also specify the desired names
to use for the database tables and columns in the regen-
erated program. The command specification describes the
commands of the application, specifically, the names of the
entry functions in the seed program, as well as the datatypes
for their arguments.

73

J. Cambronero, T. Dang, N. Vasilakis, J. Shen, J. Wu, and M. Rinard

7 Active Learning for Software
Engineering as a General Paradigm

We discussed three systems, BDP, Nero, and Konure [73],
which employ active learning to infer a target program.
These three systems leverage domain knowledge to enable
the design of effective inference algorithms. This approach
is consistent with the history of development trends in pro-
gramming languages and software engineering in general—
compiler optimizations, for example, were first designed
for specific code patterns and later developed into sophis-
ticated systems effective for a significantly wider range of
programs [26, 39, 50].

We anticipate that future research in active learning of
programs will exploit modularity to extend to expressive
domains, where target applications consist of multiple (in-
ferrable) modules. Potential domains include software for
data retrieval, image processing, embedded systems, dis-
tributed systems, network protocols, user interfaces, and
certain numerical computations. Potential use cases include
software migration, software understanding, security analy-
sis, robust code generation, etc. There is a large design space
for this line of research, as demonstrated by the different
systems discussed.

Broadly speaking, we describe active learning for software
engineering in terms of three components: an observation
model, an inference model, and a generation model. We
next place the three systems in the context of each of these
paradigm components, point towards different research di-
rections, and highlight open questions.

7.1 Observational Model

The observation model roughly outlines what aspects of the
program’s behavior the technique observes and how it does
so. All three systems described use a greybox technique. BDP
and Nero use program instrumentation to obtain execution
traces. While the former is focused on tracking concrete ex-
ecutions and building byte-level expressions over the inputs,
the latter only records instrumented method calls along with
information on the concrete input and return values. Konure,
yet another greybox approach, intercepts SQL queries as
well as the observed input and outputs.

Other models of observation present different trade-offs.
For example, blackbox interaction may limit the complexity
of the target application that can be inferred, or it may lead
to uncertain inference, but it also removes assumptions such
as implementation language or direct access to the applica-
tion’s execution. For example, Hecate [71] uses a blackbox
approach to interact and infer programs that store and re-
trieve data, as long as the applications conform to a model for
programs using a relational database. Compared to this black
box approach, the greybox approach where SQL queries are
visible (Konure) infers more sophisticated database programs
because of the richer information available.

Active Learning for Software Engineering

A whitebox observation model is yet another alternative,
which would allow incorporating additional program analy-
sis, or might facilitate rewrites of the program that reduce
(or remove) inference ambiguity (e.g., using SSA).

Exciting research directions that target the observational
model include identifying domains and applications that can
be successfully inferred with limited interaction (e.g., not just
black box, but also limited numbers of queries). Similarly,
we have assumed that the application’s behavior is observed
truthfully and there is no adversarial interaction. However,
one could imagine scenarios where we are trying to infer
an application that is actively adding noise to the outputs or
non-deterministically picking execution paths.

Producing New Inputs: A key advantage of active learn-
ing is that the technique can use new inputs to improve
inference. How these inputs are produced may vary depend-
ing on the technique.

For example, Nero produces values using a constrained
random value generator. BDP, in contrast, relies on having
access to a large number of example inputs and filtering
down to those that can not be parsed with the currently
hypothesized program. Konure uses an SMT solver, along
with constraints implied by program traces, to produce new
values.

Depending on the application, generating new inputs can
pose challenges. For example, a highly structured custom bi-
nary input would require a sophisticated generation process,
in contrast with a common format such as bitmap images.
Integrating input generation techniques developed in ar-
eas such as fuzzing [31, 34] into an active approach could
broaden the range of applications that can be inferred.

7.2 Inference Model

The inference model roughly aims to answer the question:
“How do we represent the observations made in a way that we
can identify and generalize common application patterns?”. A
key component to successfully identify these shared patterns
is the use of an intermediate representation amenable to
inference. A good representation should capture the behavior
of interest and constrain the space of possible hypotheses
derivable from an observation.

We have found carefully designed DSLs to be a particularly
effective intermediate representation. For example, BDP uses
a simple language that describes data structures as sequences
of bytes (or words), allowing it to identify repetitions and
generalizations. Nero constrains the seed program to a DSL
so that it can identify key control flow. Similarly, Konure’s
DSL represents hypothesized (partially inferred) programs
and guides inference through hierarchical expansion of non-
terminals (i.e., unexplored subprograms).

DSLs have already been found useful in constraining the
search space in other automated programming areas [7].
They are modular by definition [51], and thus are well matched

Onward! ’19, October 23-24, 2019, Athens, Greece

to the modular approach we believe is critical to scale active
learning-based program inference to large applications. The
three systems presented all incorporate knowledge about the
target domain to make inference more efficient; incorporat-
ing this information through a DSL is simple—for example,
extend the grammar with a corresponding production or
modify the semantics of an operator. Finally, a DSL facili-
tates the use of existing analysis techniques (such as struc-
tural induction proofs) to reason about the correctness of
the inference, as done in Konure [73].

Different inference models may reason differently about
the observed executions and their generalization. For exam-
ple, BDP partitions the space of inputs (based on executions
observed and their input files) and iteratively generalizes a
DDP based on each partition’s members, which when com-
bined with flag expressions, capture the application behav-
ior. Konure, in contrast, maintains a program representation
guaranteed to cover all observed executions, and modifies
that hypothesis based on satisfiability criteria for newly ob-
served traces.

Different approaches to inference may also yield varied
properties. For example, Konure’s inference algorithm guar-
antees termination and that the paths in the application are
fully explored if no non-terminals remain in the hypothe-
sized program.

Identifying appropriate inference procedures for different
intermediate representations, domains, and applications, is
an exciting direction for future research. Other parts of the
paradigm also play a role: for example, can inference be made
more efficient under a whitebox observational model? Can
we formulate a generalized inference procedure based on an
input DSL and application? Or is efficient inference restricted
to custom procedures for each group of applications we
want to infer? Can we develop statistical techniques that can
reason effectively for programs that violate many standard
statistical assumptions (as might be the case for a stateful,
long-running program)?

7.3 Generation Model

There are many possible uses for the inferred model of an
application’s behavior. There is no reason, apriori, that these
models need to be used for code generation. We term this
portion of the paradigm the generation model, as we can
generate different outputs based on the representation we
have learned. For example, an inferred model could be used
to generate documentation for a program (or be used as
documentation itself). How best to integrate these inferred
models, beyond code generation, into existing developer
workflows remains an open question.

Assuming the goal is to generate code, a question about the
possible impact on software maintenance arises. We believe
that code generated from an inferred model has the potential
to be simpler (for example, see the code generation discus-
sion in Section 4), as restricted by the chosen generation

Onward! ’19, October 23-24, 2019, Athens, Greece

model. Program inference, in this regard, holds particular
promise in rejuvenating legacy code. We also believe inferred
models can help identify application functionality that can
be modularized, producing self-contained and re-usable com-
ponents for software development. Jointly, these properties
would contribute to reduce the burden of software mainte-
nance through simpler, modular, and extensible (generated)
programs.

8 Challenges and Threats to Validity

Sucessful inference must avoid inferring incorrect properties.
A carefully designed representation, such as a DSL, can be
used to invalidate particularly undesirable outcomes. For
example, both Nero and Konure have DSLs that only allow
bounded loops. Furthermore, the representation, when co-
designed with the inference algorithm, can lead to desirable
inference guarantees. Konure, for example, guarantees that
its inference terminates and when it does so no unexplored
paths remain.

We anticipate that the main difficulty in deploying our
active learning-based approach to program inference will
be in appropriately matching the target applications and
the restrictions imposed by our techniques. In particular,
developers using these systems in practice will need to un-
derstand the limitations of each technique. As such, clear
documentation of these inference systems is a key design
goal.

Active learning requires a supply of new inputs. Depend-
ing on the application, generating these examples may be a
challenging problem in its own right (e.g., highly structured
inputs). However, we have already successfully inferred pro-
grams in two domains (data retrieval/storage and binary
parsing) and believe that many productive applications can
be handled with relatively simple inputs. Techniques from
other research areas, such as fuzzing, can also be integrated
to help.

To infer large-scale applications, we propose to exploit the
modularity of modern software to enable effective (and scal-
able) inference. This direction leverages the trend of increas-
ingly popular third-party library usage [6, 16, 52, 79, 81, 89].
Applications with less modular designs will likely present
a cost-of-inference challenge and the need for refining the
observation and inference models used. For example, BDP
would incur a larger overhead when inferring a monolithic
application, where parser data structures might be popu-
lated throughout the application (requiring broader instru-
mentation). However, existing work on program partition-
ing [21, 22, 56, 77] could be adapted to induce some degree of
modularity and reduce the cost of inference. Other practices,
such as the use of global variables, may also influence the
inference strategy. For example, an existing prototype [65]
successfully developed an inference strategy that handled
reads and writes of a global data structure. The key to this

75

J. Cambronero, T. Dang, N. Vasilakis, J. Shen, J. Wu, and M. Rinard

success is identifying the effective boundary of the target be-
havior we are interested in inferring, interposing the appro-
priate observation model, and tailoring the inference model
as needed.

9 Related Work

Program Synthesis: Program synthesis is an active area
of research [7, 28, 36, 38, 60], particularly programming-by-
example [64, 75, 85], where the user provides input-output
examples as a form of specification. These techniques often
define a DSL that captures the space of programs. Synthesiz-
ing a correct program (out of potentially many) then becomes
a search over the DSL for a program that is consistent with
the examples provided.

Oracle-guided synthesis [38, 43, 76] extends the search to
include an oracle, often an SMT solver, which can validate
proposed programs and provides counter-examples when
the proposed program is incorrect.

The systems discussed here perform inference by (par-
tially) observing the behavior of a full application. Rather
than rely on a fixed corpus of input-output examples, the ap-
plication’s execution is used to define the target specification.
Incorporating active learning allows these systems to suc-
cessfully and efficiently expand the input-output examples
automatically as needed.

Reverse Engineering and Transformations: Reverse
engineering has been successfully used to understand, main-
tain and rewrite otherwise unfamiliar applications (e.g., legacy
code) [20, 49, 78]. However, many reverse engineering tools
require significant human effort and expertise [44], and as-
sume the tool has access to extensive static information, such
as source code or the compiled binary, or dynamic informa-
tion, such as whole-program instruction-level instrumenta-
tion [19, 27, 66]. Work automating the reverse engineering
process [23, 48, 55] has focused on narrow inference tasks
like communication protocols rather than whole programs.

Similarly, source code transformations, by definition, rely
on significant access to the original application, which for
example rules out transformation of remote applications.
Recent work [41] has explored enabling source code trans-
formations across multiple languages, but the scope of these
transformations remains restricted.

Our vision for active learning for software engineering
addresses the hurdles highlighted. For example, all three
systems presented make limited use of human intervention
and automate a significant portion of the inference process.
The observational models presented enable inference on
applications where the source code may not be available.
Finally, representing the inferred model in a DSL allows
us to employ transformations that can be re-used across
possible target languages, as the program translation step is
handled by an independent generation model.

Active Learning for Software Engineering

Language Inference: Inference of regular and context free
languages has been a well studied problem [32, 58, 87]. These
techniques have been applied to, for example, the grammar
for a program’s inputs [13], rules of a board game [42], the
partitioning of objects in an image [30], among others. The
examples we presented here highlight the potential for in-
ferring full program functionality.

Model-based Software Engineering: The use of mod-
els in software engineering has enabled diverse applica-
tions such as program verification [15], testing [18], gen-
eration [47], and reuse [35]. The user may be tasked with
providing a model specification written in a higher-level
language, or a simplified model may be extracted automat-
ically (if the target software already exists for analysis or
execution).

The models inferred by BDP, Nero and Konure reflect full
functionality of particular application commands, rather
than a simplified model (except where a pruned model is in-
tentionally desired). All three systems use a DSL to constrain
the search space for their inference procedures, but do not
expose these directly to the user.

Active Learning: Active learning has been extensively
explored in the machine learning community [10, 82, 86] and
successfully applied to a variety of tasks, including complex
image classification [88], data cleaning and labeling [33],
symbolic systems [9], among others.

Previous work in the software engineering community
has also explored applications of active learning. For ex-
ample, active learning has been used to: derive program
assertions from test suite executions [59], infer likely points-
to specifications using black-box observation [14], improve
program behavior classification [17], and synthesize Datalog
programs [74].

The three systems we discussed here use active learning
for the broader task of inferring full functionality of key
commands in applications.

10 Conclusion

Pervasive modularity in modern software has created an op-
portunity for deploying active learning at scale, enabling a
state-of-the-art approach to security, code generation, adap-
tation, documentation, and more. We walked through how
three existing inference techniques (along with prototypes)
infer key, and varied, modules in a representative social
networking application. We outlined the general paradigm,
contextualized the systems discussed, and identified open
questions and challenges.

Acknowledgments

We thank the anonymous reviewers for their helpful com-
ments and suggestions. This research was funded in part
by National Science Foundation grant CNS-1513687, and
DARPA grant FA8650-15-C-7564.

76

Onward! ’19, October 23-24, 2019, Athens, Greece

References

[1] 2018. Getting Started with Rails. http://guides.rubyonrails.org/getting_
started.html.
2018. Kanban. https://github.com/somlor/kanban.
2018. Kandan - modern open source chat. https://github.com/
kandanapp/kandan.
2019. SQLAIchemy - The Database Toolkit for Python. https://www.
sqlalchemy.org/.
2019. The Web framework for perfectionists with deadlines | Django.
https://www.djangoproject.com/.
Rabe Abdalkareem, Olivier Nourry, Sultan Wehaibi, Suhaib Mujahid,
and Emad Shihab. 2017. Why do developers use trivial packages?
an empirical case study on npm. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. ACM, 385-395.
Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund
Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama,
Emina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis.
In 2013 Formal Methods in Computer-Aided Design. IEEE, 1-8.
Glenn Ammons, Rastislav Bodik, and James R Larus. 2002. Mining
specifications. ACM Sigplan Notices 37, 1 (2002), 4-16.
Garrett Andersen and George Konidaris. 2017. Active exploration for
learning symbolic representations. In Advances in Neural Information
Processing Systems. 5009-5019.
Philip Bachman, Alessandro Sordoni, and Adam Trischler. 2017. Learn-
ing Algorithms for Active Learning. In Proceedings of the 34th Inter-
national Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017. 301-310. http://proceedings.mlr.press/
v70/bachmani7a.html
Godmar Back. 2002. DataScript-A specification and scripting language
for binary data. In International Conference on Generative Programming
and Component Engineering. Springer, 66—77.
[12] Julian Bangert and Nickolai Zeldovich. 2014. Nail: A practical tool for
parsing and generating data formats. In 11th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 14). 615-628.
Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2017.
Synthesizing Program Input Grammars. In Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI 2017). ACM, New York, NY, USA, 95-110. https:
//doi.org/10.1145/3062341.3062349
Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2018.
Active Learning of Points-to Specifications. In Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2018). ACM, New York, NY, USA, 678-692.
https://doi.org/10.1145/3192366.3192383
Ivan Bocic and Tevfik Bultan. 2017. Symbolic model extraction for
web application verification. In 2017 IEEE/ACM 39th International Con-
ference on Software Engineering (ICSE). IEEE, 724-734.
[16] Jan Bosch. 2015. Speed, data, and ecosystems: the future of software
engineering. IEEE Software 33, 1 (2015), 82-88.
[17] James F. Bowring, James M. Rehg, and Mary Jean Harrold. 2004. Active
Learning for Automatic Classification of Software Behavior. In Proceed-
ings of the 2004 ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA *04). ACM, New York, NY, USA, 195-205.
https://doi.org/10.1145/1007512.1007539
Lionel Briand, Shiva Nejati, Mehrdad Sabetzadeh, and Domenico Bian-
culli. 2016. Testing the Untestable: Model Testing of Complex Software-
intensive Systems. In Proceedings of the 38th International Conference
on Software Engineering Companion (ICSE ’16). ACM, New York, NY,
USA, 789-792. https://doi.org/10.1145/2889160.2889212
[19] Juan Caballero, Heng Yin, Zhenkai Liang, and Dawn Song. 2007. Poly-
glot: Automatic extraction of protocol message format using dynamic
binary analysis. In Proceedings of the 14th ACM conference on Computer
and communications security. ACM, 317-329.

—_
(=)
—

[7

—

8

—

[9

—

[10]

[11]

[13]

[14]

[15]

(18]

http://guides.rubyonrails.org/getting_started.html
http://guides.rubyonrails.org/getting_started.html
https://github.com/somlor/kanban
https://github.com/kandanapp/kandan
https://github.com/kandanapp/kandan
https://www.sqlalchemy.org/
https://www.sqlalchemy.org/
https://www.djangoproject.com/
http://proceedings.mlr.press/v70/bachman17a.html
http://proceedings.mlr.press/v70/bachman17a.html
https://doi.org/10.1145/3062341.3062349
https://doi.org/10.1145/3062341.3062349
https://doi.org/10.1145/3192366.3192383
https://doi.org/10.1145/1007512.1007539
https://doi.org/10.1145/2889160.2889212

Onward! ’19, October 23-24, 2019, Athens, Greece

[20] Vitaly Chipounov and George Candea. 2010. Reverse engineering of
binary device drivers with RevNIC. In Proceedings of the 5th European
conference on Computer systems. ACM, 167-180.

[21] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian
Zheng, and Xin Zheng. 2007. Secure Web Applications via Automatic
Partitioning. In Proceedings of Twenty-first ACM SIGOPS Symposium
on Operating Systems Principles (SOSP "07). ACM, New York, NY, USA,
31-44. https://doi.org/10.1145/1294261.1294265

[22] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, and

Ashwin Patti. 2011. CloneCloud: Elastic Execution Between Mobile

Device and Cloud. In Proceedings of the Sixth Conference on Computer

Systems (EuroSys '11). ACM, New York, NY, USA, 301-314. https:

//doi.org/10.1145/1966445.1966473

Weidong Cui, Vern Paxson, Nicholas Weaver, and Randy H Katz. 2006.

Protocol-Independent Adaptive Replay of Application Dialog.. In NDSS.

Citeseer.

Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto,

[23

—

[24

=

Julien Signoles, and Boris Yakobowski. 2012. Frama-c. In International
Conference on Software Engineering and Formal Methods. Springer, 233
247.

Markus Dahlweid, Michal Moskal, Thomas Santen, Stephan Tobies,
and Wolfram Schulte. 2009. VCC: Contract-based modular verification
of concurrent C. In 2009 31st International Conference on Software
Engineering-Companion Volume. IEEE, 429-430.

Jeffrey A Dean and Craig Chambers. 1996. Whole-program optimization
of object-oriented languages. Citeseer.

Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and
Ryan Whelan. 2015. Repeatable reverse engineering with PANDA.
In Proceedings of the 5th Program Protection and Reverse Engineering
Workshop. ACM, 4.

[28] John K Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing
data structure transformations from input-output examples. In ACM
SIGPLAN Notices, Vol. 50. ACM, 229-239.

Kathleen Fisher and Robert Gruber. 2005. PADS: a domain-specific
language for processing ad hoc data. In ACM Sigplan Notices, Vol. 40.
ACM, 295-304.

Abram L Friesen and Pedro M Domingos. 2018. Submodular Field
Grammars: Representation, Inference, and Application to Image Pars-
ing. In Advances in Neural Information Processing Systems. 4307-4317.
Vijay Ganesh, Tim Leek, and Martin Rinard. 2009. Taint-based directed
whitebox fuzzing. In Proceedings of the 31st International Conference
on Software Engineering. IEEE Computer Society, 474-484.

[32] Pedro Garcia, Enrique Vidal, and Francisco Casacuberta. 1987. Lo-

[25

[

26

—_

[27

—

[29

—

(30

[t

(31

—

cal Languages, the Succesor Method, and a Step Towards a General
Methodology for the Inference of Regular Grammars. IEEE Trans.
Pattern Anal. Mach. Intell. 9, 6 (1987), 841-845. https://doi.org/10.1109/
TPAMI.1987.4767991
[33] R. A. Gilyazev and D. Yu. Turdakov. 2018. Active Learning and
Crowdsourcing: A Survey of Optimization Methods for Data La-
beling. Programming and Computer Software 44, 6 (2018), 476-491.
https://doi.org/10.1134/50361768818060142
Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-
based Whitebox Fuzzing. SIGPLAN Not. 43, 6 (June 2008), 206-215.
https://doi.org/10.1145/1379022.1375607
Thiago Gottardi, Rafael Serapilha Durelli, Oscar Pastor Lopez, and
Valter Vieira de Camargo. 2013. Model-based reuse for crosscutting
frameworks: assessing reuse and maintenance effort. J. Software Eng.
R&D 1 (2013), 4. https://doi.org/10.1186/2195-1721-1-4
Sumit Gulwani. 2011. Automating string processing in spreadsheets
using input-output examples. In ACM Sigplan Notices, Vol. 46. ACM,
317-330.
Jingrui He, Hanghang Tong, Mingjing Li, Hong-Jiang Zhang, and
Changshui Zhang. 2004. Mean version space: a new active learn-
ing method for content-based image retrieval. In Proceedings of the

(34

=

[35

—

[36

—

(37

—

77

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

J. Cambronero, T. Dang, N. Vasilakis, J. Shen, J. Wu, and M. Rinard

6th ACM SIGMM international workshop on Multimedia information
retrieval. ACM, 15-22.

Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. 2010.
Oracle-guided component-based program synthesis. In Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering-
Volume 1. ACM, 215-224.

Gary A Kildall. 1973. A unified approach to global program optimiza-
tion. In Proceedings of the 1st annual ACM SIGACT-SIGPLAN symposium
on Principles of programming languages. ACM, 194-206.

Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. 1983. Opti-
mization by simulated annealing. science 220, 4598 (1983), 671-680.
James Koppel, Varot Premtoon, and Armando Solar-Lezama. 2018. One
tool, many languages: language-parametric transformation with in-
cremental parametric syntax. Proceedings of the ACM on Programming
Languages 2, OOPSLA (2018), 122.

Jakub Kowalski and Andrzej Kisielewicz. 2018. Regular Language
Inference for Learning Rules of Simplified Boardgames. In 2018 IEEE
Conference on Computational Intelligence and Games (CIG). IEEE, 1-8.
Vu Le, Daniel Perelman, Oleksandr Polozov, Mohammad Raza, Ab-
hishek Udupa, and Sumit Gulwani. 2017. Interactive Program Synthe-
sis. arXiv preprint arXiv:1703.03539 (2017).

A Lee, A Payne, and T Atkison. 2018. A Review of Popular Reverse
Engineering Tools from a Novice Perspective. In Proceedings of the
International Conference on Software Engineering Research and Practice
(SERP). The Steering Committee of The World Congress in Computer
Science, Computer 4Ae, 68-74.

K Rustan M Leino. 2010. Dafny: An automatic program verifier for
functional correctness. In International Conference on Logic for Pro-
gramming Artificial Intelligence and Reasoning. Springer, 348-370.
Mingkun Li and Ishwar K Sethi. 2006. Confidence-based active learning.
IEEE transactions on pattern analysis and machine intelligence 28, 8
(2006), 1251-1261.

Richard Lei Li, John G. Hosking, and John C. Grundy. 2008. Mara-
maEML: An Integrated Multi-View Business Process Modelling Envi-
ronment with Tree-Overlays, Zoomable Interfaces and Code Genera-
tion. In 23rd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2008), 15-19 September 2008, L’Aquila, Italy. 477-478.
https://doi.org/10.1109/ASE.2008.79

Xiangdong Li and Li Chen. 2011. A survey on methods of automatic
protocol reverse engineering. In 2011 Seventh International Conference
on Computational Intelligence and Security. IEEE, 685-689.

Zhigiang Lin, Xiangyu Zhang, and Dongyan Xu. 2010. Automatic
reverse engineering of data structures from binary execution. In Pro-
ceedings of the 11th Annual Information Security Symposium. CERIAS-
Purdue University, 5.

Vikash K Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul,
Yutian Chen, and Martin Rinard. 2018. Probabilistic programming with
programmable inference. In Proceedings of the 39th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. ACM,
603-616.

Marjan Mernik, Jan Heering, and Anthony M Sloane. 2005. When and
how to develop domain-specific languages. ACM computing surveys
(CSUR) 37, 4 (2005), 316-344.

Tommi Mikkonen and Antero Taivalsaari. 2019. Software Reuse in the
Era of Opportunistic Design. IEEE Software 36, 3 (2019), 105-111.
Falcon Momot, Sergey Bratus, Sven M Hallberg, and Meredith L Pat-
terson. 2016. The seven turrets of babel: A taxonomy of langsec errors
and how to expunge them. In 2016 IEEE Cybersecurity Development
(SecDev). IEEE, 45-52.

Tomas G Moreira, Marco A Wehrmeister, Carlos E Pereira, Jean-
Francois Petin, and Eric Levrat. 2010. Automatic code generation
for embedded systems: From UML specifications to VHDL code. In
2010 8th IEEE International Conference on Industrial Informatics. IEEE,
1085-1090.

https://doi.org/10.1145/1294261.1294265
https://doi.org/10.1145/1966445.1966473
https://doi.org/10.1145/1966445.1966473
https://doi.org/10.1109/TPAMI.1987.4767991
https://doi.org/10.1109/TPAMI.1987.4767991
https://doi.org/10.1134/S0361768818060142
https://doi.org/10.1145/1379022.1375607
https://doi.org/10.1186/2195-1721-1-4
https://doi.org/10.1109/ASE.2008.79

Active Learning for Software Engineering

(55]

[56]

(60

[t

[61

—

[62

—

[63]

(64]

(65]

[66]
(67]

(68

—

(69

—

[70]

(71]

(72]

(73]

(74]

John Narayan, Sandeep K Shukla, and T Charles Clancy. 2016. A survey
of automatic protocol reverse engineering tools. ACM Computing
Surveys (CSUR) 48, 3 (2016), 40.

Ryan Newton, Sivan Toledo, Lewis Girod, Hari Balakrishnan, and
Samuel Madden. 2009. Wishbone: Profile-based Partitioning for Sen-
sornet Applications. In Proceedings of the 6th USENLX Symposium on
Networked Systems Design and Implementation (NSDI'09). USENIX As-
sociation, Berkeley, CA, USA, 395-408. http://dl.acm.org/citation.
cfm?id=1558977.1559004

Mike Owens. 2006. The definitive guide to SQLite. Apress.

Tsyh-Wen Pao and John W. Carr III. 1978. A Solution of the Syntactical
Induction-Inference Problem for Regular Languages. Comput. Lang. 3,
1(1978), 53-64. https://doi.org/10.1016/0096-0551(78)90006- 1

Long H. Pham, Ly Ly Tran Thi, and Jun Sun. 2017. Assertion Genera-
tion Through Active Learning. In Proceedings of the 39th International
Conference on Software Engineering Companion (ICSE-C ’17). IEEE Press,
Piscataway, NJ, USA, 155-157. https://doi.org/10.1109/ICSE-C.2017.87
Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Pro-
gram synthesis from polymorphic refinement types. ACM SIGPLAN
Notices 51, 6 (2016), 522-538.

Erik Poll. 2018. LangSec revisited: input security flaws of the second
kind. In 2018 IEEE Security and Privacy Workshops (SPW). IEEE, 329-
334.

Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: a framework
for inductive program synthesis. In ACM SIGPLAN Notices, Vol. 50.
ACM, 107-126.

Evan Priestley. 2011. How many lines of code is Facebook?
//qr.ae/TWpXts Accessed: 2019-04-18.

Mohammad Raza and Sumit Gulwani. 2018. Disjunctive Program
Synthesis: A Robust Approach to Programming by Example. In Thirty-
Second AAAI Conference on Artificial Intelligence.

Martin C. Rinard, Jiasi Shen, and Varun Mangalick. 2018. Active
Learning for Inference and Regeneration of Computer Programs That
Store and Retrieve Data. In Proceedings of the 2018 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Onward! 2018). ACM, New York, NY,
USA, 12-28.

Chris Sanders. 2017. Practical packet analysis: Using Wireshark to solve
real-world network problems. No Starch Press.

Greg Schechter. 2011. Visualizing Facebook’s PHP Codebase. https:
//bit.ly/2DkcL2R Accessed: 2019-04-18.

Isaac Z. Schlueter et al. 2010. Node Package Manager. https://npmjs.
com Accessed: 2017-02-17.

Burr Settles. 2009. Active learning literature survey. Technical Report.
University of Wisconsin-Madison Department of Computer Sciences.
Lwin Khin Shar and Hee Beng Kuan Tan. 2012. Mining input san-
itization patterns for predicting SQL injection and cross site script-
ing vulnerabilities. In 34th International Conference on Software En-
gineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland. 1293-1296.
https://doi.org/10.1109/ICSE.2012.6227096

Jiasi Shen and Martin Rinard. 2017. Inference and Regeneration of
Programs that Manipulate Relational Databases. Technical Report.
http://hdl.handle.net/1721.1/111067

Jiasi Shen and Martin Rinard. 2017. Robust programs with filtered iter-
ators. In Proceedings of the 10th ACM SIGPLAN International Conference
on Software Language Engineering. ACM, 244-255.

Jiasi Shen and Martin C. Rinard. 2019. Using Active Learning to Synthe-
size Models of Applications That Access Databases. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2019). ACM, New York, NY, USA, 269-285.
Xujie Si, Woosuk Lee, Richard Zhang, Aws Albarghouthi, Paraschos
Koutris, and Mayur Naik. 2018. Syntax-guided synthesis of datalog pro-
grams. In Proceedings of the 2018 26th ACM Foint Meeting on European
Software Engineering Conference and Symposium on the Foundations of

https:

78

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

(88]

[89]

Onward! ’19, October 23-24, 2019, Athens, Greece

Software Engineering. ACM, 515-527.

Rishabh Singh. 2016. Blinkfill: Semi-supervised programming by ex-
ample for syntactic string transformations. Proceedings of the VLDB
Endowment 9, 10 (2016), 816—-827.

Armando Solar-Lezama and Rastislav Bodik. 2008. Program synthesis
by sketching. Citeseer.

Eli Tilevich and Yannis Smaragdakis. 2009. J-Orchestra: Enhancing
Java Programs with Distribution Capabilities. ACM Trans. Softw. Eng.
Methodol. 19, 1, Article 1 (Aug. 2009), 40 pages. https://doi.org/10.
1145/1555392.1555394

Paolo Tonella. 2005. Reverse engineering of object oriented code.
In Proceedings. 27th International Conference on Software Engineering,
2005. ICSE 2005. IEEE, 724-725.

Nikos Vasilakis, Ben Karel, Yash Palkhiwala, John Sonchack, André
DeHon, and Jonathan M. Smith. 2019. Ignis: Scaling Distribution-
Oblivious Systems with Light-Touch Distribution. In Proceedings of
the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 2019). ACM, New York, NY, USA, 1010-1026.
https://doi.org/10.1145/3314221.3314586

Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn, André
DeHon, and Jonathan M. Smith. 2017. Towards Fine-grained, Auto-
mated Application Compartmentalization. In Proceedings of the 9th
Workshop on Programming Languages and Operating Systems (PLOS’17).
ACM, New York, NY, USA, 43-50. https://doi.org/10.1145/3144555.
3144563

Nikos Vasilakis, Ben Karel, Nick Roessler, Nathan Dautenhahn,
André DeHon, and Jonathan M. Smith. 2018. BreakApp: Au-
tomated, Flexible Application Compartmentalization. In 25th
Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-21, 2018.
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/
2018/02/ndss2018_08-3_Vasilakis_paper.pdf

Kai Wei, Rishabh Iyer, and Jeff Bilmes. 2015. Submodularity in Data
Subset Selection and Active Learning. In Proceedings of the 32nd In-
ternational Conference on Machine Learning (Proceedings of Machine
Learning Research), Francis Bach and David Blei (Eds.), Vol. 37. PMLR,
Lille, France, 1954-1963. http://proceedings.mlr.press/v37/wei15.html
Michael Widenius and Davis Axmark. 2002. Mysql Reference Manual
(1st ed.). O'Reilly & Associates, Inc., Sebastopol, CA, USA.

Jerry Wu. 2018. Using Dynamic Analysis to Infer Python Programs
and Convert Them into Database Programs. In Master’s thesis. Mas-
sachusetts Institute of Technology.

Navid Yaghmazadeh, Xinyu Wang, and Isil Dillig. 2018. Automated
migration of hierarchical data to relational tables using programming-
by-example. Proceedings of the VLDB Endowment 11, 5 (2018), 580-593.
Songbai Yan, Kamalika Chaudhuri, and Tara Javidi. 2018. Active
Learning with Logged Data. In Proceedings of the 35th International
Conference on Machine Learning (Proceedings of Machine Learning Re-
search), Jennifer Dy and Andreas Krause (Eds.), Vol. 80. PMLR, Stock-
holmsmAdssan, Stockholm Sweden, 5521-5530. http://proceedings.
mlr.press/v80/yan18a.html

Takashi Yokomori. 1987. Inductive Inference of Context-free Lan-
guages - Context-free Expression Method. In Proceedings of the 10th
International Joint Conference on Artificial Intelligence. Milan, Italy,
August 23-28, 1987. 283-286. http://ijcai.org/Proceedings/87-1/Papers/
058.pdf

Bangyan Zhu, Xiao Wang, Zhengwei Chu, Yi Yang, and Juan Shi. 2019.
Active Learning for Recognition of Shipwreck Target in Side-Scan
Sonar Image. Remote Sensing 11, 3 (2019), 243. https://doi.org/10.3390/
rs11030243

Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and
Michael Pradel. 2019. Small World with High Risks: A Study of Security
Threats in the npm Ecosystem. arXiv preprint arXiv:1902.09217 (2019).

http://dl.acm.org/citation.cfm?id=1558977.1559004
http://dl.acm.org/citation.cfm?id=1558977.1559004
https://doi.org/10.1016/0096-0551(78)90006-1
https://doi.org/10.1109/ICSE-C.2017.87
https://qr.ae/TWpXts
https://qr.ae/TWpXts
https://bit.ly/2DkcL2R
https://bit.ly/2DkcL2R
https://npmjs.com
https://npmjs.com
https://doi.org/10.1109/ICSE.2012.6227096
http://hdl.handle.net/1721.1/111067
https://doi.org/10.1145/1555392.1555394
https://doi.org/10.1145/1555392.1555394
https://doi.org/10.1145/3314221.3314586
https://doi.org/10.1145/3144555.3144563
https://doi.org/10.1145/3144555.3144563
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_08-3_Vasilakis_paper.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2018/02/ndss2018_08-3_Vasilakis_paper.pdf
http://proceedings.mlr.press/v37/wei15.html
http://proceedings.mlr.press/v80/yan18a.html
http://proceedings.mlr.press/v80/yan18a.html
http://ijcai.org/Proceedings/87-1/Papers/058.pdf
http://ijcai.org/Proceedings/87-1/Papers/058.pdf
https://doi.org/10.3390/rs11030243
https://doi.org/10.3390/rs11030243

	Abstract
	1 Introduction
	1.1 Dimensions
	1.2 Limitations of Current State of the Art
	1.3 Structure of the Paper

	2 Background
	2.1 Program Inference
	2.2 Active Learning
	2.3 Program Inference and Active Learning

	3 Active Learning at Scale
	3.1 Challenges and Opportunities
	3.2 Breaking Down into Modules
	3.3 A Teensy Module: String Padding

	4 Inferring Binary Data Parsers
	4.1 Image Sharing Service
	4.2 Approach

	5 Inferring Modules that Access Databases
	5.1 Users' Postings Service
	5.2 Approach

	6 Automatically Replacing In-Memory Data Structures with Databases
	6.1 A New User Post Querying Service
	6.2 Approach

	7 Active Learning for Software Engineering as a General Paradigm
	7.1 Observational Model
	7.2 Inference Model
	7.3 Generation Model

	8 Challenges and Threats to Validity
	9 Related Work
	10 Conclusion
	Acknowledgments
	References

