
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2017-006 April 24, 2017

Inference and Regeneration of Programs
that Store and Retrieve Data
Martin Rinard and Jiasi Shen

Inference and Regeneration of Programs that Store
and Retrieve Data

Martin Rinard
EECS & CSAIL

MIT
rinard@csail.mit.edu

Jiasi Shen
EECS & CSAIL

MIT
jiasi@csail.mit.edu

Abstract
As modern computation platforms become increasingly com-
plex, their programming interfaces are increasingly di�cult
to use. �is complexity is especially inappropriate given the
relatively simple core functionality that many of the compu-
tations implement. We present a new approach for obtaining
so�ware that executes on modern computing platforms with
complex programming interfaces. Our approach starts with
a simple seed program, wri�en in the language of the devel-
oper’s choice, that implements the desired core functionality.
It then systematically generates inputs and observes the re-
sulting outputs to learn the core functionality. It �nally auto-
matically regenerates new code that implements the learned
core functionality on the target computing platform. �is
regenerated code contains both (a) boilerplate code for the
complex programming interfaces that the target computing
platform presents and (b) systematic error and vulnerability
checking code that makes the new implementations robust
and secure. By providing a productive new mechanism for
capturing and encapsulating knowledge about how to use
modern complex interfaces, this new approach promises to
greatly reduce the developer e�ort required to obtain se-
cure, robust so�ware that executes on modern computing
platforms.

1 Introduction
Within the last decade, undergraduate computer science
enrollments, both within and outside the major, have dra-
matically increased [54]. As a result, undergraduates are
now acquiring basic programming skills as a normal part
of their college education. Indeed, the ability to write (rela-
tively simple) programs, like the ability to read, write, and
perform basic mathematical reasoning, is now increasingly
seen as part of the personal portfolio of a literate person in
our culture [32, 45].

At the same time, the systems on which even simple pro-
duction so�ware must execute are becoming increasingly
complex. Some decades ago most so�ware executed on a sin-
gle machine, with the programming environment providing
a few simple abstractions (such as �le system interfaces) for
accessing the devices a�ached to that machine. Most so�-
ware today, in contrast, is expected to execute in complex,

,
.

networked, distributed computing platforms. A common
scenario, for example, is for a program to compute over data
stored across many machines in a cloud computing environ-
ment to generate results that are then distributed via the
Internet for graphical presentation on remote devices.

Modern so�ware environments rely heavily on so�ware
packages that help developers deal with the resulting com-
plexity. Examples include application server frameworks
such as JBoss and IBM WebSphere, key/value storage sys-
tems such as Redis, NoSQL databases such as HBase, dis-
tributed memory caching systems such as memcached, and
cluster computing frameworks such as Spark and MapRe-
duce. While the implementations of such systems encap-
sulate the otherwise potentially overwhelming complexity
of coordinating the actions of the components of large dis-
tributed computing systems, the programming interfaces
they provide are far from easy to use (as can be seen in
the large volume of questions posted to web sites such as
Stack Over�ow [6]). Indeed, developers that work with such
systems spend much of their time constructing appropriate
search terms to �nd previously developed code that they can
copy and adapt for their needs. �e complexity of these pro-
gramming interfaces can be seen as especially inappropriate
given the relatively simple core functionality that many of
the computations implement. At a conceptual level, such
computations o�en simply store and retrieve data or per-
form simple computations on the stored data. �e complexity
comes not from the core functionality that the computation
implements, but from the computing platform on which the
computation executes.

We propose a new approach for developing so�ware for
such computing platforms. Instead of coding to complex pro-
gramming interfaces that existing so�ware packages export,
developers implement the core functionality in a seed pro-
gram using the programming language of their choice. �e
seed program uses only the simplest standard programming
interfaces, such as standard text input and output interfaces.

Our system �rst interacts with the seed program to learn
its core functionality. �e system then regenerates (a poten-
tially augmented version of) the computation that uses so-
phisticated so�ware packages to implement the learned core
functionality on the new, potentially much more complex
computing platform. In e�ect, the knowledge and expertise
required to use the relevant so�ware packages are all encap-
sulated in our regenerator. �is approach can be particularly

1

, , Martin Rinard and Jiasi Shen

productive in a world in which basic programming skills are
widely available, but the specialized knowledge and expertise
required to productively use specialized so�ware packages
is much scarcer. �is is the case for the world we are now
entering as a society: such specialized knowledge of spe-
cialized so�ware packages is constantly changing, available
to far fewer people, and more di�cult to use for everyone
regardless of their skill level. Our approach is founded on
several principles:

• Program Inference via Active Learning: Starting with
a seed program that (mostly) implements the desired core
functionality, the system reverse engineers the seed pro-
gram to infer a representation of the core functionality.
It uses active learning to drive the process — because the
speci�cation is a program, it is possible to design algo-
rithms that systematically interact with the program to
learn the core functionality that it implements.

In this paper we present a black box inference algo-
rithm that interacts with the seed program by generating
inputs and observing the resulting outputs. Gray box and
white box approaches can also be appropriate — they can
obtain certain kinds of information more quickly by ob-
serving aspects of the implementation, but may require
more involved mechanisms that (dynamically or statically)
analyze the program and/or its execution.

• Noisy, Partial Speci�cations: �e inference algorithm
should be designed to tolerate noise (in the form of imple-
mentation errors or overlooked corner cases) and partial
implementations of the desired core functionality. �e
algorithm must therefore be able to isolate the desired
common case behavior of the seed program and infer a
general speci�cation from that isolated behavior, all while
identifying and discarding undesirable behavior (noise)
that should not be part of the speci�cation.

Such algorithms relieve the developer of the seed pro-
gram of the need to consider and implement obscure cor-
ner cases. �e developer can instead simply implement
the core common case functionality while omi�ing error
checking and code that handles corner cases. An advan-
tage is that implementing simply the core functionality
is o�en substantially easier than implementing a robust
program that considers and correctly handles all cases.

• Augmented Regeneration: Working with the learned
representation of the core computation, regenerate the
program for the target context. �is regeneration may
involve simply producing a computation that uses the
facilities that the target context provides. In most cases,
however, we expect that a productive regeneration will
augment the core computation with additional capabilities.
�ese may include additional error or security vulnerabil-
ity checks, data consistency or cleaning checks, robustness
and recovery code, or the generation of a graphical user
interface for the program.

• Reinterpretation: Many modern programming languages
support a simple and basic model of computation (sequen-
tial execution, �le input and output, standard data struc-
tures, a single address space) that usually enables straight-
forward implementation of the desired core functionality.
In many cases, however, the goal is to implement this core
functionality in a much more complex environment — to
operate on distributed data, to work with data stored in a
relational database or key/value store, to access specialized
computing devices, to execute time-consuming computa-
tions in parallel, to package the core functionality into an
appealing graphical user interface potentially accessed via
the Internet, or to access values available via remote sen-
sors. To support such implementations, the regeneration
algorithm will reinterpret standard constructs to translate
them into implementations that operate successfully in
the new, more complex target context.

1.1 Scope
�e initial scope of the approach is programs that implement
simple core functionality (such as storing and retrieving
data or performing simple calculations over that stored data)
on complex hardware platforms. We anticipate several use
cases:
• New So�ware: In this use case, the seed implementation

is developed from scratch, typically by implementing a
simple text-based interface in a widely-taught language
such as Python. �ese use cases typically involve substan-
tial reinterpretation and augmentation to re-implement
the functionality on more complex production comput-
ing environments and/or to provide the system with an
enhanced user interface.

• Legacy Systems: In this use case, the developer starts
with a legacy system that implements the desired func-
tionality. Here one goal is to start with a system that
runs in an obsolete or otherwise undesirable computing
context to obtain a regenerated version that can operate
successfully in a more modern context. Another goal is
to start with a system that may have defects or security
vulnerabilities to generate a program without defects or
vulnerabilities (by, for example, systematically generating
appropriate checks and code).

• Targeted Functionality Extraction: In this use case,
the seed program implements a range of functionality,
only part of which comprises the desired core functional-
ity. In this case the developer provides a limited interface
speci�cation that targets only the desired core function-
ality, with the program inference system oblivious to the
remaining undesired functionality.
In the longer term, we expect the scope to grow in several

directions. First, we expect the program inference algorithms
to become progressively more sophisticated to be able to suc-
cessfully infer a larger range of programs. Second, we expect

2

Inference and Regeneration of Programs that Store and Retrieve Data , ,

the program regeneration and reinterpretation algorithms
to grow in sophistication to deliver code with increased
functionality and code that operates in more complex en-
vironments. �ird, we expect the approach to generalize
to learn core functionality from multiple applications, then
merge them into a single uni�ed regenerated application.

Another direction is learning and regenerating system
components. Consider, for example, a standard database-
backed web application. Instead of interacting only with the
user interface to learn the end to end application functional-
ity, an alternative approach would instrument the application
to also observe the interactions between the application and
the database. Leveraging the availability of these observed
interactions, it would then learn and regenerate the core
functionality of the front end, leaving the database intact.

1.2 Programs as Speci�cations
An alternative perspective is that we propose to use pro-
grams as (partial, noisy) speci�cations of the desired core
functionality. In this context our approach has the advan-
tage that developing programs is, in comparison with using
standard speci�cation languages based on formal logic, a
relatively widely available skill within our society (and a
skill that promises to become more available over time). In
comparison with natural language speci�cations, programs
provide precision and the ability to explore and learn the
speci�cation by observing the program as it produces out-
puts in response to targeted synthesized inputs.

Of course, it is common knowledge that developers strug-
gle to produce correct programs. �e inference algorithm
must therefore tolerate the presence of defects. One baseline
strategy is to simply ignore program crashes. Another strat-
egy is to work with a circumscribed program representation
that rules out many incorrect programs that the inference
algorithm might otherwise infer. Yet another strategy would
develop a probabilistic model of correct programs and infer
only programs that are likely to be correct.

1.3 Encapsulated Knowledge
Yet another perspective is that the regenerator encapsulates
the knowledge of how to use the complex so�ware compo-
nents that the regenerated code uses. Over the last several
decades, the �eld has explored a variety of approaches for
capturing and communicating this kind of knowledge. Ex-
amples include user manuals, textbooks, example programs,
and, more recently, web sites such as Stack Over�ow [6]. All
of these mechanisms require the developer to examine the
provided code and modify it to adapt it for their purpose in
their system. Regeneration enables the developer to immedi-
ately obtain working code that implements the desired core
functionality without the need to examine and/or modify the
code (although the developer may very well do so if he or
she desires). In this sense the regenerator can provide a more
robust encapsulation of the (in some cases quite involved)

knowledge required to productively use the powerful but
complex target components.

1.4 Implications for the Field
�is approach promises to substantially reduce the time and
e�ort required to obtain programs that work with complex
programming interfaces on modern complex hardware plat-
forms. By automating the generation of error, privacy, and
security checking code, it promises to improve program ro-
bustness and reliability.

But despite these instrumental advantages, perhaps the
most important implication is the transformative e�ect this
approach can have on the activities and daily lives of people
who work in the �eld. Modern so�ware development is
rapidly becoming a boring, mind-numbing activity in which
developers spend their time searching (in many cases more
or less mindlessly) for arcane code sequences that (for o�en
poorly understood reasons) happen to deliver something
close to the desired e�ect. Automating the generation of
these code sequences can free developers to focus on the
fascinating core technical challenges of automating central
activities that human society relies on to function smoothly.
�e profession will (once again) provide the world’s best
platform for creative people to spend their days in inspiring
technical work.

1.5 Paper Structure
�e remainder of the paper is structured as followed. We
present an example of a course registration system in Sec-
tion 2. �e seed program is wri�en with a text interface
in Python, with the registration information stored in na-
tive Python data structures. We present two regenerations:
1) a text-based C regeneration that stores the registration
information in a Redis database and 2) a regeneration that
implements a graphical web browser interface using HTML,
CSS, Go, JavaScript, and Redis. In Section 3 we present the
program inference algorithms. We survey related work in
Section 4 and conclude in Section 5.

2 Example
We next present an example that highlights how our pro-
posed approach works for a simple student course registra-
tion system. All of the code discussed in this section and
in the appendix (with the exception of the python seed pro-
gram) was automatically regenerated by our implemented
program inference and regeneration system. Figure 1 presents
a high-level structure of this system. �is system starts with
the interface, in the form of operations (parameterized com-
mands) that the registration system should implement for
its users:

• enroll name id: Given a student’s name and id, enroll
the student to take classes.

3

, , Martin Rinard and Jiasi Shen

Automated Inference & Regeneration

Program
inference

Learned core
functionality:

SRP, KRL, SCP,
SDP, M

Program
regeneration
Encapsulated
knowledge:

Redis, C, Go, CSS,
HTML, JavaScript

Seed
program

Commands
interface

output

input

Regenerated
code

Core and
augmented
functionality

Figure 1. High-level structure of the program inference and
regeneration system

• add id class: Add a class to the list of classes for which
the student is registered. �e student is identi�ed by the
student’s id.

• drop id class: Drop the speci�ed class from the identi�ed
student’s registration list.

• classes id→ class: Retrieve the class or classes for which
the identi�ed student is currently registered.

• name id → name: Retrieve the name of the identi�ed
student given the student’s id.

• id name → id: Retrieve the id of the student with the
given name.

Here each operation has a command (enroll, add, drop, classes,
name, or id), parameters (name, id, and/or class), and outputs
(name, id, and/or list(class)). �e parameter names all iden-
tify disjoint sets of (abstract) objects so that, for example, the
name parameter of the enroll operation is drawn from the
same set of objects as the name parameter of the id operation,
while the class parameters of the add and drop operations
are drawn from a di�erent disjoint set of objects.

2.1 Seed Program
�e developer next implements a seed program, wri�en in
python, that implements the core functionality. Python is a
widely taught language that many developers �nd easy to use
for quick implementation tasks. �e program implements
a simple text-based interface that is designed to accept and
process one command per line. While a text-based interface
may not be as easy to use as a more involved graphical
or browser interface, it is much easier to implement and
supports text-based program inference systems.

Figure 2 presents the seed program in our example. �e
program maintains three data structures: classes, which
maps each student id to the list of classes for which the
student is registered, ids, which maps student names to cor-
responding student ids, and names, which maps student ids
to corresponding names. �e main loop reads and imple-
ments a command for each line of input. �e seed program
is quite simple — there is essentially no input validation
(for example, the program will accept any string as a stu-
dent name, student id, or class id), li�le error checking (for
example, the code that implements the drop and classes op-
erations does not check if the classes map has an entry

import sys

classes = {}

ids = {}

names = {}

while (True):
line = sys.stdin.

readline ()

if not line: break;
list = str.split(line)
cmd = list [0]

if cmd == "enroll ":

name , id = list [1:3]

ids[name] = id

names[id] = name

elif cmd == "id":

name = list [1]

print ids[name]

elif cmd == "name":

id = list [1]

print names[id]

elif cmd == "add":

id, num = list [1:3]

if not id in classes:

classes[id] = []

if not (num in
classes[id]):

classes[id]. append(

num)

elif cmd == "drop":

id, num = list [1:3]

classes[id]. remove(

num)

elif cmd == "classes ":

id = list [1]

print classes[id]

Figure 2. Python seed program for a class registration sys-
tem

for the provided id, which leaves the program vulnerable to
KeyErrors), no corner case checks, and no a�empt to provide
useful messages to the user of the program. And the text-
based interface is straightforward to implement using basic
Python input and string handling constructs. �ere is no
need for the developer to learn and use the much more com-
plex python packages for building graphical user interfaces
or interacting with cloud storage systems.

2.2 Program Inference
�e program inference algorithm exploits the availability of
the seed program to learn the functionality. Unlike most ma-
chine learning and program synthesis approaches, which are
limited to working with a provided set of input/output pairs,
the program inference algorithm can purposefully select the
inputs it provides to the seed program to target and resolve
ambiguities. We next outline how one potential program
inference algorithm exploits this ability (as well as the struc-
ture present in the provided interface to the seed program) to
quickly learn the core functionality. �e inference algorithm
is designed to work with programs that have the following
sets of properties:
• Key/Value Maps: �e program works with a �xed set

of maps. Each map contains relations that map a key to
a value or to a list of values. Note that the program is
not required to implement the maps using any particular
data structure or mechanism — because the program in-
ference algorithms for this example only generate inputs
and observe the resulting outputs, they are oblivious to
the particular map implementation technique.

• Store, Retrieve, andRemoveOperations: �e program
implements three kinds of operations, speci�cally store
operations, which store one or more relations between

4

Inference and Regeneration of Programs that Store and Retrieve Data , ,

the parameters of the operation into one or more of the
maps, retrieve operations, which use the parameter as a
key to retrieve and return a value (or list of values) from
one of the maps, and remove operations, which remove
one or more relations from the maps.

• Initial Empty Maps: When the program runs, it starts
with empty maps.

�e provided interface distinguishes retrieve operations (which
return values) from store/remove operations (which return
nothing).

�e program inference algorithm �rst repeatedly executes
selected operations with selected parameters starting from
empty maps to discover store/retrieve pairs — paired oper-
ations in which the �rst operation stores a relation into a
map and the second operation retrieves and returns the corre-
sponding value (or list of values) stored by the �rst operation
(Section 3.1). Each store/retrieve pair is mediated by a key/-
value pair chosen from the parameters of the store operation
— the �rst parameter of this pair is the key of the stored
relation; the second parameter is the corresponding value.
In the example, the program inference algorithm repeatedly
starts with an empty map, executes an enroll operation with
a unique name and id, then executes classes, name, and id
operations to determine if one of these operations returns
one of the enroll parameters. If so, the inference algorithm
has discovered a store/retrieve pair backed by a map. In the
example the inference algorithm discovers that enroll/name
is a store/retrieve pair mediated by the id/name parame-
ters of the enroll operation, enroll/id is a store/retrieve pair
mediated by the name/id parameters, and add/classes is a
store/retrieve pair mediated by the id/class parameters of
the add method.

A�er the pairs of store/retrieve operations are determined,
the inference algorithm next uses the store/retrieve pairs to
determine which store operations accumulate the stored val-
ues in lists, which overwrite the old mapping with the new
mapping, and which leave the old mapping in place and dis-
card the new mapping (Section 3.2). �e algorithm executes
two store operations that insert di�erent values into the same
map under the same key, then executes the corresponding
retrieve operation to determine if the retrieve returns both
values, the �rst inserted value only, or the second inserted
value only. In our example the inference algorithm deter-
mines that the enroll operation overwrites the old mappings
and the add operation accumulates the stored values in lists.

�e next step is to use the store/retrieve pairs to identify
store/delete pairs in which the �rst operation stores a rela-
tion and the second operation removes the relation (Section
3.4). �e inference algorithm executes the store operation,
then a candidate delete operation, then the corresponding
retrieve operation. If the retrieve operation does not return
the stored value, then the inference algorithm has discovered
a store/delete pair. In our example the inference algorithm

determines that the add and drop operations comprise a
store/delete pair.

Finally, the inference algorithm uses the store/retrieve
pairs to determine which operations work with the same
map and which work with di�erent maps (Section 3.5). �e
basic idea is to execute the seed program twice, once with
one store operation and once with another store operation.
Both operations insert the same relation, but potentially
into di�erent maps. Both executions next execute the same
retrieve operation (the paired retrieve operation from the
�rst store operation). If both executions return the same
value, the inference algorithm concludes that they both ac-
cessed the same map (working under the assumption that
the retrieve operation always accesses the same map). �e
code generation algorithm uses the resulting inferred equiv-
alence classes of operations to determine how many maps
to generate and which maps each operation accesses.

In any of these steps, the inference algorithm tolerates
noise in the seed program when it crashes due to unchecked
errors. For example, a retrieve operation may crash from a
KeyError when a�empting to look up a key that does not
exist in a map (the classes, name, and id operations). In this
situation, the inference algorithm decides that the retrieved
value is Nil. Also, a candidate delete operation may crash
from a KeyError when a�empting to look up a key that does
not exist in a map or, when the key does exist, may crash
from a ValueError when a�empting to remove a value that
does not exist in a list (the drop operation). In these situ-
ations, the inference algorithm decides that the candidate
delete operation does not correspond to the store operation
and immediately goes to next iteration of the closest enclos-
ing loop. Note that this design makes our algorithm robust
against certain kinds of noise while still learning the core
functionality.

2.3 Regeneration for C and Redis
Redis [3] is an in-memory data structure store that supports
a variety of simple data structures including lists, sets, and a
key/value map over strings. It runs as a server and o�ers a
range of features including persistence and replication. Redis
application programming interfaces (APIs) have been devel-
oped for many languages including C. We present an example
that illustrates the regeneration of a text-based C/Redis im-
plementation of the registration program. Figure 3 presents
a session from this implementation (we replace repeated text
command prompts with … a�er the �rst prompt).

2.3.1 Command Loop
Regenerated based on the speci�ed command interface, the
main command loop �rst reads in the command and pa-
rameters, then invokes a regenerated procedure that imple-
ments the command (see Figure 10). �e command loop �rst
presents a prompt to the user. �is prompt describes the
commands and parameters. It then reads in the command

5

, , Martin Rinard and Jiasi Shen

Select a command:

1: enroll <name > <id>

2: add <id> <class >

3: drop <id> <class >

4: classes <id >

5: name <id>

6: id <name >

> 1 Joe 100

enroll Joe 100 successful

...

> id Joe

id Joe -> 100

...

> name 100

name 100 -> Joe

...

> add 100 CS20

add 100 CS20 successful

...

> a 100 MA30

add 100 MA30 successful

...

> 4 100

classes 100 -> CS20:MA30

...

> drop 100 CS20

drop 100 CS20 successful

...

> classes 100

classes 100 -> MA30

Figure 3. Session from regenerated Redis/C implementation

and parameters and invokes a regenerated procedure that
implements each command.

�e regenerated command loop enables the user to specify
the command either with a number or with a pre�x of the
command name (see Figure 11). It handles input errors by in-
voking the resync procedure (see Figure 13), which recovers
by �ushing the remainder of the current input line to leave
the program ready to resume at the start of the next line
(this recovery strategy is an instance of the �ltered iterator
concept [42]).

�e regenerator makes the policy decision that it will
support input commands and parameters that are at most
4096 characters long (other decisions are of course possible).
�e input procedure (see Figure 13), which reads in the
token, contains the appropriate checks required to ensure
that malicious or corner case inputs with large tokens do
not over�ow the token bu�er. It also contains the input
validation checks required to ensure that the tokens contain
only alphanumeric characters (another policy decision taken
in the regenerator). It is straightforward to replace these
policy decisions with others — for example, to support tokens
of arbitrary length or that contain a broader or narrower
range of characters.

�e automatically generated prompt and error handling
code is one example of augmented regeneration — the regen-
erator enhances the usability and robustness of the regen-
erated application by systematically inserting appropriate
error-handling code into the regenerated implementation.

2.3.2 Redis Initialization Code
Before reading the �rst command, the main program invokes
the initRedis procedure (Figure 14), which uses the hiredis
C client for Redis [2] (the code in this procedure is adapted
from example C code in the hiredis-0.13.3 distribution). �is
procedure contains an obscure boilerplate code sequence
that enables the program to successfully connect to the Re-
dis server. With current development practices, developers
typically use Google or search through examples provided

with the packages they are using to �nd such code sequences.
In our approach, the knowledge of how to successfully use
Redis, including the specialized knowledge of obscure boiler-
plate code sequences, is encapsulated inside the regenerator
for automated oblivious reuse by system users.

2.3.3 Map Implementation
By interacting with the seed program, the program inference
engine infers several (virtual) maps. In our example these
maps include:
• id→ name: �e operation sequence enroll name id;
name id reveals the presence of this map — the name id
operation returns the name from the enroll operation.

• name→ id: �e operation sequence enroll name id;
id name reveals the presence of this map — the id name
operation returns the id from the enroll operation.

• id→ list(class): �e operation sequence add id class;
classes id reveals the presence of this map — the classes
id operation returns the class from the add id class
operation. �e operation sequence add id class1; add
id class2; classes id reveals that the add id class
operation accumulates the classes into a list — the classes
id operation returns both class1 and class2 from the
previous add operations.

�e C/Redis regenerator generates code that represents these
maps in Redis.

It is the responsibility of the C/Redis regenerator to gen-
erate code that uses the Redis data structures to implement
these inferred maps. In our example the regenerator will use
the Redis hash, which maps keys to named �elds, for this
purpose. �e Redis hash supports two relevant commands,
the HSET key field value command, which maps the
key,field pair to the value, and the HGET key field com-
mand, which returns the previously stored value. �is data
structure is designed to support an object-based perspective
in which each key represents an object and each �eld rep-
resents an a�ribute of the object. �e C/Redis regenerator
encapsulates the perspective shi� required to translate from
the abstract maps which the developer uses to conceptualize
the computation to the object-based hash that Redis provides.
With this perspective shi�, each name and id corresponds to
an object, with name objects implementing an id �eld and
id objects implementing name and class �elds.

�e C/Redis regenerator implements all of the tables in
the Redis hash, generating key pre�xes to ensure that keys
from di�erent inferred maps are distinct in the hash. For
example, it implements a store of the relation Joe→100 into
the inferred name→id map with the Redis HSET name:Joe
id 100 command. Conceptually, this Redis command cap-
tures the information that Joe is a name object whose id
�eld has the value 100. Similarly, it implements a store of
the relation 100→Joe into the inferred id→name map with
the Redis HSET id:100 name Joe command. �is Redis

6

Inference and Regeneration of Programs that Store and Retrieve Data , ,

command captures the information that 100 is an id object
whose name �eld has the value Joe. �is implementation
strategy identi�es name objects in the hash by prepending
the name: pre�x to the name and id objects by prepending
the id: pre�x to the id.

Figure 15 presents the code for the enroll, name, and id op-
erations. �e code for these operations uses the string-based
hiredis [2] interface to invoke Redis commands from C. �e
code contains the standard hiredis boilerplate required to use
these commands from C, including code to check for error
cases when invoking the Redis command and code to deallo-
cate the Redis reply objects. �e code for the enroll command
uses the Redis HSET key field value command to store
the name and id in the hash. �e code for the name and id
operations uses the Redis HGET key field command to re-
trieve the stored values from the hash. While this code does
not contain any additional validation or security checks on
the user-provided name or id strings, it is straightforward to
add any desired checks to this code. �ese checks would ap-
pear before the calls to the redisCommand procedure, which
invokes the operations against the Redis database.

2.3.4 Lists and Maps
�e add id class operation accumulates the stored classes
into a list. Redis hashes do not directly support lists — an-
other conceptual mismatch that the C/Redis regenerator
must navigate. �e regenerator therefore encodes the list
of classes into a single string, with the items in the list sep-
arated by a delimiter (our example uses the : character as
the delimiter). To maintain this list, the regenerator also
generates procedures that operate on the sets encoded as
strings of items separated by delimiters. In this way the re-
generator bridges a mismatch between the concepts present
in the seed program and the implementation mechanisms
that the target implementation context provides.

�e inference algorithm determines that add id class
operations accumulate the inserted classes into a list and
that drop id class operations remove the class from the
list (Sections 3.2, 3.3, and 3.4). Figure 16 presents the code for
these operations (and the classes operation, which prints
the list of classes). �is code manipulates the list using the
lookup, insert, and delete procedures, which manipulate
lists implemented as strings of items separated by the de-
limiter. Figures 17 and 18 present the code for these list
manipulation procedures. �ese procedures are low-level C
code that operate on strings of characters separated by the :
delimiter. Here the regenerator chose to implement lists as
null-terminated character strings of at most 4096*10 char-
acters. Other implementation choices (such as unbounded
length character strings) are also possible. We note that this
kind of low-level C code is notoriously di�cult to get correct
and is o�en the source of security vulnerabilities [33, 39].

2.4 A Web Application with Browser Interface
We next present an example that illustrates the regeneration
of a web-form-based HTML/CSS/Go/JavaScript/Redis imple-
mentation of the registration program. �is implementation
has three components: 1) a regenerated HTML page that the
user’s browser loads, 2) a regenerated server, wri�en in Go,
that processes commands received from the user’s browser,
and 3) the Redis database that the Go server uses to store
and retrieve data.

�e HTML web page presents input forms implemented
in JavaScript. �e web page receives commands and argu-
ments from the input forms, sends requests to the web server,
and displays the server response. �e web server contains
the main functionality for the registration program. It is
implemented in Go [1] and stores data with Redis [3].

All of these so�ware components (HTML, CSS, JavaScript,
Go, and Redis) o�er both signi�cant functionality and com-
plex interfaces. Using these interfaces requires li�le to no
fundamental computer science knowledge. Instead, they re-
quire extensive knowledge of how to precisely con�gure and
invoke speci�c interfaces to obtain the desired e�ect. �e
standard way to develop code that uses these interfaces is
to extensively Google key words and phrases that lead to
code snippets that can be copied, then adapted, to imple-
ment the desired functionality. Our approach encapsulates
this knowledge in reusable form in the regenerator. �e
developer can therefore be productively ignorant of the com-
plex interfaces and obscure usage requirements that these
so�ware components present.

In our example, a�er the web server starts running, the
user may access the registration program from the same
machine in a web browser at h�p://localhost:8088/static/
register.html. Figure 4 presents a screen shot of the web
interface. �e interface is laid out as a matrix, with the rows
corresponding to commands and the columns correspond-
ing to the command parameters. �e last column contains
submit bu�ons for the corresponding commands. �e box at
the bo�om presents the output for each executed command.

2.4.1 Browser Interface Layout
�e regenerated web page contains HTML code that speci�es
the web page layout. �e boilerplate code in the regenerated
HTML header (Figure 19) speci�es that the HTML body uses
the j�ery JavaScript library and Cascading Style Sheets
(CSS). It also uses the Cloud�are skeleton CSS �le [5] to
support the matrix layout. �e regenerated HTML body
(Figure 20) speci�es the input form. Each input command has
a designated <div> element that occupies a row on the web
page, with the following contents: a text label that describes
the command name, an input �eld for each argument, and
a “submit” bu�on for sending the command and arguments
to the web server. �e bo�om of the HTML body contains a
<div> element for displaying the server response.

7

, , Martin Rinard and Jiasi Shen

Figure 4. Web interface

2.4.2 Communicating with Web Server
�e regenerated web page also contains JavaScript code that
listens to the input forms on the web page and communicates
with the web server (Figures 21 and 22). �is code binds a
function to each of the “submit” bu�ons on the web page.
�e bound listener function reads arguments from the input
forms, encodes the appropriate command and arguments
as a URL, sends the URL to the web server as a request,
and displays the server response at the bo�om of the web
page. �e server response may contain values successfully
returned from the database or error messages. �e listener
function executes each time the user clicks the corresponding
“submit” bu�on.

2.4.3 Redis Initialization and Command Handlers
When the Go server starts running, it initializes its connec-
tion to the Redis database before accepting requests. �e go
server �rst invokes the init procedure, which uses the re-
dis.v5 Go client for Redis [4]. Figure 23 presents the code for
the init procedure (as is standard practice when developing
applications that use these kinds of complex interfaces, this
code is adapted from an example found on the Internet via
a Google search). �is procedure contains boilerplate code
that enables the Go web server to successfully connect to
the Redis database server as a client.

A�er initializing Redis, the program invokes the main pro-
cedure, which registers appropriate command handlers for
incoming requests. Figure 24 presents the Go code for the
main procedure (once again, this code is adapted from an
example found on the Internet via a Google search). �is
procedure contains boilerplate code that enables the web
server to successfully parse incoming URL requests by in-
voking the appropriate command handlers and parsing the
appropriate arguments.

As in Section 2.3.2, our approach encapsulates the spe-
cialized knowledge of how to successfully use Redis and of

how to handle URL requests all inside the regenerator, for
automated oblivious reuse by system users.

2.4.4 Map Implementation
�e Go server implements the same strategy for representing
data in the Redis database as the text interface implementa-
tions. �e implementations can therefore interoperate — it
is possible to access the same data in the same database with
either the text or the web implementation.

�e code that implements enroll, name, and id operations
(Figure 25) presents the code the implements the enroll, name,
uses the go-redis interface [4] to invoke Redis commands
from Go. �e code uses the client variable, initialized to
hold a Redis client by the initialization code in Figure 23, to
access the Redis database. Like the text interface implementa-
tions, the Go server uses the Redis HSet and HGet commands
to store strings in the Redis hash. �e code contains stan-
dard boilerplate required to use these commands from Go,
including code to check for error cases in the invocation of
the Redis command. Once again, this code was adapted from
examples found on the Internet.

2.4.5 Lists and Maps
As in Section 2.3.4, the regenerator encodes the list of classes
into a single string and must generate code that operates
these strings. Here the regenerated code uses the built-in
Go string operations to construct the strings that implement
the list of classes (the text interface implementations, in
contrast, contain regenerated C code that implements the
required string manipulations). Figure 26 presents the code
for the add, drop, and classes operations. �is code uses
(once again), the Redis HGet and HSet operations and the Go
string operations.

2.5 Installation, Con�guration, and Documentation
In this section we have focused on the source code that the
regenerator produces. But in modern computer systems the
source code is only part of the solution. Installation and con-
�guration of the multiple subsystems that the code works
with can comprise a substantial obstacle to obtaining a work-
ing system. In addition to encapsulating the knowledge of
how to develop code that works with these subsystems, the
regenerator can also encapsulate knowledge of how to install
and con�gure the relevant subsystems. �is knowledge can
take the form of either a natural language narrative of how
to install and con�gure the subsystems (including installa-
tion and con�guration options) or of scripts that directly
implement the installation and con�guration.

Our current regenerator implementation produces code
without comments or documentation. While many develop-
ers may very well use the regenerated code directly without
examining it, others may wish to examine, understand, or
even modify the code. For these uses, the regenerator can
also produce documentation or comments that support the

8

Inference and Regeneration of Programs that Store and Retrieve Data , ,

Inputs:
SP-Seed Program
S = {sop1 p1

1 . . . p
1
k1
, . . . , sopn pn1 . . . pnkn

}
R = {rop1 p1 → q1, . . . , ropm pm → qm }

Output:
SRP = {〈sop1, rop1, k1, i1, j1〉, . . . , 〈sopl , ropl , kl , il , jl 〉}

Algorithm:
SRP = ∅
for sop p1 . . . pk ∈ S
for rop p→ q ∈ R
choose distinct v1, . . . ,vk
for 1 ≤ i ≤ k
v = sop v1 . . . vk ; rop vi | SP
for 1 ≤ j ≤ k

if v = vj or v = [vj]
SRP = SRP ∪ {〈sop, rop, k, i, j〉}

Figure 5. Store/Retrieve Pair (SRP) inference algorithm

ability of developers to use the regenerated code for a vari-
ety of purposes, including modifying the regenerated code
or using the regenerated code to develop or enhance their
understanding of how to use the target subsystems.

3 Program Inference Algorithms
We next present program inference algorithms for programs
whose operations store, remove, and delete relations from
maps.

3.1 Store/Retrieve Pair Inference Algorithm
Figure 5 presents the store/retrieve pair inference algorithm.
�e algorithm takes as inputs the seed program SP , a set
of potential store/remove operations S (each of which may
store or remove relations), with each operation of the form
sop p1 . . . pk (here sop is the name of the operation and
p1 . . . pk are the names of the k parameters), and a set of
potential retrieve operations R, with each operation of the
form rop p → q (here rop is the name of the operation,
which takes a single parameter p and returns a value or list
of values q). �e algorithm partitions the operations into
S and R based on whether they return a value (operations
in R) or not (operations in S). As presented, the algorithm
works with potential retrieve operations that take a single
parameter and return a single value or list of values. It is
straightforward to generalize the algorithms to work with
potential retrieve operations with multiple parameters that
may return multiple retrieved values.

�e algorithm produces as output a set of store/retrieve
pairs SRP , with each pair of the form 〈sop,rop,k,i, j〉. Here
sop is a potential store operation with k parameters that
stores a relation that maps its i’th parameter to its j’th pa-
rameter. rop is a retrieve operation that, when given the

Inputs:
SP-Seed Program
S = {sop1 p1

1 . . . p
1
k1
, . . . , sopn pn1 . . . pnkn

}
R = {rop1 p1 → q1, . . . , ropm pm → qm }
SRP = {〈sop1, rop1, k1, i1, j1〉, . . . , 〈sopl , ropl , kl , il , jl 〉}

Output:
KRL = {〈sop1, k1, i1, j1, krl1〉, . . . , 〈sopl , kl , il , jl , krll 〉}

Algorithm:
KRL = ∅
for 〈sop, rop, k, i, j〉 ∈ SRP
choose distinct v1, . . . ,vk , u1, . . . , uk
such that vi = ui
v = sop v1 . . . vk ; sop u1 . . . uk ; rop vi | SP
if v = vj krl = Keep
if v = uj krl = Replace
if v = [vj , uj] krl = List
KRL = KRL ∪ {〈sop, k, i, j, krl〉}

Figure 6. Keep/Replace/List (KRL) inference algorithm

i’th parameter (the key) of a previously executed sop oper-
ation, returns the j’th parameter (the stored value) of that
operation.

�e algorithm itself simply enumerates all potential store/re-
trieve pairs to collect all pairs that exhibit the required store/re-
trieve behavior. Speci�cally, it runs the the seed program
SP (starting with empty maps) �rst on a potential store
operation sop v1 . . .vk , then on a potential retrieve oper-
ation rop vi , and collects the resulting value v that the
potential retrieve operation returns. We use the notation
v = sop v1 . . .vk ; rop vi | SP to denote running the seed
program SP on these two operations to obtain the returned
value v . If the resulting value v matches one of the parame-
ters vi of the potential store operation, then the algorithm
has found a store/retrieve pair (that it then collects into the
output set of store/receive pairs SRP).

3.2 Keep, Replace, or List Inference Algorithm
�e keep, replace, or list inference algorithm explores the

behavior of the seed program when multiple relations with
the same key are stored in the same map. �e algorithm
infers three di�erent possible behaviors:
• Keep: Keep original relation and drop subsequent stores.
• Replace: Replace existing relation with new relation.
• List: Accumulate the values from multiple stores into a

list of values stored under the key.
Figure 6 presents the keep, replace, or list inference al-

gorithm. �e algorithm takes as inputs the seed program
SP , a set of potential store/remove operations S , a set of
potential retrieve operations R, and the store/retrieve pairs
SRP from the store/retrieve pair interence algorithm (Fig-
ure 5). It produces as output a set of tuples 〈sop,k,i, j,krl〉,
where sop is an operation with k parameters that stores
a relation into some map. �e i ′th parameter is the key

9

, , Martin Rinard and Jiasi Shen

Inputs:
SP-Seed Program
S = {sop1 p1

1 . . . p
1
k1
, . . . , sopn pn1 . . . pnkn

}
R = {rop1 p1 → q1, . . . , ropm pm → qm }
SRP = {〈sop1, rop1, k1, i1, j1〉, . . . , 〈sopl , ropl , kl , il , jl 〉}

Output:
SCP = {〈sop1, k1, i1, j1, sop′1, k ′1, i′1〉, . . . ,

〈sopo, ko, io, jo, sop′o, k ′o, i′o 〉}

Algorithm:
SCP = ∅
for 〈sop, rop, k, i, j〉 ∈ SRP
choose distinct v1, . . . ,vk
for 〈sop′ p1 . . . pk′〉 ∈ S
for 1 ≤ i′ ≤ k ′
choose distinct u1, . . . , uk′
such that vi = ui′
v = sop v1 . . .vk ; sop′ u1 . . .uk′ ; rop vi | SP
if v = Nil
SCP = SCP ∪ {〈sop, k, i, j, sop′, k ′, i′〉}

Figure 7. Store/Clear Pair (SCP) inference algorithm

and the j’th parameter is the value of this stored relation.
krl ∈ {Keep,Replace,List} speci�es whether the operation
keeps the original relation, replaces the original relation, or
accumulates the stores into a list of values.

�e algorithm iterates over all of the store/retrieve pairs in
SRP (from the store/retrieve pair inference algorithm) to �nd
operations that store relations in some map. It executes the
seed program SP , invoking the store operation twice with
the same key but di�erent values. It then retrieves the value
stored under the key to determine if the store operations
kept the �rst relation, replaced the �rst relation with the
second relation, or accumulated the values into a list stored
under the key.

3.3 Store/Clear Pair Inference Algorithm
In addition to storing relations, operations may also re-

move relations. If an operation removes relations based only
on the key, we call the operation a clear relation; if the oper-
ation removes relations based on both the key and value, we
call the operation a delete operation (Section 3.4).

Figure 7 presents the store/clear pair inference algorithm.
�e algorithm takes as inputs the seed program SP , a set
of potential store/remove operations S , a set of potential
retrieve operations R, and the store/retrieve pairs SRP from
the store/retrieve pair interence algorithm (Figure 5).

�e algorithm produces as output a set of store/clear pairs
SCP , with each pair of the form 〈sop,k,i, j,sop′,k ′,i ′〉. Here
sop is an operation with k parameters that stores a relation
that maps its i’th parameter (the key) to its j’th parameter
(the value). sop′ is an operation with k ′ parameters that
clears the stored relation from the map. To clear the relation,
the keys, speci�cally the i ′’th parameter of sop′ and i’th
parameter of sop, must have the same value.

Inputs:
SP-Seed Program
S = {sop1 p1

1 . . . p
1
k1
, . . . , sopn pn1 . . . pnkn

}
R = {rop1 p1 → q1, . . . , ropm pm → qm }
SRP = {〈sop1, rop1, k1, i1, j1〉, . . . , 〈sopl , ropl , kl , il , jl 〉}
SCP = {〈sop1, k1, i1, j1, sop′1, k ′1, i′1〉, . . . ,

〈sopo, ko, io, jo, sop′o, k ′o, i′o 〉}

Output:
SDP = {〈sop1, k1, i1, j1, sop′1, k ′1, i′1, j′1〉, . . . ,

〈sopo, ko, io, jo, sop′o, k ′o, i′o, j′o 〉}

Algorithm:
SDP = ∅
for 〈sop, rop, k, i, j〉 ∈ SRP
choose distinct v1, . . . ,vk
for 〈sop′ p1 . . . pk′〉 ∈ S
for 1 ≤ i′ ≤ k ′, 1 ≤ j′ ≤ k ′, i′ , j′
choose distinct u1, . . . , uk′
such that vi = ui′,vj = uj′
if 〈sop, k, i, j, sop′, k ′, i′〉 < SCP
v = sop v1 . . .vk ; sop′ u1 . . .uk′ ; rop vi | SP
if v = Nil or v = []
SDP = SDP ∪ {〈sop, k, i, j, sop′, k ′, i′, j′〉}

Figure 8. Store/Delete Pair (SDP) inference algorithm

�e algorithm �rst uses the inferred store/retrieve pairs
SRP to iterate over all operations that insert relations into
maps. It then iterates over all potential operations that may
clear the stored relation, executing the seed program SP on
the two operations sop v1 . . . vk (the operation that stores
the relation) and sop′ u1 . . . uk ′ (the potential clear opera-
tion) in sequence. �e algorithm then executes the retrieve
operation rop vi from the store/retrieve pair to determine
if the potential clear operation actually cleared the stored
relation. If the retrieve operation returns nothing (v = Nil)
a�er the seed program executes the store and potential clear
operation, the algorithm has found a store/clear pair that
it then collects into the output set of store/clear pairs SCP .
To avoid �nding operations that delete relations based on
both the key and the value, the algorithm ensures that all of
the parameters v1, . . . ,vk and u1, . . . ,uk ′ are distinct (with
the exception of the key parameters vi = vi′) so that the
potential clear operation will not be given the value from
the stored key/value relation.

3.4 Store/Delete Pair Inference Algorithm
�e store/clear pair inference algorithm (Figure 7) infers

operations that remove relations based on a given key regard-
less of the value to which the key maps. Some operations,
however, remove relations based not only on the key, but also
on the value. Such operations are o�en used, for example,
to delete speci�c values within a list of values accumulated
under the same key. We call such operations delete opera-
tions (as opposed to the clear operations from Section 3.3,
which remove relations based only on the key, not the value).
�e add and drop operations from the example in Section 2

10

Inference and Regeneration of Programs that Store and Retrieve Data , ,

are one example of a store/delete pair. �e store/delete pair
inference algorithm infers operations that delete relations
based on both the key and the value.

Figure 8 presents the store/delete pair inference algorithm.
�e algorithm takes as inputs the seed program SP , a set
of potential store/remove operations S , a set of potential
retrieve operations R, the store/retrieve pairs SRP from the
store/retrieve pair inference algorithm (Figure 5), and the
store/clear pairs SCP from the store/clear pair inference al-
gorithm (Figure 7).

�e algorithm produces as output a set of store/delete pairs
SDP , with each pair of the form 〈sop,k,i, j,sop′,k ′,i ′, j ′〉.
Here sop is an operation with k parameters that stores a
relation that maps its i’th parameter (the key) to its j’th pa-
rameter (the value). sop′ is an operation with k ′ parameters
that deletes the stored relation from the map. To delete the
relation, the i ′’th and j ′’th parameters of sop′ must be the
same as the i’th and j’th parameters of sop, respectively.
Delete operations sop′ typically work with lists of values
stored under the same key to delete single list values while
leaving the other values in the list intact. �e drop operation
in Section 2 is an example of an operation that deletes a
relation based on both the key and the value.

�e algorithm uses the inferred store/retrieve pairs SRP
(Algorithm 5) and S to enumerate the possible store/delete
pairs. It �rst runs sop v1 . . .vk , which inserts the relation,
then sop′ u1 . . .uk ′ , which may delete the relation. If then
runs rop vi and checks the return value to see if the rela-
tion was deleted. It collects pairs in which the relation was
deleted into the output set of inferred store/delete pairs SDP ,
skipping pairs with a corresponding store/clear pair in SCP
— the algorithm only collects store/delete pairs in which both
the key and the value must match for the operation to delete
the stored relation.

3.5 Map Inference Algorithm
�e store/retrieve pair inference algorithm (Figure 5) �nds

operations that insert relations into some map. It does not,
however, a�empt to determine which operations insert rela-
tions into the same map. �is information is critical for code
regeneration — if two di�erent operations insert relations
into the same map, the code regenerator must ensure that
the regenerated operations access the same map.

�e map inference algorithm �nds operations that insert
relations into the same map. �e algorithm enumerates pairs
of operations that store relations to �nd operations that
store relations into the same map. It �nds these operations
by executing the seed program SP twice. �e �rst execution
executes the �rst operation, then the corresponding retrieve
operation. �e second execution executes the second oper-
ation, then again the corresponding retrieve operation for
the �rst operation (which retrieves the stored value from
the same map that the �rst operation stored into). If both
executions return the same value, the algorithm infers that

Inputs:
SP-Seed Program
S = {sop1 p1

1 . . . p
1
k1
, . . . , sopn pn1 . . . pnkn

}
R = {rop1 p1 → q1, . . . , ropm pm → qm }
SRP = {〈sop1, rop1, k1, i1, j1〉, . . . , 〈sopl , ropl , kl , il , jl 〉}

Output:
M = { {〈sop1

1, k
1
1, i

1
1, j

1
1 〉, . . . , 〈sop1

m1, k
1
m1, i

1
m1, j

1
m1 〉},

. . . ,

{〈sopn1 , kn1 , in1 , jn1 〉, . . . , 〈sopnmn , k
n
mn , i

n
mn , j

n
mn 〉} }

Algorithm:
M = { {〈sop, k, i, j〉} . 〈sop, rop, k, i, j〉 ∈ SRP }
for 〈sop1, rop1, k1, i1, j1〉 ∈ SRP

for 〈sop2, rop2, k2, i2, j2〉 ∈ SRP
choose distinct v1, . . . ,vk1, u1, . . . , uk2
such that vi1 = ui2, vj1 = uj2
v = sop1 v1 . . . vk1 ; rop1 vi1 | SP
u = sop2 u1 . . . uk2 ; rop1 vi1 | SP
if v = u
M = Union(M, 〈sop1, k1, i1, j1〉, 〈sop2, k2, i2, j2〉)

Figure 9. Map (M) inference algorithm

the two operations store into the same map. �e algorithm
uses the output SRP of the store/retrieve inference algorithm
to �nd operations that store relations.

Figure 9 presents the map inference algorithm. �e algo-
rithm takes as inputs the seed program SP , a set of potential
store/remove operations S , a set of potential retrieve opera-
tions R, and the store/retrieve pairs SRP from the store/re-
trieve pair inference algorithm (Figure 5). It represents each
map as a set of tuples {〈sop1,k1,i1, ji 〉, . . . ,〈sopm ,km ,im , jm〉}.
Each tuple 〈sop,k,i, j〉 represents a store operation sop with
k parameters that stores a relation from its i’th parameter to
the j’th parameter.

�e algorithm works withM , which is a set of sets of tuples.
Given a set T ∈ M , all tuples in T represent operations that
store into the same map. M partitions the set of tuples (no tu-
ple is in two sets inM). �e algorithm initializesM to contain
singleton sets of tuples (representing operations that store
into a di�erent maps), then unions these sets as it �nds pairs
of operations that store into the same map. It uses the op-
eration Union(M ,〈sop1,i1, j1〉,〈sop2,i2, j2〉), which �nds the
setsT1,T2 ∈ M that contain 〈sop1,i1, j1〉 ∈ T1 and 〈sop2,i2, j2〉 ∈
T2, then computes the union of T1 and T2 to return (M −
{T1,T2}) ∪ {T1 ∪T2}.
3.6 Regeneration Algorithm
Working with the inferred information, the code regener-
ation algorithm performs the following steps. �e speci�c
details of each step depend on the precise characteristics of
the target computing environment. �e code regeneration
algorithm encapsulates the knowledge of how to use the
computing environment for the target computation.
• InitializationCode: Many computing environments and

packages require complex initialization code sequences.
11

, , Martin Rinard and Jiasi Shen

�e code regeneration algorithm automatically generates
this code.

• Map Regeneration: Working with the output M of the
map inference algorithm, the code regenerator generates
a map for each set of tuples T ∈ M . �e speci�c imple-
mentation of each map will vary depending on the target
computing environment. Examples of potential map im-
plementations include python data structures, Redis maps,
and SQL tables.

• Command Loop Regeneration: �e regenerated com-
mand loop reads each command and its parameters, then
invokes an (automatically generated) procedure that im-
plements the command. Depending on the characteristics
of the target computing environment, the code regener-
ator can systematically generate (potentially new) input
validation checks and recovery code for malformed inputs.

• Store Regeneration: For each tuple in the inferred keep-
/replace/list set KRL, the code regenerator generates code
that stores the inferred relation in the inferred map as de-
termined byM . Speci�cally, for each tuple 〈sop,k ,i, j,krl〉 ∈
KRL, the regenerated code for sop stores a relation that
maps the i’th parameter (the key) to the j’th parameter (the
value) in the map for the setT ∈ M , where 〈sop,k,i, j〉 ∈ T .
krl determines whether the operation keeps, replaces, or
accumulates in a list any existing relations with the same
key.

• ClearRegeneration: For each tuple in the inferred store/-
clear set SCP , the code regenerator generates code that
clears relations with the inferred key from the inferred
map (as determined by M). Speci�cally, for each entry
〈sop,k,i, j,sop′,k ′,i ′〉 ∈ SCP , the regenerated code for
sop′ clears relations whose key is the i ′’th parameter of
sop′ from the map for the setT ∈ M , where 〈sop,k,i, j〉 ∈
T .
• Delete Regeneration: For each tuple in the inferred

store/delete set SDP , the code regenerator generates code
that deletes relations with the inferred key and value from
the inferred map (as determined by M). Speci�cally, for
each entry 〈sop,k,i, j,sop′,k ′,i ′, j ′〉 ∈ SDP , the regener-
ated code for sop′ clears relations whose key and value
are the i ′’th and j ′’th parameters of sop′ from the map for
the set T ∈ M , where 〈sop,k,i, j〉 ∈ T .

3.7 Discussion
�e inference algorithms highlight the utility of working
with a seed program instead of a set of given input/output
pairs. �e ability to repeatedly run the program on chosen
sets of inputs and pairs of operations (a form of active learn-
ing) enables the algorithms to comprehensively explore the
behavior of the seed program to infer the (conceptual) maps
that the program maintains and how the commands manipu-
late these maps. �ere is no need to deal with behavior that
is only partially exposed by given input/output pairs.

Because the inference algorithms interact with the seed
program only by presenting it with inputs and observing
the outputs, the seed program can be implemented in any
language and use any mechanism to implement the inferred
maps and operations. �e approach therefore supports a
wide range of developers with a wide range of technical
preferences and skills. �e inference algorithms also impose
essentially no scalability requirements on the seed program
— the generated inputs contain at most three operations per
execution of the seed program (Figures 7 and 8).

We note that because of incomplete input validation or cor-
ner case error handling, the inference algorithms may trigger
crashes in the seed program. For example, the store/retrieve,
store/clear, and store/delete pair inference algorithms will
trigger KeyErrors and ValueErrors in the student registration
program from Section 2 when it executes operations that
a�empt to retrieve or remove nonexistent relations. �ese
crashes are caused by the incomplete input validation and er-
ror handling of the seed program. �e inference algorithms
view this kind of behavior as noise and, when learning the
seed program’s core functionality, do not incorporate results
from inputs that trigger such noisy behaviors.

4 Related Work
So�waremodernization. So�ware modernization tools [14,
20, 40] analyze the source code of a legacy program, translate
the program into a high-level modeling language, then use
this representation to generate a new program that imple-
ments the same functionality in a more modern language.
�e translation strictly follows syntactic cues and usually
requires human intervention. Our approach, in contrast,
(a) works with the given implementation as a black box,
without analyzing code and (b) regenerates an augmented
computation with additional error and security checks that
implements the core functionality with complex new so�-
ware components that execute on modern target platforms.

Partial program rejuvenation. Helium [34] uses dynamic
instrumentation to extract the functionality of computational
stencil kernels embedded within production binaries. It then
replaces the stencil kernel with a computation expressed
in the Halide [38] domain-speci�c language. �e goal is to
replace the legacy implementation with a version optimized
for modern computational platforms. Program fracture and
recombination [9] works with multiple applications to au-
tomatically �nd e�cient, sophisticated, and/or robust im-
plementations of subcomputations across applications, then
transfers subcomputations across implementations to max-
imize e�ciency or robustness. A goal is to automatically
replace simple code that executes on a single machine with
more complex code that operates on parallel or distributed
computing platforms. Our approach, in contrast, (a) models
the full computation and regenerates the entire application,
augmented as appropriate, (b) can work with incomplete

12

Inference and Regeneration of Programs that Store and Retrieve Data , ,

or buggy implementations of the original program, and (c)
targets programs that store and retrieve data in maps.

Stateless model extraction. Model extraction algorithms
use queries to construct representations for given programs,
where the representations are stateless functions such as
decision trees [17, 50] or symbolic rules [49]. Model com-
pression algorithms [12, 28] use machine learning models,
such as neural networks, to mimic a given machine learning
model, typically by generating inputs (training data) and
observing the outputs from the given model. Our approach,
in contrast, (a) infers stateful models that can store and re-
trieve data across multiple queries and (b) regenerates a new
program or programs, augmented as appropriate, that im-
plement the core functionality without defects or security
vulnerabilities on new implementation platforms.

Partial model learning. Algorithms for learning black-box
state machines [8, 10, 15, 16, 19, 25, 29, 35, 37, 51, 52] con-
struct partial representations of program functionality, using
�nite automata with states and transition rules. State fuzzing
tools [7, 18] are used to hypothesize state machines for given
program implementations, which can aid developers in dis-
covering bugs such as spurious state transitions. Network
function state model extraction [53] performs program slic-
ing on given code and models the sliced partial programs as
packet-processing automata. �ese algorithms extract partial
models of the given programs. Our approach, in contrast, (a)
extracts a complete representation of the core functionality,
which, in turn, enables the regeneration (and replacement)
of the initial program, (b) can work with programs with de-
fects or that only partially implement the core functionality,
(c) regenerates a new program or programs, augmented as
appropriate, that implement the core functionality without
defects or security vulnerabilities on new implementation
platforms, and (d) represents the inferred programs as com-
mands and key-value maps, which can capture a wide range
of programs that store and retrieve data.

Programsynthesis. Program synthesis algorithms typically
generate programs by solving constraints speci�ed as logical
formulas [27, 31], input/output examples [11, 24, 26, 30, 36,
44], or templates [46–48]. �ese techniques do not work with
existing implementations, but require (partial or complete)
speci�cations in the form of logical formulas or input/out-
put examples. Our approach, in contrast, (a) works with a
concrete program implementation rather than abstract spec-
i�cations, which can be especially useful for regenerating
new implementations for legacy so�ware, (b) actively and
automatically executes the given implementation as needed
to infer the core functionality, without requiring user inter-
action and is not restricted to a limited set of training data, (c)
can work with programs with defects or that only partially
implement the core functionality, (d) automatically regener-
ates a new program or programs, augmented as appropriate,

that implement the core functionality without defects or
security vulnerabilities on new implementation platforms.

Counterexample-guided inductive synthesis (CEGIS) [46]
uses �nite programs (whose input is bounded and terminate
on all inputs a�er a bounded number of operations) as spec-
i�cations, to generate more e�cient implementations that
always produce the correct outputs. Oracle-guided program
synthesis [30] uses hypothetical I/O oracles (which always
return the correct results) to guide the synthesis of loop-free
programs. Our approach, in contrast, (a) works with stateful
programs that store and retrieve unbounded amounts of data
(as opposed to �nite programs that implement functions), (b)
can work with programs with defects or that only partially
implement the core functionality, and (c) regenerates new
programs, augmented with additional security checks, that
use complex programming interfaces to execute on modern
distributed computing platforms.

Concolic Testing. Concolic testing [13, 22, 23, 41] generates
inputs that systematically explore all execution paths in the
program. �e goal is to �nd inputs that expose so�ware de-
fects. BuzzFuzz [21] generates inputs that target defects that
occur because of coding oversights at the boundary between
application and library code. DIODE [43] generates inputs
that target integer over�ow errors. All these techniques dy-
namically analyze the execution of the program and use the
resulting information to guide the input generation. Our
approach, in contrast, (a) works with the given implemen-
tation as a black box, without analyzing code, (b) extracts a
representation of the core functionality, and (c) regenerates
a new program or programs, augmented as appropriate, that
implement the core functionality without defects or security
vulnerabilities on new implementation platforms.

5 Conclusion
Modern so�ware systems are characterized by the pervasive
use of complex components with arcane interfaces. Most
developers that work with such systems spend their time
constructing appropriate Google search terms to �nd previ-
ously developed code that they can (o�en largely mindlessly)
copy and adapt for their needs.

We propose to encapsulate the knowledge of how to use
modern complex systems inside a regenerator that works
with an abstract representation of the core functionality of
the program. �is regenerator produces augmented pro-
grams that contain systematically generated security and
input validation checks and implement graphical web in-
terfaces. �e abstract functionality can be inferred either
from existing programs or from simple text-based programs
implemented in simple computing environments. �is ap-
proach promotes a more meaningful and powerful form of
code reuse and enables programmers to focus on the core
functionality that their programs implement.

13

, , Martin Rinard and Jiasi Shen

References
[1] �e Go Programming Language. h�ps://golang.org/. (��).
[2] Hiredis. h�ps://redislabs.com/lp/hiredis/. (��).
[3] Redis. h�ps://redis.io/. (��).
[4] Redis.v5. h�ps://gopkg.in/redis.v5. (��).
[5] Skeleton: Responsive CSS Boilerplate. h�p://getskeleton.com/. (��).
[6] Stack Over�ow. h�p://stackover�ow.com/. (��).
[7] F. Aarts, J. De Ruiter, and E. Poll. 2013. Formal Models of Bank Cards

for Free. In 2013 IEEE Sixth International Conference on So�ware Testing,
Veri�cation and Validation Workshops. 461–468. DOI:h�p://dx.doi.org/
10.1109/ICSTW.2013.60

[8] Fides Aarts and Frits Vaandrager. 2010. Learning I/O Automata.
Springer Berlin Heidelberg, Berlin, Heidelberg, 71–85. DOI:h�p:
//dx.doi.org/10.1007/978-3-642-15375-4 6

[9] P. Amidon, E. Davis, S. Sidiroglou-Douskos, and M. Rinard. 2015.
Program fracture and recombination for e�cient automatic code reuse.
In 2015 IEEE High Performance Extreme Computing Conference (HPEC).
1–6. DOI:h�p://dx.doi.org/10.1109/HPEC.2015.7396314

[10] Dana Angluin. 1987. Learning Regular Sets from �eries and Coun-
terexamples. Inf. Comput. 75, 2 (Nov. 1987), 87–106. DOI:h�p:
//dx.doi.org/10.1016/0890-5401(87)90052-6

[11] Angela Bonifati, Radu Ciucanu, and Slawek Staworko. 2014. Inter-
active Join �ery Inference with JIM. Proc. VLDB Endow. 7, 13 (Aug.
2014), 1541–1544. DOI:h�p://dx.doi.org/10.14778/2733004.2733025

[12] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. 2006.
Model Compression. In Proceedings of the 12th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD ’06).
ACM, New York, NY, USA, 535–541. DOI:h�p://dx.doi.org/10.1145/
1150402.1150464

[13] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and
Dawson R. Engler. 2006. EXE: Automatically Generating Inputs of
Death. In Proceedings of the 13th ACM Conference on Computer and
Communications Security (CCS ’06). ACM, New York, NY, USA, 322–
335. DOI:h�p://dx.doi.org/10.1145/1180405.1180445

[14] Javier Luis Cánovas Izquierdo and Jesús Garcı́a Molina. 2014. Ex-
tracting Models from Source Code in So�ware Modernization. So�w.
Syst. Model. 13, 2 (May 2014), 713–734. DOI:h�p://dx.doi.org/10.1007/
s10270-012-0270-z

[15] So�a Cassel, Falk Howar, Bengt Jonsson, and Bernhard Ste�en. 2016.
Active learning for extended �nite state machines. Formal Aspects
of Computing 28, 2 (2016), 233–263. DOI:h�p://dx.doi.org/10.1007/
s00165-016-0355-5

[16] T. S. Chow. 1978. Testing So�ware Design Modeled by Finite-State
Machines. IEEE Trans. So�w. Eng. 4, 3 (May 1978), 178–187. DOI:
h�p://dx.doi.org/10.1109/TSE.1978.231496

[17] Mark W. Craven and Jude W. Shavlik. 1995. Extracting Tree-structured
Representations of Trained Networks. In Proceedings of the 8th Interna-
tional Conference on Neural Information Processing Systems (NIPS’95).
MIT Press, Cambridge, MA, USA, 24–30.

[18] Joeri De Ruiter and Erik Poll. 2015. Protocol State Fuzzing of TLS
Implementations. In Proceedings of the 24th USENIX Conference on
Security Symposium (SEC’15). USENIX Association, Berkeley, CA, USA,
193–206.

[19] Paul Fiterău-Broştean, Ramon Janssen, and Frits Vaandrager. 2016.
Combining Model Learning and Model Checking to Analyze TCP Imple-
mentations. Springer International Publishing, Cham, 454–471. DOI:
h�p://dx.doi.org/10.1007/978-3-319-41540-6 25

[20] Rubén Fuentes-Fernández, Juan Pavón, and Francisco Garijo. 2012.
A Model-driven Process for the Modernization of Component-based
Systems. Sci. Comput. Program. 77, 3 (March 2012), 247–269. DOI:
h�p://dx.doi.org/10.1016/j.scico.2011.04.003

[21] Vijay Ganesh, Tim Leek, and Martin Rinard. 2009. Taint-based Di-
rected Whitebox Fuzzing. In Proceedings of the 31st International Con-
ference on So�ware Engineering (ICSE ’09). IEEE Computer Society,

Washington, DC, USA, 474–484. DOI:h�p://dx.doi.org/10.1109/ICSE.
2009.5070546

[22] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Di-
rected Automated Random Testing. In Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI ’05). ACM, New York, NY, USA, 213–223. DOI:
h�p://dx.doi.org/10.1145/1065010.1065036

[23] Patrice Godefroid, Michael Y. Levin, and David Molnar. 2012. SAGE:
Whitebox Fuzzing for Security Testing. �eue 10, 1, Article 20 (Jan.
2012), 8 pages. DOI:h�p://dx.doi.org/10.1145/2090147.2094081

[24] Patrice Godefroid and Ankur Taly. 2012. Automated Synthesis of
Symbolic Instruction Encodings from I/O Samples. In Proceedings of
the 33rd ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’12). ACM, New York, NY, USA, 441–452.
DOI:h�p://dx.doi.org/10.1145/2254064.2254116

[25] Olga Grinchtein, Bengt Jonsson, and Martin Leucker. 2010. Learning
of Event-recording Automata. �eor. Comput. Sci. 411, 47 (Oct. 2010),
4029–4054. DOI:h�p://dx.doi.org/10.1016/j.tcs.2010.07.008

[26] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets
Using Input-output Examples. In Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’11). ACM, New York, NY, USA, 317–330. DOI:h�p://dx.doi.
org/10.1145/1926385.1926423

[27] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkate-
san. 2011. Synthesis of Loop-free Programs. In Proceedings of the
32Nd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’11). ACM, New York, NY, USA, 62–73. DOI:
h�p://dx.doi.org/10.1145/1993498.1993506

[28] Geo�rey Hinton, Oriol Vinyals, and Je� Dean. 2015. Distilling the
knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015).

[29] Malte Isberner, Falk Howar, and Bernhard Ste�en. 2014. �e TTT
Algorithm: A Redundancy-Free Approach to Active Automata Learning.
Springer International Publishing, Cham, 307–322. DOI:h�p://dx.doi.
org/10.1007/978-3-319-11164-3 26

[30] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010.
Oracle-guided Component-based Program Synthesis. In Proceedings of
the 32Nd ACM/IEEE International Conference on So�ware Engineering -
Volume 1 (ICSE ’10). ACM, New York, NY, USA, 215–224. DOI:h�p:
//dx.doi.org/10.1145/1806799.1806833

[31] Rajeev Joshi, Greg Nelson, and Keith Randall. 2002. Denali: A Goal-
directed Superoptimizer. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation
(PLDI ’02). ACM, New York, NY, USA, 304–314. DOI:h�p://dx.doi.org/
10.1145/512529.512566

[32] Steve Lohr. 2017. Where Non-Techies Can Get With the Programming.
�e New York Times. (April 2017). h�ps://nyti.ms/2oxp31L.

[33] Fan Long, Stelios Sidiroglou-Douskos, and Martin Rinard. 2014. Auto-
matic Runtime Error Repair and Containment via Recovery Shepherd-
ing. In Proceedings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’14’). ACM, New York,
NY, USA, 227–238. DOI:h�p://dx.doi.org/10.1145/2594291.2594337

[34] Charith Mendis, Je�rey Bosboom, Kevin Wu, Shoaib Kamil, Jonathan
Ragan-Kelley, Sylvain Paris, Qin Zhao, and Saman Amarasinghe. 2015.
Helium: Li�ing High-performance Stencil Kernels from Stripped x86
Binaries to Halide DSL Code. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI ’15). ACM, New York, NY, USA, 391–402. DOI:h�p://dx.doi.org/
10.1145/2737924.2737974

[35] Edward F Moore. 1956. Gedanken-experiments on sequential ma-
chines. Automata studies 34 (1956), 129–153.

[36] Daniel Perelman, Sumit Gulwani, Dan Grossman, and Peter Provost.
2014. Test-driven Synthesis. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI ’14). ACM, New York, NY, USA, 408–418. DOI:h�p://dx.doi.org/
10.1145/2594291.2594297

14

Inference and Regeneration of Programs that Store and Retrieve Data , ,

[37] Harald Ra�elt, Bernhard Ste�en, and �erese Berg. 2005. LearnLib: A
Library for Automata Learning and Experimentation. In Proceedings
of the 10th International Workshop on Formal Methods for Industrial
Critical Systems (FMICS ’05). ACM, New York, NY, USA, 62–71. DOI:
h�p://dx.doi.org/10.1145/1081180.1081189

[38] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A Lan-
guage and Compiler for Optimizing Parallelism, Locality, and Recom-
putation in Image Processing Pipelines. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (PLDI ’13). ACM, New York, NY, USA, 519–530. DOI:
h�p://dx.doi.org/10.1145/2491956.2462176

[39] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, Tudor
Leu, and William S. Beebee. 2004. Enhancing Server Availability and
Security �rough Failure-Oblivious Computing. In OSDI. 303–316.

[40] Óscar Sánchez Ramón, Jesús Sánchez Cuadrado, and Jesús
Garcı́a Molina. 2014. Model-driven Reverse Engineering of Legacy
Graphical User Interfaces. Automated So�ware Engg. 21, 2 (April 2014),
147–186. DOI:h�p://dx.doi.org/10.1007/s10515-013-0130-2

[41] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Con-
colic Unit Testing Engine for C. In Proceedings of the 10th Euro-
pean So�ware Engineering Conference Held Jointly with 13th ACM
SIGSOFT International Symposium on Foundations of So�ware Engi-
neering (ESEC/FSE-13). ACM, New York, NY, USA, 263–272. DOI:
h�p://dx.doi.org/10.1145/1081706.1081750

[42] Jiasi Shen and Martin Rinard. 2015. Filtered Iterators for Safe and
Robust Programs in RIFL. h�p://hdl.handle.net/1721.1/100542. (2015).
h�p://hdl.handle.net/1721.1/100542 MIT-CSAIL-TR-2015-036.

[43] Stelios Sidiroglou-Douskos, Eric Lahtinen, Nathan Ri�enhouse, Paolo
Piselli, Fan Long, Deokhwan Kim, and Martin Rinard. 2015. Targeted
Automatic Integer Over�ow Discovery Using Goal-Directed Condi-
tional Branch Enforcement. In Proceedings of the Twentieth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’15). ACM, New York, NY, USA, 473–
486. DOI:h�p://dx.doi.org/10.1145/2694344.2694389

[44] Rishabh Singh and Armando Solar-Lezama. 2011. Synthesizing Data
Structure Manipulations from Storyboards. In Proceedings of the 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foun-
dations of So�ware Engineering (ESEC/FSE ’11). ACM, New York, NY,
USA, 289–299. DOI:h�p://dx.doi.org/10.1145/2025113.2025153

[45] Megan Smith. 2016. Computer Science For All. �e White House.
(Jan. 2016). h�ps://obamawhitehouse.archives.gov/blog/2016/01/30/
computer-science-all.

[46] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Se-
shia, and Vijay Saraswat. 2006. Combinatorial Sketching for Fi-
nite Programs. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS XII). ACM, New York, NY, USA, 404–415. DOI:
h�p://dx.doi.org/10.1145/1168857.1168907

[47] Saurabh Srivastava, Sumit Gulwani, and Je�rey S. Foster. 2013.
Template-based program veri�cation and program synthesis. Interna-
tional Journal on So�ware Tools for Technology Transfer 15, 5 (2013),
497–518. DOI:h�p://dx.doi.org/10.1007/s10009-012-0223-4

[48] Ankur Taly, Sumit Gulwani, and Ashish Tiwari. 2011. Synthesizing
switching logic using constraint solving. International Journal on
So�ware Tools for Technology Transfer 13, 6 (2011), 519–535. DOI:
h�p://dx.doi.org/10.1007/s10009-010-0172-8

[49] Geo�rey G. Towell and Jude W. Shavlik. 1993. Extracting Re�ned
Rules from Knowledge-Based Neural Networks. Mach. Learn. 13, 1
(Oct. 1993), 71–101. DOI:h�p://dx.doi.org/10.1023/A:1022683529158

[50] Florian Tramèr, Fan Zhang, Ari Juels, Michael K. Reiter, and �omas
Ristenpart. 2016. Stealing Machine Learning Models via Predic-
tion APIs. In 25th USENIX Security Symposium (USENIX Security 16).
USENIX Association, Austin, TX, 601–618.

[51] Frits Vaandrager. 2017. Model Learning. Commun. ACM 60, 2 (Jan.
2017), 86–95. DOI:h�p://dx.doi.org/10.1145/2967606

[52] Michele Volpato and Jan Tretmans. 2015. Approximate Active Learn-
ing of Nondeterministic Input Output Transition Systems. Electronic
Communications of the EASST 72 (2015).

[53] Wenfei Wu, Ying Zhang, and Sujata Banerjee. 2016. Automatic Synthe-
sis of NF Models by Program Analysis. In Proceedings of the 15th ACM
Workshop on Hot Topics in Networks (HotNets ’16). ACM, New York,
NY, USA, 29–35. DOI:h�p://dx.doi.org/10.1145/3005745.3005754

[54] Stuart Zweben and Betsy Bizot. 2016. 2015 Taulbee Survey: Continued
Booming Undergraduate CS Enrollment; Doctoral Degree Production
Dips Slightly. Computing Research News 28, 5 (may 2016).

15

, , Martin Rinard and Jiasi Shen

A Appendix

int main(int argc , char **argv) {

redisContext *c;

token name , id, class;

int len;

c = initRedis(argc , argv);

while (1) {

int cmd = prompt ();

if (cmd < 1) { break; }

switch (cmd) {

case 1:

len = input(name);

if (len < 1) { resync (); continue; }

len = input(id);

if (len < 1) { resync (); continue; }

doenroll(c, name , id);

break;

case 2:

len = input(id);

if (len < 1) { resync (); continue; }

len = input(class);

if (len < 1) { resync (); continue; }

doadd(c, id, class);

break;

case 3:

len = input(id);

if (len < 1) { resync (); continue; }

len = input(class);

if (len < 1) { resync (); continue; }

dodrop(c, id, class);

break;

case 4:

len = input(id);

if (len < 1) { resync (); continue; }

doclasses(c, id);

break;

case 5:

len = input(id);

if (len < 1) { resync (); continue; }

doname(c, id);

break;

case 6:

len = input(name);

if (len < 1) { resync (); continue; }

doid(c, name);

break;

default:
resync ();

continue;
}

}

}

Figure 10. Command Loop for C/Redis Implementation

int prompt () {

token t;

printf("Select a command :\n\

\t1: enroll <name > <id >\n\

\t2: add <id> <class >\n\

\t3: drop <id> <class >\n\

\t4: classes <id >\n\

\t5: name <id >\n\

\t6: id <name >\n> ");

int len = input(t);

if (len <= 0) return -1;

if (strcmp(t, "1") == 0 || prefix(t, "enroll")) {

return 1;

}

if (strcmp(t, "2") == 0 || prefix(t, "add")) {

return 2;

}

if (strcmp(t, "3") == 0 || prefix(t, "drop")) {

return 3;

}

if (strcmp(t, "4") == 0 || prefix(t, "classes")) {

return 4;

}

if (strcmp(t, "5") == 0 || prefix(t, "name")) {

return 5;

}

if (strcmp(t, "6") == 0 || prefix(t, "id")) {

return 6;

}

return -1;

}

Figure 11. Prompt Code for Text Interface

typedef char token [4096];

void resync () {

int c;

c = getc(stdin);

while ((c != '\n') && (c != EOF)) {

c = getc(stdin);

}

}

Figure 12. Error Recovery Code for C/Redis Implementation

16

Inference and Regeneration of Programs that Store and Retrieve Data , ,

typedef char token [4096];

int input(token str) {

int c;

int n = 0;

while (1) {

if (((int) sizeof(token) - 1) == n) {

str[n] = '\0';

return -n;

}

c = getc(stdin);

if (isspace(c)) {

if (0 < n) {

str[n++] = '\0';

return n;

}

} else if (c == EOF) {

str[n] = '\0';

return n;

} else {

if (isalnum(c)) {

str[n++] = c;

} else {

str[n] = '\0';

return -n;

}

}

}

}

Figure 13. Text Input Code for C/Redis Implementation

redisContext *initRedis(int argc , char **argv) {

redisContext *c;

const char *hostname = (argc > 1) ? argv [1] : "

127.0.0.1";

int port = (argc > 2) ? atoi(argv [2]) : 6379;

struct timeval timeout = { 1, 500000 }; // 1.5

seconds

c = redisConnectWithTimeout(hostname , port , timeout);

if (c == NULL || c->err) {

if (c) {

printf("Connection error: %s\n", c->errstr);

redisFree(c);

} else {

printf("Connection error: can't allocate

redis context\n");

}

exit (1);

}

return c;

}

Figure 14. Redis Initialization Code for C/Redis Implemen-
tation

void doenroll(redisContext *c, token name , token id){

redisReply *reply;

reply = redisCommand(c, "HSET id:%s name %s", id , name)

;

if (reply == NULL) return;
freeReplyObject(reply);

reply = redisCommand(c, "HSET name:%s id %s", name , id)

;

if (reply == NULL) return;
freeReplyObject(reply);

printf("enroll %s %s successful\n", name , id);

}

void doname(redisContext *c, token id){

redisReply *reply;

reply = redisCommand(c, "HGET id:%s name", id);

if (reply == NULL || reply ->str == NULL) return;
printf("name %s -> %s\n", id, reply ->str);

freeReplyObject(reply);

}

void doid(redisContext *c, token name){

redisReply *reply;

reply = redisCommand(c, "HGET name:%s id", name);

if (reply == NULL || reply ->str == NULL) return;
printf("id %s -> %s\n", name , reply ->str);

freeReplyObject(reply);

}

Figure 15. Code for Enroll, Name, and Id Operations

17

, , Martin Rinard and Jiasi Shen

void doadd(redisContext *c, token id , token class){

redisReply *reply;

char *s;

list new;

reply = redisCommand(c, "HGET id:%s class", id);

if (reply == NULL) return;
if (reply ->str == NULL) {

s = empty;

} else {

s = reply ->str;

}

if (lookup(s, class) < 0) {

if (0 < insert(s, class , new)) {

freeReplyObject(reply);

reply = redisCommand(c, "HSET id:%s class %s", id,

new);

if (reply == NULL) return;
}

}

freeReplyObject(reply);

printf("add %s %s successful\n", id, class);

}

void dodrop(redisContext *c, token id , token class){

redisReply *reply;

list new;

reply = redisCommand(c, "HGET id:%s class", id);

if (reply == NULL) return;
if (reply ->str != NULL) {

delete(reply ->str , class , new);

freeReplyObject(reply);

reply = redisCommand(c, "HSET id:%s class %s", id,

new);

if (reply == NULL) return;
freeReplyObject(reply);

} else {

freeReplyObject(reply);

}

printf("drop %s %s successful\n", id, class);

}

void doclasses(redisContext *c, token id){

redisReply *reply;

reply = redisCommand(c, "HGET id:%s class", id);

if (reply == NULL || reply ->str == NULL) return;
printf("classes %s -> %s\n", id , reply ->str);

freeReplyObject(reply);

}

Figure 16. Code for Add, Drop, and Classes Operations

typedef char list [4096*20];

list empty="\0";

int insert(list l, token t, list n) {

int i = 0;

while (l[i] != '\0' && i < (int) sizeof(list) -2) {

n[i] = l[i];

i++;

}

if (0 < i) {

n[i++] = ':';

}

int j = 0;

while ((i < (int) sizeof(list) -1) && (t[j] != '\0')) {

n[i++] = t[j++];

}

n[i] = '\0';

if (t[j] != '\0') return -(i+1);

else return i;

}

int delete(list l, token t, list n) {

int i, j, k;

int p;

p = 0; i = 0; k = 0;

while (l[i] != '\0' && k < (int) sizeof(list) -1) {

j = 0;

p = k;

while (l[i] != ':' && l[i] != '\0' && t[j] != '\0' &&

l[i] == t[j]) {

n[k] = l[i];

i++; j++; k++;

}

if (t[j] == '\0') {

if (l[i] == ':') {

k = p;

i++;

continue;
} else if (l[i] == '\0') {

if (0 < p) {

n[p-1] = '\0';

}

k = p;

continue;
}

}

while (l[i] != ':') {

n[k] = l[i];

if (l[i] == '\0') return i;

i++; k++;

}

n[k] = ':';

i++; k++;

}

n[k] = '\0';

if (l[i] != '\0') {

return -i;

}

return i;

}

Figure 17. Code for Insert and Delete Procedures

18

Inference and Regeneration of Programs that Store and Retrieve Data , ,

int lookup(list l, token t) {

int i, j;

int n;

i = 0;

n = 0;

while (l[i] != '\0') {

j = 0;

while (l[i] != ':' && l[i] != '\0' && t[j] != '\0' &&

l[i] == t[j]) {

i++; j++;

}

if ((l[i] == ':' || l[i] == '\0') && t[j] == '\0') {

return n;

}

while (l[i] != ':' && l[i] != '\0') {

if (l[i] == '\0') return -1;

i++;

}

i++; n++;

}

return -1;

}

void print(char *l) {

int i = 0;

while (1) {

while (l[i] != ':') {

if (l[i] == '\0') return;
putchar(l[i]);

i++;

}

putchar(' ');

i++;

}

}

Figure 18. Code for lookup and print Procedures

<head>
<script

src="https :// code.jquery.com/jquery -3.2.0. min.js"
integrity="sha256 -JAW99MJVpJBGcbzEuXk4Az05s/

XyDdBomFqNlM3ic+I="

crossorigin="anonymous"></script >
<script src="form.js"></script >

<link rel="stylesheet"
href="https :// cdnjs.cloudflare.com/ajax/libs/skeleton

/2.0.4/ skeleton.min.css" />

<style >
#response{

border :1px solid black;

text -align:center;

}

.command{

text -align:right;

}

</style >
</head>

Figure 19. Code for browser interface HTML header that
refers to JavaScript �les and contains CSS

<body class="container">
<div class="enroll"> <div class="row">

<div class="two columns command">enroll </div>
<input type="text" id="name" class="two columns"

placeholder="name">

<input type="text" id="id" class="two columns"

placeholder="id">

<button id="submit" class="three columns">submit </

button >
</div>

</div>

<div class="add"> <div class="row">
<div class="two columns command">add</div>
<input type="text" id="id" class="two columns"

placeholder="id">

<input type="text" id="class" class="two columns"

placeholder="class">

<button id="submit" class="three columns">submit </

button >
</div>

</div>

<div class="drop"> <div class="row">
<div class="two columns command">drop</div>
<input type="text" id="id" class="two columns"

placeholder="id">

<input type="text" id="class" class="two columns"

placeholder="class">

<button id="submit" class="three columns">submit </

button >
</div>

</div>

<div class="classes"> <div class="row">
<div class="two columns command">classes </div>
<input type="text" id="id" class="two columns"

placeholder="id">

<div class="two columns"> </div>
<button id="submit" class="three columns">submit </

button >
</div>

</div>

<div class="name"> <div class="row">
<div class="two columns command">name</div>
<input type="text" id="id" class="two columns"

placeholder="id">

<div class="two columns"> </div>
<button id="submit" class="three columns">submit </

button >
</div>

</div>

<div class="id"> <div class="row">
<div class="two columns command">id</div>
<input type="text" id="name" class="two columns"

placeholder="name">

<div class="two columns"> </div>
<button id="submit" class="three columns">submit </

button >
</div>

</div>

<div id="response" class="id row nine columns"> </

div>
</body>

Figure 20. Code for browser interface HTML body

19

, , Martin Rinard and Jiasi Shen

$(document).ready(function () {

var _name_ = $("#name", $(".enroll")).val();

var _id_ = $("#id", $(".enroll")).val();

var url = "/enroll/" + _name_ + "/" + _id_;

$.post({

url: url ,

success: function (resp) {

var str = "enroll " + _name_ + " " + _id_ + "

successful";

$("#response").html(str);

},

error: function (resp) {

var str = "error " + resp.status + ": " + "enroll

" + _name_ + " " + _id_ + " " + resp.

statusText;

$("#response").html(str);

}

})

})

$("#submit", $(".add")).click(function () {

var _id_ = $("#id", $(".add")).val();

var _class_ = $("#class", $(".add")).val();

var url = "/add/" + _id_ + "/" + _class_;

$.post({

url: url ,

success: function (resp) {

var str = "add " + _id_ + " " + _class_ + "

successful";

$("#response").html(str);

},

error: function (resp) {

var str = "error " + resp.status + ": " + "add "

+ _id_ + " " + _class_ + " " + resp.

statusText;

$("#response").html(str);

}

})

})

$("#submit", $(".drop")).click(function () {

var _id_ = $("#id", $(".drop")).val();

var _class_ = $("#class", $(".drop")).val();

var url = "/drop/" + _id_ + "/" + _class_;

$.post({

url: url ,

success: function (resp) {

var str = "drop " + _id_ + " " + _class_ + "

successful";

$("#response").html(str);

},

error: function (resp) {

var str = "error " + resp.status + ": " + "drop "

+ _id_ + " " + _class_ + " " + resp.

statusText;

$("#response").html(str);

}

})

})

Figure 21. JavaScript code for communicating commands
Enroll, Id, and Name with the web server

$(document).ready(function () {

$("#submit", $(".name")).click(function () {

var _id_ = $("#id", $(".name")).val();

var url = "/name/" + _id_;

$.get({

url: url ,

success: function (resp) {

var str = "name " + _id_ + " -> " + resp;

$("#response").html(str);

},

error: function (resp) {

var str = "error " + resp.status + ": " + "name "

+ _id_ + " " + resp.statusText;

$("#response").html(str);

}

})

})

$("#submit", $(".id")).click(function () {

var _name_ = $("#name", $(".id")).val();

var url = "/id/" + _name_;

$.get({

url: url ,

success: function (resp) {

var str = "id " + _name_ + " -> " + resp;

$("#response").html(str);

},

error: function (resp) {

var str = "error " + resp.status + ": " + "id " +

name + " " + resp.statusText;

$("#response").html(str);

}

})

})

$("#submit", $(".enroll")).click(function () {

})

$("#submit", $(".classes")).click(function () {

var _id_ = $("#id", $(".classes")).val();

var url = "/classes/" + _id_;

$.get({

url: url ,

success: function (resp) {

var str = "classes " + _id_ + " -> " + resp;

$("#response").html(str);

},

error: function (resp) {

var str = "error " + resp.status + ": " + "

classes " + _id_ + " " + resp.statusText;

$("#response").html(str);

}

})

})

})

Figure 22. JavaScript code for communicating commands
Add, Drop, and Classes with the web server

20

Inference and Regeneration of Programs that Store and Retrieve Data , ,

package main

import (

"fmt"

"github.com/gorilla/mux"

"log"

"net/http"

"time"

"gopkg.in/redis.v5"

"strings"

)

var client *redis.Client

func init() {

client = redis.NewClient (& redis.Options{

Addr: ":6379",

DialTimeout: 10 * time.Second ,

ReadTimeout: 30 * time.Second ,

WriteTimeout: 30 * time.Second ,

PoolSize: 10,

PoolTimeout: 30 * time.Second ,

})

}

Figure 23. Redis initialization code for web server

func main() {

print("=== Server ===\n")

var dir = "."

router := mux.NewRouter ().StrictSlash(true)
router.PathPrefix("/static/").Handler(http.StripPrefix(

"/static/", http.FileServer(http.Dir(dir))))

router.HandleFunc("/enroll /{name }/{id}", doenroll)

router.HandleFunc("/add/{id}/{ class}", doadd)

router.HandleFunc("/drop/{id}/{ class}", dodrop)

router.HandleFunc("/classes /{id}", doclasses)

router.HandleFunc("/name/{id}", doname)

router.HandleFunc("/id/{name}", doid)

log.Fatal(http.ListenAndServe(":8088", router))

}

Figure 24. Input handler initialization code for web server

func doenroll(w http.ResponseWriter , r *http.Request){

vars := mux.Vars(r)

id := vars["id"]

name := vars["name"]

var err error

err = client.HSet("id:" + id, "name", name).Err()

if err != nil {

http.Error(w, err.Error (), http.

StatusInternalServerError)

return
}

err = client.HSet("name:" + name , "id", id).Err()

if err != nil {

http.Error(w, err.Error (), http.

StatusInternalServerError)

return
}

}

func doname(w http.ResponseWriter , r *http.Request){

vars := mux.Vars(r)

id := vars["id"]

var val string
var err error

val , err = client.HGet("id:" + id, "name").Result ()

if err != nil {

http.Error(w, err.Error (), http.StatusNotFound)

return
}

fmt.Fprintf(w, val)

}

func doid(w http.ResponseWriter , r *http.Request){

vars := mux.Vars(r)

name := vars["name"]

var val string
var err error

val , err = client.HGet("name:" + name , "id").Result ()

if err != nil {

http.Error(w, err.Error (), http.StatusNotFound)

return
}

fmt.Fprintf(w, val)

}

Figure 25. Server code for enroll, id, and name operations

21

, , Martin Rinard and Jiasi Shen

func doadd(w http.ResponseWriter , r *http.Request){

vars := mux.Vars(r)

id := vars["id"]

class := vars["class"]

var val string
var err error

val , err = client.HGet("id:" + id , "class").Result ()

if err != nil || val == "" {

err = client.HSet("id:" + id, "class", class).Err()

if err != nil {

http.Error(w, err.Error (), http.

StatusInternalServerError)

return
}

} else if strings.Index(val , class) == -1 {

err = client.HSet("id:" + id, "class", val + ":" +

class).Err()

if err != nil {

http.Error(w, err.Error (), http.

StatusInternalServerError)

return
}

} else {

http.Error(w, class , http.StatusFound)

return
}

}

func dodrop(w http.ResponseWriter , r *http.Request){

vars := mux.Vars(r)

id := vars["id"]

class := vars["class"]

var val string
var err error

val , err = client.HGet("id:" + id , "class").Result ()

if err != nil {

http.Error(w, err.Error (), http.StatusNotFound)

return
}

new := strings.Replace(val + ":", class + ":", "", -1)

new = strings.TrimSuffix(new , ":")

if (val == new) {

http.Error(w, class , http.StatusNotFound)

return
}

err = client.HSet("id:" + id, "class", new).Err()
if err != nil {

http.Error(w, err.Error (), http.

StatusInternalServerError)

return
}

}

func doclasses(w http.ResponseWriter , r *http.Request){

vars := mux.Vars(r)

id := vars["id"]

var val string
var err error

val , err = client.HGet("id:" + id , "class").Result ()

if err != nil {

http.Error(w, err.Error (), http.StatusNotFound)

return
}

fmt.Fprintf(w, val)

}

Figure 26. code for add, drop, and classes operations

22

