
Language Manual

November 13, 2015

This manual presents a subset of a programming language that contains simplified C constructs.
For quick references, Tables 1, 2, and 3 list the sections that explain basic syntax, data operations,
and control structures, respectively.

1

Table 1: Basic syntax

Keyword Description Section

formatting 1.1
comments 1.2
variables 1.3

print output an integer value 1.4

Table 2: Data operations

Keyword Description Section

integer expressions 2.1
array accesses 2.2

valid (array) test the validity of an array variable 2.2
malloc allocate memory for an array 2.2
free deallocate memory from an array 2.2
valid (file) test the validity of a file variable 2.3
open open an input file 2.3
read read a byte from an input file 2.3
end test the end of the input file 2.3
seek update the input offset 2.3
pos return current input offset 2.3

Table 3: Control structures

Keyword Description Section

if/if-else conditional statements 3.1
while loops 3.2
break exit the current loop 3.2
continue skip the current loop iteration 3.2
main define the main function where a program starts 3.3
func define a user function 3.4
return return a value for a function 3.4

2

1 Basic syntax

1.1 Formatting

• Statements: Each statement terminates with a semicolon “;”.
• Spacing: Code indentation does not matter. Arbitrary white spaces are allowed between

different components.

1.2 Comments

A comment starts with “//” and contains all text up to the end of the line.

1.3 Variables

• Naming: Variable names must start with a letter and may contain the following characters:
lowercase letters “a”. . . “z”, uppercase letters “A”. . . “Z”, digits “1”. . . “9”, and underscore
“ ”.

• Assignment: Figure 1 presents the syntax for assignment statements.
• Types: Each variable may belong to one of three types: integer, array, or file. The type of

each variable remains unchanged during its lifetime.
• Definition: To define a new variable, assign it a value of the desired type.
• Scoping: Integer and array variables are local and must be defined inside functions. File

variables are global and must be defined before all functions.

Example: Figure 2 presents an example program that defines variables. The program defines a file
variable f for an input file named “data”, an integer variable i of value 7, and an array a consisting
of 12 integers.

1.4 System output

Figure 3 presents the syntax for print statements. A print statement takes the lowest byte (8 bits)
of the argument, converts the byte to display form, and prints it on the screen. Table 4 describes
the display form.

3

x = some_expression;

// x becomes the result of some expression.

Figure 1: Syntax for variable assignments

f = open("data");

main {

i = 7;

a = malloc (12);

// Do something here.

return 0;

}

Figure 2: Example variable assignments

print(some_expression);

// Output the lowest byte in the result of some expression.

Figure 3: Syntax for system output

Table 4: System output display form

Byte value Display form

9 horizontal tab (’\t’)
10 new line (’\n’)
32 space (’ ’)

33 . . . 126 the ASCII character for the value
others a backslash “\” followed by the value

4

2 Data operations

2.1 Integers

• Representation: All integers are 32-bit two’s-complement integers.
• Boolean conversion: When using integers in logical expressions, value 0 is “false” and non-

zero values are “true”. When using logical expressions in arithmetic operations, value “false”
is 0 and value “true” is 1.

• Operators: Tables 5, 6, and 7 describe arithmetic operators, logical operators, and brackets,
respectively. Table 8 lists the precedence and associativity of these operators in descending
precedence. There are no self-modifying operators such as “++” and “+=” in C.

2.2 Arrays

• Validity: The valid predicate tests whether an array variable is valid.
• Allocation and deallocation: Figure 4 presents the syntax for array allocation and deal-

location. To allocate an array, the malloc statement requests space of a given size from the
system memory, initializes all elements to 0, and assigns the space to an array variable. To
deallocate an existing array, the free statement returns its space to the system for future
allocation and makes the array variable invalid.

• Reading and writing: To read or write an element in an array, use a pair of brackets “[]”
to surround the index of the element. The indices range from 0 to (n-1) for arrays with n

elements. There are no multi-dimensional arrays as in C.

Examples: Figure 5a presents example code for array accesses. The code allocates an array a with
two integers, updates the elements to 1 0, and updates variable x to 0. Figure 5b presents example
code that safely deallocates an array that may be invalid.

2.3 Files

• Validity: The valid predicate tests whether a file variable is valid.
• Opening: Figure 6a presents the syntax for opening files. An open statement associates an

input file to a file variable and initializes the input offset to the start of the file. The open

statement must appear outside any functions.
• Reading: Figure 6b presents the syntax for reading files. A read statement returns a byte

from an input file and advances the input offset by one. The receiving variable to the left is
mandatory. The statement returns -1 if the file variable is invalid or its offset is invalid.

• Testing the end: The end predicate tests whether all bytes in the current input file has
been read. The predicate returns -1 if the file variable is invalid.

• Seeking: Figure 6c presents the syntax for seeking input files to specific offsets. The state-
ment returns -1 if the file variable is invalid or the offset is invalid.

• Current offset: The pos expression returns the current offset of a file. The expression
returns -1 if the file variable is invalid.

Examples: Figure 7a presents an example program that outputs the contents in file “data”. Figure
7b presents example code that seeks to the previous byte in a file.

5

Table 5: Arithmetic operators

Operator Operation Example expression Example result

+ add 9 + 4 13

- (binary) subtract 9 - 4 5

- (unary) negation -4 -4 (0xfffffffc)
* multiply 9 * 4 36

/ divide 9 / 4 2

% modulo (remainder) 9 % 4 1

& bitwise AND 9 & 5 1 (0x00000001)
| bitwise OR 9 | 5 13 (0x0000000d)
~ bitwise NOT ~9 -10 (0xfffffff6)
>> shift right arithmetic 15 >> 2 3 (0x00000003)
<< shift left 15 << 2 60 (0x0000003c)

Table 6: Logical operators

Operator Operation Example expression Example result

== equal to 9 == 4 0 (“false”)
!= unequal to 9 != 4 1 (“true”)
< less than 9 < 4 0 (“false”)
<= less than or equal to 9 <= 4 0 (“false”)
> greater than 9 > 4 1 (“true”)
>= greater than or equal to 9 >= 4 1 (“true”)
&& logical AND (1 < 2) && (3 < 2) 0 (“false”)
|| logical OR (1 < 2) || (3 < 2) 1 (“true”)
! logical NOT !(1 < 2) 0 (“false”)

Table 7: Brackets

Operator Operation

() force precedence
[] access an array

Table 8: Operator precedence and associativity

Precedence Operator Associativity

1 () [] left to right
2 - (unary) ~ N/A
3 * / % left to right
4 & | >> << left to right
5 + - (binary) left to right
6 == != < <= > >= left to right
7 ! N/A
8 && || left to right

6

arr = malloc(n);

// If the allocation succeeds, arr becomes a valid array of n elements initialized to 0.

(a) Allocation

// arr was a valid array.

free(arr);

// arr becomes invalid.

(b) Deallocation

Figure 4: Syntax for arrays

a = malloc (2); // a initializes to 0 0.

a[0] = 1; // a becomes 1 0.

x = a[1]; // x becomes 0.

(a) Accessing

// a may or may not be valid.

if (valid(a)) {

free(a);

}

// a becomes invalid.

(b) Deallocating

Figure 5: Example array operations

7

f = open("data");

// If opening "data" succeeds, f becomes valid and is ready to read its 0th byte.

// Define functions here.

(a) Opening

// f was ready to read the i-th byte.

x = read(f);

// If reading succeeds, x becomes the value of the i-th byte, and f is ready to read

// the (i+1)-th byte.

// If reading fails, x becomes -1.

(b) Reading

y = seek(f, x);

// If seeking succeeds, y becomes x, and f is ready to read the x-th byte.

// If seeking fails, y becomes -1.

(c) Seeking

Figure 6: Syntax for files

f = open("data");

main {

if (! valid(f)) {

return -1;

}

while (!end(f)) {

x = read(f);

print(x);

}

return 0;

}

(a) Sequential accessing

y = seek(f, pos(f) -1);

(b) Random accessing

Figure 7: Example file operations

8

3 Control structures

3.1 Conditional statements

Figure 8 presents the syntax for two forms of conditional statements: if and if-else. The curly
braces “{}” are mandatory. There are no shorthanded “else if” structures as in C.

Example: Figure 9 presents example code that uses an if statement to set variable i to 5.

3.2 Loops

Figure 10 presents the syntax for while loops. A while loop repeats executing a block of code as
long as a given condition holds. The curly braces “{}” are mandatory. There are no “for” loops
as in C.

To manipulate the execution of while loops, break and continue statements exit the innermost
surrounding loop and stop the current iteration of the innermost surrounding loop, respectively.

Examples: Figure 11 presents two pieces of example code that use while loops. Figure 11a is a
no-op. Figure 11b contains an infinite loop.

3.3 The main function

Every program begins execution inside a special main function. Figure 12 presents the syntax for
the main function.

3.4 User functions

• Definition: Figure 13a presents the syntax for the func keyword which defines user functions.
Each user function may take an integer argument that is passed by value or may take no
argument. Global files are accessible inside functions. Each function returns an integer value.

• Naming: Function names have the same rule as variable names discussed in Section 1.3.
• Scoping: All functions are global and must be defined in the top level of the program, parallel

to the main function.
• Invocation: Figure 13b presents the syntax for calling user functions. There must be a

variable that receives the return value.
• Recursion: User functions may be recursive, expressing operations by calling themselves.

Example: Figure 14 presents an example function, inc, which calculates x plus one.

9

if (condition) {

// Execute if condition is true.

}

(a) if

if (condition) {

// Execute if condition is true.

} else {

// Execute if condition is false.

}

(b) if-else

Figure 8: Syntax for conditional statements

i = 2 - 7; // i becomes -5.

if (i < 0) { // Condition -5 < 0 is true.

i = -i; // i becomes 5.

}

Figure 9: Example conditional statement

while (condition) {

// Repeat executing while condition is true.

}

Figure 10: Syntax for while loops

while (i < 5) {

break;

i = i + 1;

}

(a) No-op

i = 0;

while (i < 5) {

continue;

i = i + 1;

}

(b) Infinite loop

Figure 11: Example while loops

10

// Open input files here.

// Define other functions here.

main {

// Do something here.

return some_expression;

}

Figure 12: Syntax for the main function

// Open input files here.

func foo (x) {

// The argument is passed by value.

// Do something here.

return some_expression;

}

func bar () {

// Do something here.

return some_expression;

}

// Define other functions here.

(a) Definition

y = foo(some_expression);

z = bar();

(b) Invocation

Figure 13: Syntax for user functions

func inc (x) {

return x + 1;

}

Figure 14: Example function definition

11

