
The inspect Construct

November 13, 2015

An inspect loop is an iterator that automatically avoids errors. The syntax is as follows.

inspect (input_file , delimiter) {

// Execute these statements on each input unit that allows successful execution.

// These statements may contain function calls.

}

To illustrate the usage, we first present a small example. Say that we would like to collect the
leading letters from all lines in a document. We would like to process the lines that start with
alphabetic letters and to ignore the lines that start with other characters. Figure 1 presents sample
input and output. Figure 2 compares two solutions, where Figure 2a uses traditional constructs
and Figure 2b uses the inspect construct.

The program in Figure 2b works as follows. It first associates f to an input file named “data”. The
file consists of smaller input units, specifically, lines. The program starts execution from the main

function, where an inspect loop iterates over the lines in file f until reaching the end of the file.
For each line, the inspect loop automatically determines whether or not to execute the loop body
based on whether or not the execution would succeed. Specifically,

• If a line starts with an alphabetic letter, the inspect loop executes the body which prints
this leading letter.

• If a line does not start with an alphabetic letter, the inspect loop does not execute the body,
so that there is no assertion failure.

In general, inspect loops iterate over delimited input units, skipping the units that would trigger
errors. Consequently, each input unit is either successfully processed or completely ignored. The
semantics use the following two criteria.

• Delimiters: A specified delimiter decomposes the input into smaller input units. An input
unit is the contents between two delimiters. Each time the inspect body starts, a fresh input
unit is available to be read.

• Errors: The inspect loop automatically skips the input units that would trigger errors if
processed. Errors include assertion violations, arithmetic errors, array-access errors, file-access
errors, attempts to read beyond input units, and resource exhaustion.

For completeness, please refer to other language constructs in a separate manual.

1

Hello ,

world

!

(a) Sample input

Hw

(b) Sample output

Figure 1: Sample input and output

f = open("data");

main {

while (!end(f)) {

x = read(f);

if ((x>=’a’ && x<=’z’) || (x>=’A’ && x<=’Z’)) {

print(x);

}

while (!end(f) && x!=’\n’) {

x = read(f);

}

}

return 0;

}

(a) Traditional solution

f = open("data");

main {

inspect (f, ’\n’) {

x = read(f);

assert ((x>=’a’ && x<=’z’) || (x>=’A’ && x<=’Z’));

print(x);

}

return 0;

}

(b) inspect solution

Figure 2: Solutions

2

