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Figure 1: KinÊtre allows novice users to easily and quickly create animations of arbitrary real-world objects using just a regular
consumer Kinect. From left to right: user scans a real chair using an existing 3D reconstruction system. The Kinect is then
placed down so that it can image the user’s full body, and a real-time tracked human skeleton is acquired. Our system takes
the human skeleton and 3D reconstruction as input. Next, the user physically moves such that the rendered skeleton inter-
penetrates the mesh. Using a simple voice command, the mesh is rigged (or “possessed”) in real-time by the user’s skeleton.
KinÊtre transfers motions of the user into realistic deformations of the mesh.

ABSTRACT
KinÊtre allows novice users to scan arbitrary physical ob-
jects and bring them to life in seconds. The fully interactive
system allows diverse static meshes to be animated using the
entire human body. Traditionally, the process of mesh anima-
tion is laborious and requires domain expertise, with rigging
specified manually by an artist when designing the charac-
ter. KinÊtre makes creating animations a more playful activ-
ity, conducted by novice users interactively at runtime. This
paper describes the KinÊtre system in full, highlighting key
technical contributions and demonstrating many examples of
users animating meshes of varying shapes and sizes. These
include non-humanoid meshes and incomplete surfaces pro-
duced by 3D scanning – two challenging scenarios for ex-
isting mesh animation systems. Rather than targeting pro-
fessional CG animators, KinÊtre is intended to bring mesh
animation to a new audience of novice users. We demon-
strate potential uses of our system for interactive storytelling
and new forms of physical gaming.

Author Keywords

3D interfaces; mesh animation; real-time; depth cameras

ACM Classification Keywords

H.5.2 [Information Interfaces And Presentation]: User
Interfaces - Interaction styles
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’12, October 7–10, 2012, Cambridge, MA, USA.
Copyright 2012 ACM 978-1-4503-1580-7/12/10...$15.00.

INTRODUCTION
Imagine you are asked to produce a 3D animation of a de-
monic armchair terrorizing an innocent desk lamp. You
may think about model rigging, skeleton deformation, and
keyframing. Depending on your experience, you might imag-
ine hours to days at the controls of Maya1 or Blender2. But
even if you have absolutely no computer graphics experience,
it can be so much easier: grab a nearby chair and desk lamp,
scan them using a consumer depth camera, and use the same
camera to track your body, aligning your virtual limbs to the
chair’s geometry. At one spoken command, your limbs are
attached to the chair model, which follows your movements
in an intuitive and natural manner.

KinÊtre3 is such a system. Rather than targeting professional
animators, it brings animation to a new audience of users
with little or no CG experience. It allows realistic deforma-
tions of arbitrary static meshes, runs in real time on consumer
hardware, and uses the human body for input in conjunction
with simple voice commands. KinÊtre lets anyone create
playful 3D animations.

To realize KinÊtre, we extend the work of Sumner et al. [32]
to handle incomplete 3D meshes captured by a real-time
3D reconstruction system [15]. Rather than using mouse or
touch, our technique leverages the human skeleton tracked by
a Kinect [30] as a more direct and higher degree-of-freedom
(DoF) mechanism for mesh animation.

We describe our system pipeline in full, and demonstrate
many examples including animation of incomplete physical
scans of varying size and shape, retargeting motion to other
human and non-human meshes, and animations with multi-
1http://usa.autodesk.com/maya/
2http://www.blender.org/
3A portmanteau of Kinect and Être—“to be.”



user input. We describe usage scenarios enabled by this com-
bination of capturing arbitrary real-world objects and bring-
ing them to life using the human body: for example, ani-
mating characters for home scripted CG movies or interac-
tive storytelling – imagine enacting the classic Pixar Luxo
Jr. scene, by first scanning a household lamp and then con-
trolling it using your body. Other scenarios include creat-
ing more realistic avatars for games, where users scan them-
selves or friends and again control these meshes using their
bodies, without any manual rigging or skinning process, as
well as leveraging these types of playful mesh animations for
physics-enabled gaming. We conclude by discussing quali-
tative experiences of using the system, its strengths and lim-
itations, and directions for future work.

Our main contributions include:

• A new interactive mesh animation system that allows non-
expert users to rapidly create playful animations, using
scanned physical objects or existing 3D models.

• A new deformation method, based on [32], capable of
performing realistic and detail preserving deformations
of incomplete static input scans using the motion of a
tracked user’s skeleton as real-time input.

• A demonstration of our results operating on input meshes
of different topology, size and geometry, and enabling
new scenarios for character animation and physics-based
gaming previously unavailable to everyday consumers.

RELATED WORK
While considerable advances in real-time virtual character
animation have occurred over many decades (see [31] for
an overview of pioneering work), this process is still largely
based on specialist tools designed for professionals to cre-
ate high-end animations for movies and games. Our goal is
greatly different, we instead target novice users with little
or no background in CG tools. Our primary goal is to al-
low users to rapidly incorporate objects from the real world
into their CG applications, and bring these static represen-
tations to life in seconds. We leverage the human body for
input, instead of mouse and keyboard, to create a more di-
rect performance-based approach to animation, making the
process more playful and accessible to a wide range of users.

Manual skinning and skeletal-based deformations remain the
de facto method for character animation in a variety of CG
applications including gaming. For example, when we see
virtual characters coming to life in our games, usually a de-
signer has carefully constructed and rigged the mesh, involv-
ing embedding a skeleton within the target model and paint-
ing individual bone weights onto each vertex. At runtime,
motion capture (mocap) data or an inverse kinematics engine
drives the character’s bones, which then transforms the mesh.

The 3D modeling, rigging, and animation process tradition-
ally requires a great deal of time and expertise and has led to
extensive research in automatic animation systems. These in-
clude sketch-based interfaces for 2D and 3D animation [33,
9], and the use of multi-touch input for both manipulation of
unstructured 2D shapes [13] and 3D articulated human char-
acters [21]. More unusual interfaces include using physical
manipulators such as soft toys [18], articulated robots [22],

2D paper cutouts [5], and layering multiple passes of 3D mo-
cap [10]. Mesh manipulation tools can be spatially combined
with key-framing to assist artists in scripting animation [14]).
Our focus is on real-time 3D shape animation, leveraging the
natural and higher DoF input of the entire human body for
control.

Another related area explores generating articulated meshes
of humans using multi-view video [1] or silhouettes [34],
range data [2] and mocap data [3]. These approaches simul-
taneously acquire and articulate human meshes, but clearly
cannot scale to scenarios where animations of non-humanoid
characters are desired.

Closer to our goals are systems that leverage recorded or
live mocap data to animate meshes [4] or articulated char-
acters [29]. These systems demonstrate compelling exam-
ples of character animation on various closed meshes, pre-
dominately of humanoid forms. Our method is more flexible
in the types of 3D deformations and meshes it supports, in-
cluding incomplete scans of arbitrary physical objects. Our
focus is on a “user in the loop” form of interaction, rather
than the more sophisticated technique demonstrated in [4],
which works particularly well for closed humanoid meshes
but is restricted to watertight shapes. Recent work by Ya-
mane et al. [35] takes a learning-based approach to map-
ping human motion to non-humanoid characters. Given user-
selected correspondences between the poses of the human
actor and those of the non-humanoid character, the system
builds a statistical mapping; which, combined with physi-
cal constraints, transfers the actor’s motion to the character.
In contrast, KinÊtre is fully automatic and does not require
users to pose the character, only themselves. However, the
motions that KinÊtre produces are “direct” mappings and not
as flexible as those of Yamane et al.

Recently, there has been much work in the area of shape-
preserving space deformation algorithms. One approach is
to operate on a reduced control cage surrounding the mesh,
which can have their handles (vertices of the cage) manip-
ulated to cause smooth, detail preserving surface deforma-
tions. These cage-based methods typically restrict cage ver-
tex transformations to a series of translations, and use gen-
eralized coordinate techniques to uniquely define any pos-
sible configuration of the mesh relative to a reference con-
figuration [20, 25, 6, 19]. Another class of techniques sup-
port manipulation through unconnected point handles on the
mesh. Examples include moving least squares [27], varia-
tional methods [6], and inverse kinematics on meshes [28].
These systems all operate on closed meshes, which cannot
be guaranteed when scanning real-world geometry. Further,
they are optimized to support manipulation of control ver-
tices by mouse or stylus.

The 3D deformation methods described so far all operate on
closed meshes. Jacobson et al. [16] demonstrate bounded
biharmonic blending weights that produce smooth and intu-
itive deformations for points, bones and cages of arbitrary
topology including incomplete meshes. However, it relies
on a volumetric representation and quadratic programming,
which incurs a high computational cost each time the user
changes the set of constraints. Embedded Deformation by



Sumner et al. [32] supports point-based direct manipulation
of meshes, and is agnostic to whether surface data is com-
plete. This method forms the basis of the deformation model
used within this paper. We extend embedded deformation
in various ways to our novel scenario of use, where data is
heavily unstructured and multiple nodes of the graph are ma-
nipulated simultaneously by a human skeleton.

SCENARIO OF USE
Before going into the details of our system, we begin with a
motivating scenario (shown in Figure 1), to help illustrate the
overall user experience and interaction flow.

Imagine that the user wants to introduce and animate an ex-
isting static physical object – a chair – into a 3D game. He
picks up a Kinect camera and scans in part of the room.
KinÊtre automatically generates a 3D mesh of the chair and
segments it from the background (Figure 1 left).

At this point we have a static, incomplete and un-rigged mesh
in our CG world. To bring this object to life in realistic ways,
the user first places the depth sensor back down so that it can
image his full body, and a tracked human skeleton is sensed.
Our system renders both the human skeleton and scanned ob-
ject side by side. The user then physically moves such that
the desired parts of the rendered skeleton are embedded in-
side the scanned object (Figure 1 middle). Once in the de-
sired pose, the user issues a voice command to automatically
rig (or “possess”) the mesh (Figure 1 middle). This attaches
joints of his current pose to the mesh.

The user can now move his body and KinÊtre automatically
translates his motion into realistic deformations of the pre-
viously static mesh (Figure 1 right). Moving his legs causes
the legs of the chair to also move. Flexing his knees causes
the chair to bend, jumping up makes the chair also jump.
Motions of the body propagate in real-time to the mesh and
provides a natural way for users to perform playful anima-
tions of any object that they wish to bring to life in their CG
application or game.

SYSTEM PIPELINE
Although our system works with arbitrary meshes, including
complete high-quality 3D models, typically, the input to our
system is a real-world object of reasonable physical size and
surface reflectance. We acquire the object’s 3D geometry
by waving a depth camera around it, using a variant of the
KinectFusion system [15].

The main pipeline shown in Figure 2 is comprised of two
main phases. The first phase can be thought of as prepro-
cessing and is broken down as follows:

1. A 3D reconstruction step estimates the 6-DoF pose of the
moving Kinect camera, and fuses depth data continuously
into a regular 3D voxel grid data structure.

2. A segmentation and meshing step automatically extracts
and triangulates the desired foreground isosurface stored
implicitly in the voxel grid.

3. A sampling step traverses vertices of the mesh and con-
structs a sparse deformation graph [32], with the goal of
maintaining key topological features and connectivity of
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Figure 2: The KinÊtre processing pipeline.

the mesh. This deformation graph is the basis for repre-
senting deformations in the higher dimensional mesh.

Preprocessing is entirely automatic and can be performed
once, before mesh animation occurs per frame. It can be
conducted entirely by novice users interactively (the entire
preprocessing phase takes about one minute total).

At runtime, KinÊtre computes deformations of the sparsely
sampled graph per frame based on real-time human skeleton
data captured with the Kinect. We use the publicly available
skeletal tracker in the Kinect SDK (a variant of [30]), which
gives a prediction of 20 joint positions on the human body.
Deformations of the graph are then propagated to the higher
resolution mesh. More specifically, the steps are as follows:

1. A “user in the loop” rigging step that renders both the
input mesh and the tracked human skeleton to the user,
and allows the user to pose herself such that her body in-
tersects with the mesh. This metaphorically attaches the
joints of the tracked skeleton to the surface of the mesh.
In practice, the attachment is specified as a set of point
constraints on the deformation graph.

2. When the user moves, we solve for the optimal transfor-
mations on the deformation graph that is simultaneously
smooth, feature-preserving, and satisfies the user’s mo-
tion constraints. This is formulated as a nonlinear energy
minimization (extending [32]), which we solve for each
frame in real-time.

3. The final step takes the transformations computed on the
sparse deformation graph and applies them to the dense
3D mesh using an algorithm similar to linear blend skin-
ning (LBS) [23, 26].

The following sections describe these steps in more detail.

Acquisition, Segmentation and Meshing
In the KinectFusion system [15], depth data from the cam-
era is integrated into a regular voxel grid structure stored on
the GPU. Surface data is encoded implicitly into voxels as
signed distances, truncated to a predefined region around the
surface, with new values integrated using a weighted running



average [8]. The global pose of the moving depth camera is
predicted using point-plane ICP [7], and drift is mitigated
by aligning the current raw depth map with the accumulated
model (instead of the previous raw frame).

The system produces a 3D volumetric reconstruction of the
scene accumulated from the moving depth camera. To ex-
tract a specific object from this full 3D reconstruction two
simple segmentation methods are provided. The first de-
scribed in [15] allows the user to physically remove the de-
sired object from the reconstructed scene. Taking the deriva-
tive of the signed distance values over time, we label regions
of the voxel grid with high change. A full pass over the
voxel grid extracts these labeled connected components and
the largest region is chosen as the foreground object. This
works well for objects that are physically small enough to be
moved. For larger objects, a second method takes the current
physical camera pose, raycasts the voxel grid and extracts the
dominant plane using RANSAC, segmenting any resting ob-
jects (again the largest 3D connected component is assumed
to be the desired object).

Next we extract a geometric isosurface from the foreground
labeled volumetric dataset using a GPU-based marching cubes
algorithm. For each voxel, the signed distance value at its
eight corners is computed. The algorithm uses these com-
puted signed distances as a lookup to produce the correct
polygon at the specific voxel.

Now that we can acquire, segment, and generate a 3D mesh
from a physical object, we next derive a new method that
maps tracked user motions to mesh deformations.

Embedded Deformation
We first briefly describe the Embedded Deformation (ED)
technique [32] that our system builds upon. Later sections
introduce key extensions in the form of a new sampling
and point constraint strategy that work on a greater variety
of meshes, and a new energy function for the deformation
graph. These better accommodate our scenario, which has
poorly sampled geometry and a multitude of constraints from
a tracked human skeleton.

Like many skinning techniques, ED assumes that shape de-
formations vary smoothly in space and can be expressed as
linear combinations of a sparse set of affine transformations.
ED models its lower-dimensional basis as a graph. The nodes
of the ED graph are a sparse subset of the samples at loca-
tions gj on the surface, and its edges are the k-nearest neigh-
bors of each node in R3, with k = 4.

Each node deforms space in a region surrounding its position
gj with an affine transformationAj = (Rj , tj), whereR is a
3×3 matrix and t a 3×1 vector. This affine transform maps
the point v to:

Aj [v] = Rj(v − gj) + gj + tj (1)

The deformation defined by multiple nodes is combined lin-
early as in LBS. Given a point v ∈ R3, the deformation graph
maps it to:

φ(v) =

k−1∑
j=0

wj(v)Aj [v] (2)

The blending weights wj(v) are nonzero only for the k
nodes closest to v, fall off linearly with distance, and sum
to 1. Intuitively, if transformations defined by the nodes vary
smoothly, and the nodes are of sufficient density, then the
vertices should also deform smoothly.

Energy Formulation To constrain the space of transforma-
tions, Sumner et al. make a number of reasonable assump-
tions and formulate them as an energy minimization prob-
lem. The first term minimizes stretching by biasing the solu-
tion towards isometry:

Erot =
∑
j

||RT
j Rj − I||2F , (3)

where I is the identity matrix and || · ||F denotes the Frobe-
nius norm. To ensure that the deformation field is smooth, a
regularization term encourages each node to map its neigh-
bors near where they would map themselves:

Ereg =
∑
j

∑
k∈N(j)

||Aj [gk]−Ak[gk]||22, (4)

where N(j) is the set of neighbors of j in the graph. Finally,
the deformation model allows the user to add an arbitrary
number of point constraints, mapping each given point p` to
a desired target q`:

Econ =
∑
`

||φ(p`)− q`||22 (5)

where φ(p`) is the result of applying the deformation (Eq. 2)
to p`. The total energy is a weighted sum of the three
quadratic terms that is minimized using the Gauss-Newton
algorithm.

EXTENDING EMBEDDED DEFORMATION
Although standard ED demonstrates impressive results on a
variety of shapes, including incomplete polygon soups, we
find in our experiments that the technique has difficulty with
arbitrary, incomplete meshes that come from 3D acquisition.
Dealing with such incomplete scans is key for KinÊtre.

For our scenarios, three major issues arise which require ex-
tensions to the work of Sumner et al. [32]. The first is the
quality of the deformation graph: standard ED uses Pois-
son Disk sampling under the Euclidean distance metric to
place graph vertices [32]. This sampling strategy tends to
miss areas of the surface with high curvature and leads to
artifacts where semantically unrelated parts are linked. Fig-
ure 3 illustrates how the Euclidean Poisson Disk sampling
fails on a scan of a chair and a 3D model of a horse. The
output deformation graphs of both meshes have connections
occurring across separate legs. This causes undesirable ef-
fects as deformations to one leg will influence the other. We
address this issue with a new sampling strategy based on a
5D orientation-aware distance metric.

The second issue is graph connectivity: the k-nearest-neighbor
deformation graph is not guaranteed to be connected. Fig-
ure 4 (labeled a-c) shows one illustrative example, where one
of the back legs of a horse model is completely unconnected
to the rest of the deformation graph. This leads to unnatural
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Figure 3: Orientation-aware sampling. With a Euclidean
distance, samples are better distributed over the surface,
but semantically separate parts tend to be connected. With
a 5D Mahalanobis distance, spurious edges are reduced by
placing more samples near areas of high curvature.

d) e) f)

a) b) c)

Figure 4: Mesh connectivity and regularization. Top row: a)
Input mesh. A disconnected deformation graph b) leads to
portions of the mesh not moving with the user and shared
regions collapsing unnaturally c). Bottom row: d) Input
mesh. e) Disconnected graph connected by spanning tree
algorithm (inset). f) Without the rigidity regularizer, the re-
maining degrees of freedom allows the chair leg to rotate.

deformations in response to user motion. While not consid-
ered in [32], in practice these unconnected graphs occur fre-
quently given input scan data or even complex models (such
as the horse in Figure 4). We therefore address this explicitly
in our sampling strategy.

The final issue arises due to under-constrained parts of the
generated deformation graph: even when connected, the graph
topology often leads to islands of under-constrained nodes.
An example is shown in Figure 4 (labeled d-f), where the
chair leg is connected through a single graph edge to the
main body of the chair. This results in the chair leg being
able to rotate unnaturally, independently of the deformations
on the main body. We address this issue by applying an addi-
tional rigidity regularizer to these parts of the graph to ensure
a well-posed optimization.

Orientation-Aware Sampling We ameliorate the sampling
problem near areas of high curvature by adapting the strategy
used by Lehtinen et al. [24] for generating Poisson Disk pat-
terns on unstructured geometry. Given surface samples p and
q with normals ~np and ~nq , we can define a 5D orientation-

aware distance D(p,q):

distq(p) = ||p− q+ 2((p− q) · ~nq)~nq|| (6)

D(p,q) =
min(distq(p),distp(q))

max(0, ~np · ~nq)

Intuitively, the Mahalanobis distance distq(p) transforms the
spherical isosurfaces around q defined by the Euclidean dis-
tance into ellipsoids with the ~nq axis squashed by a factor
of 1/3. It increases the distance of points that deviate from
the plane tangent to q. The symmetric distance D(p,q) has
the nice property that when it is used for Poisson Disk pat-
tern generation, it allows differently oriented samples to be
placed arbitrarily close together. We generate such a pat-
tern as the node positions of our deformation graph, with k-
nearest neighbor edges defined under the same metric. Since
we typically want a fixed framerate, we choose a fixed num-
ber of samples N and define the minimum separation radius
R =

√
A/N , where A is the total surface area. We use

N = 128 in our implementation. Alternatively, one can
also provide R defined by desired level of detail and vary the
number of samples. Actual generation is performed by brute
force dart throwing. Finally, the surface normal is stored as
part of the graph node for later use in detecting how to attach
a user’s skeleton to the graph.

Figure 3 shows our Mahalanobis-based sampling strategy
compared with the Euclidean-based approach of [32].

Mesh Connectivity and Regularization It is easy to see
that a k-nearest neighbor graph is not necessarily connected.
The lack of scan data or insufficient sampling can lead to a
graph composed of several connected components. Unless
there is a user constraint attached to each component, the en-
ergy is underconstrained. To illustrate, in the first row of Fig-
ure 4, the small disconnected graph component of the horse’s
rear leg is not influenced by the user constraints and remains
stationary. While the rest of the horse moves with the user,
the vertices of the leg stays in place and vertices shared by
both components collapse unnaturally. We solve this prob-
lem by connecting the graph, and guarantee a well-posed op-
timization problem by introducing an additional regulariza-
tion term.

We connect the original k-nearest neighbor graphG = (V,E)
by first making it undirected: if B is a neighbor of A,
then ensure that A is also a neighbor of B. We then com-
pute its connected components and form a new complete,
weighted graph G′ = (V ′, E′), whose nodes V ′ are the con-
nected components of G, and every pair of nodes (u′, v′)
has weight equal to the minimum distance between any two
nodes s ∈ u′ ⊂ V and t ∈ v′ ⊂ V . We then compute
a minimum spanning tree on G′, and add the (undirected)
edge (s, t) to E if there is an edge between their connected
components in the spanning tree.

A connected deformation graph alone is insufficient to en-
sure a stable deformation. In particular, the standard ED en-
ergy function contains a number of gauge freedoms due to
symmetry: a subgraph without user constraints, weakly con-
nected to the rest of the graph through a single cut vertex
(a vertex whose removal increases the number of connected
components), is free to rotate about that point. These cut



vertices include the ones where we added additional edges
above (see Figure 4, second row). Therefore, at these edges,
we enforce a stronger regularization condition:

Erig =
∑
(j,k)

||RT
kRj − I||2F + ||tk − tj ||22 (7)

The rigidity regularizer says that if a piece of the mesh is
only loosely connected, the bridge edge (j, k) encourages it
to be coupled rigidly with the rest of the mesh. Because this
is a stronger condition than the basic regularizer (12 con-
straints rather than 3), we use a smaller weight. The final
energy is then:

E = wrotErot + wregEreg + wconEcon + wrigErig (8)

We use the same weights as [32] for the standard ED terms,
and set wrig = wreg/10.

Constraints
The deformation model supports placement of arbitrary point
constraints in space. A basic approach to attach a tracked
skeleton to the surface is to simply make each joint a con-
straint. At attachment time, the position of each joint p` is
stored along with Euclidean distances to the k-nearest nodes
in the graph. As the user moves, each joint moves to a new
position q`. We update the energy such that the k nearest
nodes map p` → q`.

In our experiments, we found that simply attaching joints as
point constraints is inadequate for two reasons. First, even
with multiple depth cues, the user is not very good at judg-
ing whether she is intersecting accurately with the mesh and
often places her limbs outside the surface. Secondly, using
only two samples on longer limbs such as the femur is insuf-
ficient for the deformation graph to faithfully reproduce more
complex motions. Therefore, we elected to place additional
constraints on bones.

We model each bone of a tracked skeleton as a cylinder with
predefined radius (currently 4cm). We place 16 regularly
spaced samples along the length and circumference of each
bone and also calculate their outward facing normal. We al-
low a bone sample to be attached to a graph node if it is
within 10cm, and the normals are less than 90 degrees apart.
Using normals makes our system robust to small misalign-
ments between the user and the surface. For example, if the
user is animating another scanned human, her arms may not
be perfectly aligned with those of the scan. The surface nor-
mal test lets the front of her arm attach to the front of the arm
in the scan, and likewise for the back. In practice, this works
well with one-sided surfaces that come from KinectFusion.

KINÊTRE IN ACTION
We implemented a prototype system called KinÊtre, which
lets users acquire 3D scans and rapidly animate them using
their body. Our system also permits existing higher-quality
3D models to be imported and again, animated using hu-
man motion. The animations occur in real-time as demon-
strated in the accompanying video. We stress that none of the
meshes are rigged before being “possessed” within KinÊtre.

Non-Human Animation Figures 1 and 5 illustrates KinÊtre
operating on a variety of non-humanoid shapes. In Figure 1,

input mesh,
pose & graph

animated meshesinput mesh,
pose & graph

animated meshes

Figure 5: Gallery of non-humanoid animations. Clockwise
from top left: making a modeled bookcase walk, two users
controlling a horse, a jumping stepladder, and using only
the hip and right arm to reenact Pixar’s Luxo Jr.

input mesh graph & skeleton target skeletons & deformed meshes

Figure 6: Animating a human scan for realistic avatars. The
user can directly embed his skeleton inside the scanned
mesh (left and center). Tracked skeletal motions produce
realistic mesh deformations (right).

a chair is scanned by the user, automatically rigged and an-
imated when he places his two feet and spine to approxi-
mately correspond with the back of the chair. Figure 1 shows
how the mesh deformations correspond to the motions of
the body. Notice how the deformations propagate across the
mesh, so that even when only the back legs of the chair are
rigged the front legs move in concert.

Figure 5 (bottom right) shows another example, animating
a scan of a step ladder. Our system also works with more
detailed closed 3D models, such as the bookcase, which once
attached, can start walking, bending or even kicking based on
the motion of the user (see Figure 5).

We believe that these types of scenarios where users can an-
imate non-humanoid everyday objects will capture people’s
imagination, particularly young children. With KinÊtre, chil-
dren can tell stories where they possess different non-human
characters, and record them as home CG movies.



a) partial scan of human b) robust interactive deformations

Figure 7: A partial scan of a human with the back of the
mesh completely missing (a). User embeds herself and
can still animate the mesh in realistic ways (b).

a) sphere proxies b) interactive physical simulation

Figure 8: A user mesh approximated as a series of physics-
enabled kinematic spheres (a). This representation allows
open ended interactions between the mesh and a virtual
physics enabled scene (b).

Possessing and Animating Human Avatars Another key
application area for KinÊtre is in creating more realistic
avatars for gaming and teleconferencing scenarios. For ex-
ample, an entire 360◦ reconstruction of the human body can
be acquired, segmented from the ground plane and meshed
using KinectFusion in less than a minute. Figure 6 shows
an initially static scan of the user’s body. Once acquired, he
can animate his avatar, and our results show that our method
supports fairly large mesh deformations beyond the origi-
nal pose. Possessing one another’s avatars can also become
a playful activity: KinÊtre treats scans of humans like any
other mesh and any user can control the avatar.

For teleconferencing, studies have shown the added benefits
of avatar realism for collaboration [11]. KinÊtre is obviously
agnostic to whether meshes are textured, and the reconstruc-
tion system could be used to create RGB textured meshes for
added realism. For gaming, users could control their own
avatar for a more immersive experience. Simple 3D model-
ing techniques such as those demonstrated in [12] could be
incorporated if users want to add fun effects or personalize
their characters.

Partial Scans One key feature of KinÊtre is to support an-
imation of partial scan data. In Figures 1 and 5 both the chair
and step ladder are not closed meshes with incomplete geom-
etry. Figure 7 illustrates KinÊtre’s robustness to partial data.
The entire back of the mesh is clearly missing and the surface
has a number of holes on the lower body. Unlike other ani-
mation systems such as [4], we demonstrate how our method
can still produce a compelling deformation result even with
missing data. These types of partial scans failed with our

Figure 9: Users interacting with KinÊtre during informal
qualitative sessions. From left: users bind to different parts
of a chair to make it walk and jump. A user animates a
bookcase. Two users coordinate to control the motion of a
virtual horse.

initial implementation based purely on Embedded Deforma-
tion [32]. Our extensions are therefore critical in ensuring
that these extreme types of partially scanned meshes (which
will be common case in everyday use) can be brought to life.

Other Animation Scenarios We demonstrate some more
sophisticated usage scenarios. In Figure 5, two users are si-
multaneously controlling both pairs of legs of the horse, as
well as its head and back. This requires only simple addi-
tions to the existing pipeline to accept data from a second
skeleton; our deformation method is agnostic to this change.
We believe these types of multi-user scenarios will be partic-
ularly compelling in gaming or storytelling scenarios.

Depending on the scenario, it does not always make semantic
sense to use all the joints of the user’s body. We assign names
to overlapping subsets of joints such as “left arm”, “upper
body”, etc, which the user can toggle using the speech in-
terface. For example, this allows the user to animate a lamp
using only his hip and arm to reenact Pixar’s Luxo Jr. (see
Figure 5).

Physics-based Interactions Finally, once meshes are pos-
sessed by the user, they can easily be incorporated into physics-
enabled interactions. For example, Figure 8 and the accom-
panying video show how one person can possess a friend’s
avatar and rampage through a physics-enabled world, knock-
ing over towers of boxes, or how a possessed chair or steplad-
der can be used to play dodgeball. While these examples are
simple, the combination of capturing the physical world in
the digital domain, bringing it to life, and interacting with
other virtual objects in physically plausible and implausible
ways makes for playful new gaming scenarios.

These scenarios can be simply realized in a physics simu-
lation just by approximating the mesh as a series of kine-
matic sphere proxies. We perform sphere packing as fol-
lows: repeatedly pick a random vertex (until all vertices are
processed) on the mesh and place a sphere centered around
it, pruning all neighboring vertices inside the sphere. The
sphere radius is set to four times the mesh’s mean edge
length. This step is done alongside the other steps in the
preprocessing phase of the pipeline. For each frame, after
deformations are computed on the graph, we move the kine-
matic spheres accordingly. Using sphere proxies enables ef-
ficient modeling of collisions with other dynamic objects in
the physical simulation, as shown in Figure 8.



Performance
We evaluated the performance of KinÊtre on a worksta-
tion with a six-core Intel Xeon W3690 processor running
at 3.46 GHz with 6 GB of RAM and an NVIDIA GeForce
GTX 580 GPU. With this setup, the “preprocessing” phase
(scanning, segmentation, and sampling) takes ˜1 minute for
a human-sized object. The sampling part runs in ˜10 seconds
even on multi-million vertex meshes.

Given that the nearest neighbors in the deformation graph
and their weights do not change, they can be precomputed
and reused during GPU-based skinning. By keeping the de-
formation graph small, GPU skinning enables our system to
scale to highly detailed geometry. Each time the graph trans-
formations Aj change, we upload them to the GPU and all
skinning is performed in a vertex shader.

The Gauss-Newton optimization is the performance bottle-
neck of our system. Our unoptimized CPU implementation,
which performs an explicit sparse-sparse matrix multiply to
form the normal equations, consistently takes about 0.0254
ms per iteration per graph node with a full set of skeletal con-
straints, scaling linearly with graph size. Most of our meshes
use a deformation graph with 128 nodes. With a budget of
33 ms per frame, we limit our solver to 10 iterations. In prac-
tice, the solver converges in 6 iterations, which permits more
complex models with larger graphs (256 nodes).

EXPERIENCING KINÊTRE
KinÊtre is only a prototype and we have yet to formally eval-
uate it. However, we have carried out a number of infor-
mal qualitative sessions where over 50 users of diverse back-
ground, age and gender have played with the system. While
in no way a user study, we share some notable observations,
which will hopefully inform our future designs of the system.

A series of non-human scans and 3D models were controlled
by users, and animated in convincing ways; i.e., the meshes
deformed but yet maintained their overall structure, and over-
stretching, collapsing, twisting or other mesh artifacts were
minimal. As shown in RGB images in Figure 9 and the ac-
companying video, interacting with KinÊtre is a very physi-
cal activity. Users were literally physically animated the ma-
jority of the time. This is of course partly a feature of the
body-centric input, but also an indicator that users were en-
gaged and immersed in the experience. Although counter-
intuitive, users were perhaps the most animated when they
were controlling non-human objects. We can speculate that
the less anthropomorphic the object, the less overloaded or
prescribed the methods of control, making users explore
many different types of atypical poses.

KinÊtre produced some unexpected animations when users
did not attach well to the mesh initially. In our sessions, we
found that providing effective visualization and cues to the
user is key. In our current implementation the mesh turns
partially transparent when it intersects the skeleton, the at-
tachment points are highlighted, and shadows provide fur-
ther depth cues (see accompanying video). However, attach-
ments were still problematic for users at times. This could
be a fruitful area of research to understand how to better rep-
resent the lower dimensional representation and constraints
to the user, without over complicating the UI. One example,

could be that different body parts are locked in turn, with the
virtual camera zooming in to show each region in more de-
tail. Another idea is to combine off center and side views of
the 3D model and skeleton to the user during rigging.

The other major source of unexpected deformation behavior
was mainly due to the limitations of the Kinect body tracker.
This was particularly evident when users tried to get into un-
expected postures, such as bending to touch the floor with
their hands in order to attach to all four legs of the chair
simultaneously (with both their legs and arms), lying down
or jumping too high. The Kinect SDK’s body tracker did
not support joint orientations (although this has changed re-
cently) meaning that turning the head or twisting the forearm
are not feasible. Given that our system is designed for control
of arbitrary objects, a greater range of sensed poses might be
a rich area for future work. One interesting area is to try
to remove the requirement for a tracked skeleton altogether:
because our method works by adding point constraints to the
graph, data could be derived directly from the depth map.

Because our objects come from the real world and are ac-
quired using a depth camera, they have physical units (in
meters). Again in our sessions, we found direct 1:1 manipu-
lation can be convenient for human-sized objects. However,
in many cases the user did not scale correctly to the mesh
(or vice versa). Currently, we scale the mesh according to
an estimate of the user’s physical height (using the Kinect
body tracker). However, this remains an open question that
begins to head into the mesh modeling arena [12], where of
course natural user interfaces (such as hand-based gestures)
can also play a part alongside direct animation. These types
of exaggerated gestures could be used to add more extreme
deformations to the mesh (for example causing stretching or
twisting [17]) by selectively reweighting certain parts of the
deformation graph (by varying per-node weights).

CONCLUSIONS
We have presented a novel system for using the human body
to bring scanned 3D objects to life. The goal of KinÊtre is
to let inexperienced home users quickly create animations
and incorporate physical objects into games and other CG
applications. Our system is not intended to directly create
production-quality animation, but rather bring animation to a
new audience. We have demonstrated how our method sup-
ports a variety of realistic deformations of human and non-
human meshes, including 3D scan data, using a simple inter-
face that leverages the user’s body and speech. As demon-
strated by our results in this paper and the accompanying
video, the entire pipeline from geometry acquisition to rig-
ging and animation, runs at interactive rates and requires no
manual preprocessing by an artist.

Beyond enabling new interactive scenarios, our system makes
technical contributions in the form of a robust deformation
model based on the work by [32]. Our model easily han-
dles a wide range of incomplete scans and affords real-time
performance in the presence of numerous constraints coming
from multiple users, all running on consumer hardware.

We believe that scanning technologies will become more
prevalent in the future, particularly given the ubiquity of
depth cameras and advances in vision algorithms. This en-



ables a new breed of CG applications where the consumer is
now potentially the CG modeler. The logical next step be-
yond acquisition and integration of captured real world data
into consumer CG applications is bringing these virtual rep-
resentations to life. Systems such as KinÊtre, will enable
users to enrich games, home movies and other CG applica-
tions, by bringing playful animations of arbitrary scans to a
wider consumer audience.
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