
Appendix A Evidence indicating transfer to real-world

Due to the scope of the problem and the ongoing pandemic, we limit our experiments to be in
simulation. However, we provided evidence indicating that the learned policies can be transferred to
the real world in the future in the paper. We summarize this evidence as follows.

Convex decomposition The objects after the convex decomposition still have geometrically dif-
ferent and complex geometries as shown in Figure B.3. The objects in the EGAD dataset are 3D
printable. The YCB objects are available in the real world.

Action space We control the finger joints via relative position control as explained in Section 2.1.
This suffers less sim-to-real gap compared to using torque control on the joints directly.

Student policies We designed two student policies and both of them use the observation data that
can be readily acquired from the real world. The first student policy only requires the joint positions
and the object pose. Object pose can be obtained using a pose estimation system or a motion capture
system in the real world. Our second student policy only require the point cloud of the scene and
the joint positions. We can get the point cloud in the real world by using RGBD cameras such as
Realsense D415, Azure Kinect, etc.

Domain randomization We also trained and tested our policies with domain randomization. We
randomized object mass, friction, joint damping, tendon damping, tendon stiffness, etc. Table C.4 lists
all the parameters we randomized in our experiments. We also add noise to the state observation and
action commands as shown in Table C.4. For the vision experiments, we also added noise (various
ways of data augmentation including point position jittering, color jiterring, dropout, etc.) to the point
cloud observation in training and testing as explained in Section D.5.

The results in Table D.5, Table D.6, and Table 4 show that even after adding randomization/noise, we
can still get good success rates with the trained policies. Even though we cannot replicate the true
real-world setups in the simulation, our results with domain randomization indicates a high possibility
that our policies can be transferred to the real Shadow hand. Prior works [11] have also shown the
domain randomization can effectively reduce the sim-to-real gap.

Torque analysis We also conducted torque analysis as shown in Section D.4. We can see that the
peak torque values remain in an reasonable and affordable range for the Shadow hand. This indicates
that our learned policies are less likely to cause motor overload on the real Shadow hand.

12

Appendix B Environment Setup

Figure B.1: We learn policies that can reorient many objects in three scenarios respectively: (1)
hand faces upward, (2) hand faces downward with a table below the hand, (3) hand faces downward
without any table. The extra object in each figure shows the desired orientation.

B.1 State definition

The full state space SE includes joint, fingertip, object and goal information detailed in Table B.1.
To compute the angle difference between two quaternion orientations α1 and α2, we first compute
the difference rotation quaternion: β = α1α

−1
2 . Then the angle difference (distance between two

rotations) ∆θ is computed as the angle of β from the axis-angle representation of β.

Table B.1: Full state sEt ∈ R134 information. Orientations are in the form of quaternions.
Parameter Description Parameter Description Parameter Description
qt ∈ R24 joint positions vft ∈ R15 fingertip linear velocities αg ∈ R4 object goal orientation
q̇t ∈ R24 joint velocities wf

t ∈ R15 fingertip angular velocities vot ∈ R3 object linear velocity
pft ∈ R15 fingertip positions pot ∈ R3 object position wo

t ∈ R3 object angular velocity
αf
t ∈ R20 fingertip orientation αo

t ∈ R4 object orientation βt ∈ R4 αo
t (αg)−1

B.2 Dataset

We use two object datasets (EGAD and YCB) in our paper. To further increase the diversity of
the datasets, we create 5 variants for each object mesh by randomly scaling the mesh. The scaling
ratios are randomly sampled such that the longest side of the objects’ bounding boxes lmax lies in
[0.05, 0.08]m for EGAD objects, and lmax ∈ [0.05, 0.12]m for YCB objects. The mass of each object
is randomly sampled from [0.05, 0.15]kg. When we randomly scale YCB objects, some objects
become very small and/or thin, making the reorientation task even more challenging. In total, we use
11410 EGAD object meshes and 390 YCB object meshes for training.

Figure B.2 shows examples from the EGAD and YCB dataset. We can see that these objects
are geometrically different and have complex shapes. We also use V-HACD [43] to perform an
approximate convex decomposition on the object meshes for fast collision detection in the simulator.
Figure B.3 shows the object shapes before and after the decomposition. After the decomposition, the
objects are still geometrically different.

B.3 Camera setup

We placed two RGBD cameras above the hand, as shown in Figure B.4. In ISAAC gym, we set the
camera pose by setting its position and focus position. The two cameras’ positions are shifted from
the Shadow hand’s base origin by [−0.6,−0.39, 0.8] and [0.45,−0.39, 0.8] respectively. And their
focus points are the points shifted from the Shadow hand’s base origin by [−0.08,−0.39, 0.15] and
[0.045,−0.39, 0.15] respectively.

13

Figure B.2: First row: examples of EGAD objects. Second row: examples of YCB objects.

Figure B.3: Examples of EGAD objects. The first and third row shows the visual mesh of the objects.
The second and fourth row show the corresponding collision mesh (after V-HACD decomposition).

Figure B.4: Camera positions

Appendix C Experiment Setup

C.1 Network architecture

For the non-vision policies, we experimented with two architectures: The MLP policy πM consists
of 3 hidden layers with 512, 256, 256 neurons respectively. The RNN policy πR has 3 hidden layers

14

(512− 256− 256), followed by a 256-dim GRU layer and one more 256-dim hidden layer. We use
the exponential linear unit (ELU) [44] as the activation function.

For our vision policies, we design a sparse convolutional network architecture (Sparse3D-IMPALA-
Net). As shown in Figure C.5, the point cloud Wt is processed by a series of sparse CNN residual
modules and projected into an embedding vector. qt and at−1 are concatenated together and pro-
jected into an embedding vector via an MLP. Both embedding vectors from Wt and (qt, at−1) are
concatenated and passed through a recurrent network to output the action at.

Sparse C
onv. - × 3

kernel 3
stride 1

M
K. M

ax Pooling

kernel 3
stride 2

R
esidual Block

R
esidual Block

x 4, [16, 32, 32, 32] channels

G
lobal M

ax Pooling

M
K. FC

FC
 256

1D
Batch N

orm
ELU

FC
 256

2! !!"#
24 20

FC
 256

ELU

FC
 256

512

G
R

U
 256

concat.

ℎ!"#

512

FC
 256

ELU

x 2

FC
 256

FC
 256

ELU

FC
 20 !!

R
ELU

Sparse C
onv.

kernel 3
stride 1

Sparse C
onv.

R
ELU

kernel 3
stride 1

add

Residual Block

Figure C.5: Visual policy architecture. MK stands for Minkowski Engine. qt is the joint positions
and at is the action at time step t.

C.2 Training details

All the experiments in the paper were run on at most 2 GPUs with a 32GB memory. We use
PPO [17] to learn πE . Table C.2 lists the hyperparameters for the experiments. We use 40K parallel
environments for data collection. We update the policy with the rollout data for 8 epochs after every
8 rollout steps for the MLP policies and 50 rollout steps for the RNN policies. A rollout episode is
terminated (reset) if the object is reoriented to the goal orientation successfully, or the object falls, or
the maximum episode length is reached. To learn the student policies πS , we use Dagger[19]. While
Dagger typically keep all the state-action pairs for training the policy, we do Dagger in an online
fashion where πS only learns from the latest rollout data.

For the vision experiments, the number of parallel environments is 360 and we update policy after
every 50 rollout steps from all the parallel environments. The batch size is 30. We sample 15000
points from the reconstructed point cloud of the scene from 2 cameras for the scene point cloud W s

t
and sample 5000 points from the object CAD mesh model for the goal point cloud W g .

We use Horovod [45] for distributed training and Adam [46] optimizer for neural network optimiza-
tion.

Reward function for reorientation: For training πE for the reorientation task, we modified the
reward function proposed in [24] to be:

r(st, at) = cθ1
1

|∆θt|+ εθ
+ cθ21(|∆θt| < θ̄) + c3 ‖at‖22 (1)

where cθ1 > 0, cθ2 > 0 and c3 < 0 are the coefficients, ∆θt is the difference between the current
object orientation and the target orientation, εθ is a constant, 1 is an indicator function that identifies
whether the object is in the target orientation. The first two reward terms encourage the policy to
reorient the object to the desired orientation while the last term suppresses large action commands.

Reward function for object lifting: To train the lifting policy, we use the following reward function:

r(st, at) = ch1

1

|∆ht|+ εh
+ ch2

1(|∆ht| < h̄) + c3 ‖at‖22 (2)

15

where ∆ht = max(pb,zt − p
o,z
t , 0) and pb,zt is the height (z coordinate) of the Shadow Hand base

frame, po,zt is the height of the object, h̄ is the threshold of the height difference. The objects have
randomly initialized poses and are dropped onto the table.

Goal specification for vision policies: We obtain W g by sampling 5000 points from the object’s
CAD mesh using the Barycentric coordinate, rotating the points by the desired orientation, and
translating them so that these points are next to the hand. Note that one can also put the object in the
desired orientation right next to the hand in the simulator and render the entire scene altogether to
remove the need for CAD models. We use CAD models for W g just to save the computational cost
of rendering another object while we still use RGBD cameras to get W s

t .

Table C.2: Hyperparameter Setup
Hyperparameter Value Hyperparameter Value Hyperparameter Value
Num. batches 5 Entropy coeff. 0. Num. pts sampled from W s

t 15000
Actor learning rate 0.0003 GAE parameter 0.95 Num. pts sampled from W g 5000
Critic learning rate 0.001 Discount factor 0.99 Num. envs 40000

Num. epochs 8 Episode length 300
Num. rollout steps per

policy update (MLP/RNN)
8/50

Value loss coeff. 0.0005 PPO clip range 0.1 cθ1 1
cθ2 800 c3 0.1 εθ 0.1
θ̄ 0.1rad ch1

0.05 εh 0.02
h̄ 0.04 ch2 800

C.3 Dynamics randomization

Table C.4 list all the randomized parameters as well the state observation noise and action command
noise.

Comparing the Column 1 and Column 2 in Table D.5, we can see that if we directly deploy the policy
trained without domain randomization into an environment with different dynamics, the performance
drops significantly. If we train policies with domain randomization (Column 3), the policies are
more robust and the performance only drops slightly compared to Column 1 in most cases. The
exceptions are on C3 and H3. In these two cases, the πSM policies collapsed in training during the
policy distillation along with the randomized dynamics.

Table C.3: Mesh Parameters
Parameter Range
longest side of the bounding box of EGAD objects [0.05, 0.08]m
longest side of the bounding box of YCB objects [0.05, 0.12]m
mass of each object [0.05, 0.15]kg
No. of EGAD meshes 2282
No. of YCB meshes 78
No. of variants per mesh 5
Voxelization resolution 0.003 m

Table C.4: Dynamics Randomization and Noise
Parameter Range Parameter Range Parameter Range

state observation +U(−0.001, 0.001) action +N (0, 0.01) joint stiffness ×E(0.75, 1.5)

object mass ×U(0.5, 1.5) joint lower range +N (0, 0.01) tendon damping ×E(0.3, 3.0)

object static friction ×U(0.7, 1.3) joint upper range +N (0, 0.01) tendon stiffness ×E(0.75, 1.5)

finger static friction ×U(0.7, 1.3) joint damping ×E(0.3, 3.0)

N (µ, σ): Gaussian distribution with mean µ and standard deviation σ.
U(a, b): uniform distribution between a and b. E(a, b) = expU(log(a),log(b)).
+: the sampled value is added to the original value of the variable. ×: the original value is scaled by the sampled value.

16

C.4 Gravity curriculum

We found building a curriculum on gravity helps improve the policy learning for YCB objects when
the hand faces downward. Algorithm 1 illustrates the process of building the gravity curriculum. In
our experiments, we only test on the training objects once (one random initial and goal orientation)
to get the surrogate average success rate w on all the objects during training. w̄ = 0.8, g0 =
1 m/s2,∆g = −0.5 m/s2,K = 3, L = 20,∆Tmin = 40.

Algorithm 1 Gravity Curriculum

1: Initialize an empty FIFO queue Q of size K, ∆T = 0, g = g0
2: for i← 1 to M do
3: τ = rollout_policy(πθ) . get rollout trajectory
4: πθ = optimize_policy(πθ, τ) . update policy
5: ∆T = ∆T + 1
6: if i mod L = 0 then
7: w = evaluate_policy(πθ) . evaluate the policy, get the success rate w
8: append w to the queue Q
9: if avg(Q) > w̄ and ∆T > ∆Tmin then

10: g = max(g −∆g,−9.81)
11: ∆T = 0
12: end if
13: end if
14: end for

Appendix D Supplementary Results

D.1 Hand faces upward

Learning curves Figure D.6 shows the learning curve of the RNN and MLP policies on the EGAD
and YCB datasets. Both policies learn well on the EGAD and YCB datasets. The YCB dataset
requires much more environment interactions for the policies to learn. We can also see that using the
full-state information can speed up the learning and give a higher final performance.

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Step 1e9

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

EGAD

MLP
RNN

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Step 1e10

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

YCB

MLP
RNN

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Step 1e10

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

YCB

RNN-Full State
RNN-Reduced State

Figure D.6: Learning curves of the MLP and RNN policies on the EGAD (Left) and YCB datasets
(Middle). The Right plot shows that using the full state information speeds up the policy learning
compared to only using the reduced state information.

Testing performance - Teacher The testing results in Table D.5 show that both the MLP and RNN
policies are able to achieve a success rate greater than 90% on the EGAD dataset (entries A1, B1)
and greater than 70% on the YCB dataset (entries F1, G1) without any explicit knowledge of the
object shape. This result is surprising because intuitively, one would assume that information about
the object shape is important for in-hand reorientation.

Testing performance - Student We experimented with the following three combinations: (1) distill
πEM into πSM , (2) distill πEM into πSR, (3) distill πER into πSR. The student policy state is sSt ∈ R31. In
Table D.5 (entries C1-E1, H1-J1), we can see that πER → πSR gives the highest success rate on πS ,
while πEM → πSM leads to much worse performance (36% drop of success rate in EGAD, and 47%

17

Table D.5: Success rates (%) of policies tested on different dynamics distribution. θ̄ = 0.1rad. DR
stands for domain randomization and observation/action noise. X→Y: distill policy X into policy Y.

1 2 3

Exp. ID Dataset State Policy Train without DR Train with DR
Test without DR Test with DR Test with DR

A

EGAD

Full state MLP 92.55 ± 1.3 78.24 ± 2.4 91.92 ± 0.4
B RNN 95.95 ± 0.8 84.27 ± 1.0 88.04 ± 0.6
C

Reduced state
MLP→MLP 55.55 ± 0.2 25.09 ± 3.0 23.77 ± 1.8

D MLP→RNN 85.32 ± 1.2 68.31 ± 2.6 81.05 ± 1.2
E RNN→RNN 91.96 ± 1.5 78.30 ± 1.2 80.29 ± 0.9
F

YCB

Full state MLP 73.40 ± 0.2 54.57 ± 0.6 66.00 ± 2.7
G RNN 80.40 ± 1.6 65.16 ± 1.0 72.34 ± 0.9
H

Reduced state
MLP→MLP 34.08 ± 0.9 12.08 ± 0.4 5.41 ± 0.3

I MLP→RNN 69.30 ± 0.8 47.38 ± 0.6 53.07 ± 0.9
J RNN→RNN 81.04 ± 0.5 64.93 ± 0.2 65.86 ± 0.7

drop in YCB). This shows that πS requires temporal information due to reduced state space. The
last two columns in Table D.5 also show that the policy is more robust to dynamics variations and
observation/action noise after being trained with domain randomization.

Failure cases Figure D.7 shows some example failure cases. If the objects are too small, thin, or
big, the objects are likely to fall. If objects are initialized close to the hand border, it is much more
difficult for the hand to catch the objects. Another failure mode is that the objects are reoriented close
to the goal orientation but not close enough to satisfy ∆θ ≤ θ̄.

(a) (b) (c) (d)

Figure D.7: Examples of failure cases. (a) and (b): objects are too small. (c): the object is reoriented
close to the target orientation, but not close enough. (d): the object is too big and initialized around
the palm border.

D.2 Hand faces downward (in the air)

Testing performance For the case of reorienting objects in the air with the hand facing downward
Table D.6 lists the success rates of different policies trained with/without domain randomization, and
tested with/without domain randomization.

Table D.6: Success rates (%) of policies trained with hand facing downward and to reorient objects in
the air. Due to the large number of environment steps required in this setup, we fine-tune the model
trained without DR with randomized dynamics instead of training models with DR from scratch.

1 2 3

Exp. ID Dataset State Policy
Train without DR Finetune with DR

Test without DR Test with DR Test with DR
K

EGAD
Full state

MLP 84.29 ± 0.9 38.42 ± 1.5 71.44 ± 1.3
L RNN 82.27 ± 3.3 36.55 ± 1.4 67.44 ± 2.1
M

Reduced state
MLP→RNN 77.05 ± 1.6 29.22 ± 2.6 59.23 ± 2.3

N RNN→RNN 74.10 ± 2.3 37.01 ± 1.5 62.64 ± 2.9
O

YCB

Full state
MLP 58.95 ± 2.0 26.04 ± 1.9 44.84 ± 1.3

P RNN 52.81 ± 1.7 26.22 ± 1.0 40.44 ± 1.5
Q RNN + g-curr 74.74 ± 1.2 25.56 ± 2.9 54.24 ± 1.4
R

Reduced state
MLP→RNN 46.76 ± 2.5 25.49 ± 1.4 34.14 ± 1.3

S RNN→RNN 45.22 ± 2.1 24.45 ± 1.2 31.63 ± 1.6
T RNN + g-curr→ RNN 67.33 ± 1.9 19.77 ± 2.8 48.58 ± 2.3

18

Example visualization We show an example of reorienting a cup in Figure D.8 and an example of
reorienting a sponge in Figure D.9. More examples are available at https://taochenshh.github.
io/projects/in-hand-reorientation.

Figure D.8: An example of reorienting a cup with the hand facing downward. From left to right, top
to bottom, we show the some moments in an episode.

Figure D.9: An example of reorienting a sponge with the hand facing downward. From left to right,
top to bottom, we show the some moments in an episode.

D.3 Success rate on each type of YCB objects

We also analyzed the success rates on each object type in the YCB dataset. Using the same evaluation
procedure described in Section 3, we get the success rates of each object using πER. Figure D.10 shows
the distribution of the success rates on YCB objects with the hand facing upward while Figure D.11
corresponds to the case of reorienting the objects in the air with the hand facing downward. We can
see that sphere-like objects such as tennis balls and orange are easiest to reorient. Long or thin objects
such as knives and forks are the hardest ones to manipulate.

19

https://taochenshh.github.io/projects/in-hand-reorientation
https://taochenshh.github.io/projects/in-hand-reorientation

D.4 Torque analysis

We randomly sampled 100 objects from the YCB dataset, and use our RNN policy trained without
domain randomization with the hand facing downward to reorient each of these objects 200 times.
We record the joint torque values for each finger joint at each time step. Let the joint torque value
of ith joint at time step j in kth episode be Jkij . We plot the distribution of {maxi=[[1,24]] |Jkij | | j ∈
[[1, T]], k = [[1, 20000]]}, where [[a, b]] represents {x | x ∈ [a, b], x ∈ Z}. Figure D.12 shows that the
majority of the maximum torque magnitude is around 0.2 N m.

D.5 Vision experiments with noise

We also trained our vision policies with noise added to the point cloud input. We added the following
transformations to the point cloud input.

We applied four types of transformations on the point cloud:

• RandomTrans: Translate the point cloud by [∆x,∆y,∆z] where ∆x,∆y,∆z are all uniformly
sampled from [−0.04, 0.04].

• JitterPoints: Randomly sample 10% of the points. For each sampled point i, jitter its coordinate
by [∆xi,∆yi,∆zi] where ∆xi,∆yi,∆zi are all sampled from a Normal distribution N (0, 0.01)
(truncated at −0.015m and 0.015m).

• RandomDropout: Randomly dropout points with a dropout ratio uniformly sampled from [0, 0.4].
• JitterColor: Jitter the color of points with the following 3 transformations: (1) jitter the brightness

and rgb values, (2) convert the color of 30% of the points into gray, (3) jitter the color contrast.
Each of this transformation can be applied independently with a probability of 30% if JitterColor
is applied.

Each of these four transformations is applied independently with a probability of 40% for each
point cloud at every time step. Table D.7 shows the success rates of the vision policies trained
with the aforementioned data augmentations until policy convergence and tested with the same data
augmentations. We found that adding the data augmentation in training actually helps improve
the data efficiency of the vision policy learning even though the final performance might be a bit
lower. As a reference, we show the policy performance trained and tested without data augmentation
in Table D.7. For the mug object, adding data augmentation in training improves the final testing
performance significantly. Without data augmentation, the learned policy reorients the mug to a
pose where the body of the mug matches how the mug should look in the goal orientation, but the
cup handle does not match. Adding the data augmentation helps the policy to get out of this local
optimum.

Table D.7: Vision policy success rates when the policy is trained and tested with/without data
augmentation (θ̄ = 0.2 rad, d̄C = 0.01)

Object Without data augmentation (noise) With data augmentation (noise)

025_mug 36.51± 2.8 89.67± 1.2

065-d_cups 79.17± 2.3 68.32± 1.9

072-b_toy_airplane 90.25± 3.7 84.52± 1.4

073-a_lego_duplo 62.16± 3.7 58.16± 3.1

073-c_lego_duplo 58.21± 3.9 50.21± 3.7

073-e_lego_duplo 76.57± 3.6 66.57± 3.1

20

0 20 40 60 80 100
Success rate

056_tennis_ball
053_mini_soccer_ball

055_baseball
057_racquetball
063-b_marbles

017_orange
058_golf_ball
054_softball

012_strawberry
018_plum

015_peach
014_lemon
013_apple

072-a_toy_airplane
016_pear

065-h_cups
065-d_cups
065-b_cups
065-a_cups
065-j_cups

065-e_cups
005_tomato_soup_can

070-a_colored_wood_blocks
063-a_marbles

061_foam_brick
062_dice

065-g_cups
065-i_cups

010_potted_meat_can
070-b_colored_wood_blocks

065-c_cups
002_master_chef_can

065-f_cups
024_bowl

073-b_lego_duplo
007_tuna_fish_can
072-e_toy_airplane

019_pitcher_base
073-e_lego_duplo

072-d_toy_airplane
073-f_lego_duplo

025_mug
073-a_lego_duplo

038_padlock
006_mustard_bottle

073-d_lego_duplo
072-c_toy_airplane

003_cracker_box
036_wood_block

073-c_lego_duplo
035_power_drill

071_nine_hole_peg_test
028_skillet_lid

008_pudding_box
022_windex_bottle

077_rubiks_cube
004_sugar_box

009_gelatin_box
072-b_toy_airplane

050_medium_clamp
021_bleach_cleanser

073-g_lego_duplo
051_large_clamp

026_sponge
011_banana

052_extra_large_clamp
029_plate
059_chain

040_large_marker
048_hammer

044_flat_screwdriver
037_scissors

042_adjustable_wrench
031_spoon

033_spatula
043_phillips_screwdriver

030_fork
032_knife

O
bj

ec
t

ID

99.91%
99.83%
99.83%
99.83%
99.74%
99.74%
99.57%
99.48%
99.40%
99.40%
99.40%
99.30%
99.22%
98.61%
98.52%
98.36%

97.34%
97.30%
96.78%
96.43%
96.35%
95.92%
95.91%
95.83%
95.33%
95.22%
94.70%
94.43%
94.36%

93.13%
92.33%
91.94%
91.90%
91.65%
91.23%

90.05%
89.79%
89.65%
89.23%
89.04%
89.04%
88.80%
88.64%
88.56%
88.26%
87.66%

86.96%
86.89%
86.70%
86.52%
85.91%

82.04%
81.02%
80.52%
80.08%
79.57%
79.30%

77.55%
77.07%

74.89%
74.26%

69.74%
67.69%

66.96%
61.03%

59.06%
58.09%

50.98%
50.21%
49.73%

40.43%
30.43%

29.10%
28.72%
28.66%
28.09%

25.95%
11.24%

Figure D.10: Reorientation success rates for each object in the YCB dataset when the hand faces
upward.

21

0 20 40 60 80 100
Success rate

053_mini_soccer_ball
017_orange

055_baseball
014_lemon
018_plum

056_tennis_ball
054_softball

063-b_marbles
015_peach
013_apple

058_golf_ball
057_racquetball
012_strawberry

065-i_cups
065-j_cups

062_dice
065-d_cups
065-a_cups
065-h_cups
065-b_cups

070-a_colored_wood_blocks
065-e_cups
065-g_cups

072-a_toy_airplane
016_pear

061_foam_brick
065-f_cups
065-c_cups

025_mug
007_tuna_fish_can

036_wood_block
002_master_chef_can
010_potted_meat_can

063-a_marbles
005_tomato_soup_can

003_cracker_box
070-b_colored_wood_blocks

072-c_toy_airplane
009_gelatin_box

073-f_lego_duplo
073-b_lego_duplo
073-c_lego_duplo
073-e_lego_duplo

004_sugar_box
038_padlock

072-d_toy_airplane
008_pudding_box
019_pitcher_base
073-d_lego_duplo

035_power_drill
071_nine_hole_peg_test

077_rubiks_cube
024_bowl

073-a_lego_duplo
072-b_toy_airplane
072-e_toy_airplane

021_bleach_cleanser
006_mustard_bottle
050_medium_clamp

026_sponge
073-g_lego_duplo
051_large_clamp

059_chain
029_plate

011_banana
052_extra_large_clamp

037_scissors
048_hammer

042_adjustable_wrench
044_flat_screwdriver

040_large_marker
033_spatula

031_spoon
043_phillips_screwdriver

030_fork
032_knife

O
bj

ec
t

ID

99.79%
99.58%
99.58%
99.57%
99.38%
99.17%
99.14%
98.93%
98.75%
98.54%
98.51%
98.32%
98.10%

94.51%
93.69%
93.54%
93.24%
93.11%
93.10%
92.50%
92.50%
92.19%

90.64%
90.36%

89.60%
88.96%
88.75%

87.44%
86.25%
85.71%

84.83%
84.04%
83.96%
83.85%

83.12%
82.19%
81.88%
81.67%
81.56%
81.04%
80.42%

79.58%
78.86%
78.69%
78.06%
77.56%

76.61%
76.44%
76.36%

75.65%
75.49%

72.64%
72.57%
72.29%
72.14%
72.06%

69.82%
67.32%

63.61%
62.40%

57.97%
56.88%
56.64%

51.40%
49.21%

48.33%
44.25%

41.25%
33.72%

32.11%
30.24%

25.83%
23.50%

18.54%
11.14%

7.32%

Figure D.11: Reorientation success rates for each object in the YCB dataset when the hand faces
downward without a table.

22

0.0 0.2 0.4 0.6 0.8 1.0
Torque magnitude (Nm)

0.000

0.005

0.010

0.015

0.020

0.025

Pe
rc

en
ta

ge

Distribution of maximum torque magnitude on all joints

Figure D.12: Distribution of the maximum absolute joint torque values on all joints for all the time
steps. We exclude a few outliers in the plot, i.e., we only plot the data distributions up to 99%
quantile.

23

