
Towards Computational Design of Shape and
Control for Rigid Robots

by

Jie Xu

B.Eng., Tsinghua University (2016)
S.M., Massachusetts Institute of Technology (2019)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 26, 2022

Certified by. .
Wojciech Matusik

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Towards Computational Design of Shape and Control for

Rigid Robots

by

Jie Xu

Submitted to the Department of Electrical Engineering and Computer Science
on August 26, 2022, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Designing a performing robotic system for given tasks is traditionally labor-intensive
for finding the optimal configurations of its hardware shape and/or software con-
troller. The underlying coupling of the hardware shape and the software control of
a robot results in an enormous parameter space involving both discrete parameters
(i.e., topology structure of the robot) and continuous parameters (i.e., morphologi-
cal dimensions of each robot link, the control parameters), optimizing which tradi-
tionally requires significant amounts of expert knowledge from roboticists and many
manual design iterations. Intending to automate the robot design process, compu-
tational robot design has attracted increasing attention from robotics, graphs, and
artificial intelligence researchers. However, building a general computational robot
design process is extremely hard due to several challenging problems, including but
not limited to representation, performance evaluation, and optimization problems.
This thesis identifies some key challenges in the computational robot design pipeline
and proposes our corresponding solutions. We first take the manipulator design as an
example to present our robot design representations for both discrete and continuous
robot shape parameters. With the proposed robot representations, we then explore
the corresponding robot optimization techniques. In this part, we first introduce how
we leverage differentiable simulators to efficiently optimize the robot control policy
with the robot configuration fixed. Next, we delve into the more complicated co-
design problems requiring optimization of both the shape and control of a robot. We
present two novel algorithms for optimizing discrete shape parameters and continu-
ous shape parameters, respectively. Finally, we step further toward the more realistic
multi-objective robot design problems and present our solutions for finding a set of
Pareto-optimal robot designs trading off multiple different objectives and tasks. We
conclude this thesis by envisioning an ultimate computational design pipeline and
discussing open research directions toward this ultimate goal.

Thesis Supervisor: Wojciech Matusik
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

Six years ago, when I started my Ph.D. journey at MIT, everything surrounding

me was new – new country, new school, new people, and new research topics. The

pandemic makes this Ph.D. journey even special. Throughout this incredible journey,

I am so lucky to meet so many unbelievable friends and supervisors. It is impossible

to complete my Ph.D. without the help I have received from countless people, and I

would like to express my deepest gratitude to all who supported me either technically

or emotionally.

First and foremost, I would like to thank my advisor, Prof. Wojciech Matusik,

for offering me this special journey ticket to MIT and supervising me without any

reservations. Wojciech always encourages me to conduct impactful research and not

get distracted from low-hanging fruits. There were countless times when Wojciech

spent hours with me discussing and debating different next-project ideas and sharing

his unique thoughts on the projects. I still remember the nights Wojciech and I

spent over zoom whiteboard to discuss the deformation-based shape representation

ideas when preparing the submission to RSS 2021. I would also express my deepest

appreciation to Wojciech for his extreme patience with the hybrid UAV project. That

was the first project led by myself ever in my academic life, and it was also my first

attempt to get outside my research comfort zone and step into the robotics field. It

was a two-year-long project where I experienced through tons of failures on different

parts of the project. I was near to giving up many times, but Wojciech showed this

unbelievable tolerance for my failures and always motivated me to never give up.

Without his patience and motivation, I may never knock out the door of robotics and

discover this incredible field of research that deserved my lifelong exploration.

I would also like to thank Prof. Daniela Rus and Prof. Pulkit Agrawal for serving

on my thesis committee. I thank Daniela for always sharing her broad knowledge

and broad view to us, for always encouraging us to "keep the gradients", and for

letting me know nothing is impossible as long as I pay enough efforts on the projects.

I thank Prof. Pulkit Agrawal for offering his professional advice from a perspective

5

of a learning expert. The biggest lesson I learned from Pulkit is to always conduct

high-standard research and always keep improving the paper even if it already gets

accepted and published.

I would also express my special thanks to Prof. Shinjiro Sueda for offering his

generous help and answering my endless questions about developing a differentiable

articulated rigid body simulator. Shin is the best ever collaborator I have ever seen

during my PhD. Not only can he share with me his expertise in simulation, he also even

implements code for me to illustrate and validate his mathematical derivation and

provides me with responsive support on paper and rebuttal writing. I am absolutely

sure that I cannot have those publications happening so smoothly without Shin’s

sincere mentoring. I am also thankful to my academic advisor, Prof. Stefanie Jegelka,

for offering her emotional support and career guidance whenever I need them. I would

also like to thank Prof. Shi-Min Hu for taking me into the academic research and

mentoring me when I was an undergraduate student at Tsinghua University.

My thanks should also go to the senior students in the lab when I first came to

MIT. Big thanks to Adriana Schulz, Bo Zhu, and Tao Du for taking me to conduct

the very first two projects at MIT. I would also extend my gratitude to Desai Chen

for helping me fit into the lab. I would also be thankful to Liang Shi and Yuanming

Hu for all the enjoyable moments such as making the “flying cups” in the lab and

working hard on debugging the Raft system of 6.824.

My Ph.D. would not have been possible without the support from all my col-

laborators: Michael Foshey, Beichen Li, Allan Zhao, Andrew Spielberg, Yunsheng

Tian, Pingchuan Ma, Tao Chen, Lara Zlokapa, Viktor Makoviychuk, Miles Macklin,

Yashraj Narang, Fabil Ramos, Animesh Garg, Sangwoon Kim, Alberto Rodriguez,

Mina Konakoivć Luković, Josephine Hughes, Yifei Li, Kui Wu, Jagdeep Singh Bha-

tia, Holly Jackson, Juan Salazar, Wei Wang, Michal Piovarĉi, Timothy Erps, Vahid

Babaei, Piotr Didyk, Szymon Rusinkiewicz, and Bernd Bickel.

I would also extend my sincere to the reset of the CDFG members: Yagiz Aksoy,

Bolei Deng, Minghao Guo, Ryan Gulland, Alexandre Kasper, Changil Kim, Petr

6

Kellnhofer, Yiyue Luo, Yichen Li, James Minor, Liane Makatura, Ruben Castro

Ornelas, Tae-Hyun Oh, Mélina Skouras, Ruitao Su, Subra Sundaram, Wan Shou,

Bohan Wang, Harrison Wang. We had so many BBQ happy hours at MIT sailing

pavilion, end-of-year holiday group dinners, and CGGAR retreats. I believe those

would be my unforgettable moments.

I also want to thank the current and past members of the MIT table tennis team

for the practices in the T-club lounge and the games we fought together for in Division

and Regional competitions.

I would also like to express my thanks to all my friends during my Ph.D. journey.

This journey must be much less fun without the trips, casual chat, board games, go

kart, and hiking with my friends. I would extend my special thank to Yuzhe Yang

and Luxin Zhang for travelling to many incredible places with us and host those

Mario Party nights at home. I would also appreciate Yiyue Luo and Zeyu Wu for the

countless Poker Card Friday nights, and I believe I would never forget the “disguise”

of each of us when drawing the cards. I am also very fortunate to have my dudes –

Wenbo Tao, Songtao He, and Shichao Yue. I’ll remember those joyful moments when

we played billiard on the first floor in SidPac and supported Celtics at TD Garden.

Last but not least, I also want to thank Lijie Fan and Tianhong Li for the teammate

nights of “Honor of Kings” at the dorm.

Next, I would like to thank my girlfriend, Xia Xiao. We met in February 2019,

and it has been our fourth year. All the publications in this thesis happened after

we got together, and you accompanied me so many days and nights when I was on

those crazy conference deadlines. You are my lucky star, and my Ph.D. would be

incomplete without your appearance and unconditional support.

Finally, I would like to extend my biggest thanks to my parents for their permanent

support and unconditional love. They always support and trust each of my decisions.

And whenever I felt depressed, they always encouraged me to relax from the great

pressure. They always tell me that study and career are just a small portion of your

life and that physical and mental health is the most important piece of your whole life.

7

They also always encourage me never to get disappointed when I encounter failures

since I am always the best in their eyes and can overcome any difficulty.

8

Contents

1 Introduction 29

1.1 Key Challenges in Computational Robot Design 32

1.1.1 Hardware Shape Representation 32

1.1.2 Control Representations . 32

1.1.3 Robot Performance Evaluation 33

1.1.4 Single-Objective Robot Optimization 34

1.1.5 Multi-Objective Robot Optimization 35

1.2 Thesis Overview . 35

2 Related Work 37

2.1 Robot Shape Representation and Parameterization 37

2.2 Differentiable Physics-Based Simulation 38

2.3 Computational Robot Design for Single Objective 39

2.3.1 Control Optimization and Learning 39

2.3.2 Control and Shape Co-Design 40

2.4 Computational Robot Design for Multiple Objectives 41

2.4.1 Multi-Objective Optimization 41

2.4.2 Multi-Objective Control Policy Optimization 42

9

3 Robot Shape Representation 43

3.1 Graph Grammar Representation for Discrete Robot Shape Topology . 44

3.2 Deformation-Based Representation for Continuous Robot Morphology 48

3.2.1 Motivation . 48

3.2.2 Hierarchical Morphology Parameterization 52

3.2.3 Results . 56

3.3 Hybrid Shape Representation for Robot Designs 57

4 Computational Robot Control Design via Differentiable Physics 61

4.1 Differentiable Articulated Rigid Body Simulation with Tactile Feedback 63

4.1.1 Tactile Sensor Representation 64

4.1.2 Penalty-based Frictional Contact and Tactile Model 64

4.1.3 Forward Dynamics . 66

4.1.4 Backward Gradient Computation 67

4.1.5 Experiments . 70

4.1.6 Summary . 73

4.2 Accelerated Policy Learning with Parallel Differentiable Simulation . 74

4.2.1 Motivation . 74

4.2.2 GPU-Based Differentiable Dynamics Simulation 76

4.2.3 Optimization Landscape Analysis 77

4.2.4 Short-Horizon Actor-Critic (SHAC) 79

4.2.5 Experiments . 82

4.2.6 Summary . 94

10

5 Computational Robot Shape and Control Co-Design 97

5.1 Co-Optimizing Robot Control and Discrete Shape Topology: Graph

Heuristic Search . 98

5.1.1 Motivation . 98

5.1.2 System Overview . 100

5.1.3 Graph Grammar for Terrestrial Robot Topology Design 101

5.1.4 Graph Heuristic Search . 104

5.1.5 Experiments . 110

5.1.6 Summary . 116

5.2 Co-Optimizing Robot Control and Continuous Shape Morphology: An

End-to-End Differentiable Framework 117

5.2.1 Motivation . 117

5.2.2 Method . 119

5.2.3 Experiments . 123

5.2.4 Summary . 132

6 Multi-Objective Robot Optimization 135

6.1 Prediction-Guided Multi-Objective Control Policy Learning 136

6.1.1 Motivation . 136

6.1.2 Preliminaries . 139

6.1.3 Algorithm Overview . 141

6.1.4 Prediction-Guided MORL . 143

6.1.5 Pareto Analysis and Continuous Pareto Representation 148

6.1.6 Experiments . 149

6.1.7 Summary . 160

11

6.2 MOGHS: Multi-Objective Robot Control and Shape Topology Co-Design163

6.2.1 Motivation . 163

6.2.2 Overview . 164

6.2.3 A Naive Linear Scalarization Approach 165

6.2.4 Multi-objective Graph Heuristic Search 166

6.2.5 Universal Multi-Objective Heuristic Function 170

6.2.6 Other Improvements . 170

6.2.7 Experiments . 171

6.2.8 Conclusion . 176

7 Conclusion and Outlook 179

12

List of Figures

1-1 Traditional robot design pipeline. Traditionally, a robotic ex-

pert need to first empirically determine the robot hardware shape and

software control strategy (Design Phase). Then she needs to manu-

facture the design and test its performance in real experiments (Eval-

uation Phase). Based on the performance, she has to come back to

improve the design based on her personal experience (Human Improve-

ment Phase). A successful design typically requires tens or hundreds

of such manual design iterations. 31

1-2 Computational robot design pipeline. Computational robot de-

sign improve the process by replacing the three phases with Computa-

tional Design Representation, Computational Evaluation, and Compu-

tational Optimization modules. 31

3-1 3D models of the grammar’s components with associated sym-

bols. Capital letters indicate that the component is a non-terminal

symbol, while lowercase letters indicate a terminal symbol. 45

3-2 A manipulator structure expressed by our graph representa-

tion and its corresponding graph representation. 45

13

3-3 Grammar expansion rules for constructing fingers and palms.

The palm grammar is defined on a grid layout and the finger grammar

is a parametric grammar where the palm node “P” and fork node “F”

contain an integer parameter 𝑘 to denote the number of rule expansions

can be made on the node. 𝑘+ means that rule can be applied only when

𝑘 is positive. 47

3-4 An example of palm grammar rule application. The palm gram-

mar rules are applied to grow the start symbol (W), add connector com-

ponents (C), and attach knuckles (k and n) to create the grid-based

water bottle palm. The green components are non-terminal, and the

yellow components are terminal. 47

3-5 A sample of the diversity of manipulator designs that the

grammar rules and components can produce. The manipulators

are shown before deformation. 48

3-6 Manipulator morphology designs generated by our cage-based

representation. Left : a two-finger gripper and a single-finger gripper

with complex geometry shapes in simulation; Right: pictures of 3D-

printed manipulators. Our method outputs designs that are easy to

print and assemble. 49

3-7 Hierarchical design parameterization for articulated robot mor-

phology designs. Blue arrows labeled as ℋ,ℳ. The corresponding

green arrows are the derivatives. 51

3-8 Our component database for our manipulators. From left to

right: finger base, phalanx segment, finger tip, knuckle, and joint. Each

component comes with its own deformation cage. (a) The components

in the yellow cages can be deformed arbitrarily with the cage, whereas

(b) the components in the green cages can only be expanded along the

axis of rotation. 52

14

3-9 Cage-based deformation for articulated robot morphology pa-

rameterization. A joint component and a body phalanx segment

component are shown in the figures. We parameterize the articulated

components into lower-dimensional parameters 𝜓𝑐 by posing different

deformation constraints on each component and merging their handle

points on the connection surface (highlighted in blue in (a) and (b)).

We can then freely explore the 𝜓𝑐 space to change the underlining

articulated robot shape (d). The two components come apart from

each other and become to be not manufacturable if they are deformed

individually and arbitrarily by their associated cages (c). 55

3-10 Morphology design space. The initial morphology of the single

finger and the two-finger gripper designs are shown on the left. We

randomly sample different parameters for each configuration and show

the deformed morphology on the right. 57

3-11 Proposed hybrid representation for manipulator shape de-

signs: A manipulator topology structure (discrete part) is formed from

grammar representation (A), and then the cage-based representation

parameterize the continuous geometry shape of each manipulator com-

ponent (B). 58

3-12 Manipulator designs (combined with tactile sensors) constructed

from our developed design interface. First row: The digital de-

signs output from our software with red surfaces representing where

to put tactile sensor one. Second row: The corresponding 3d printed

manipulator designs. When equipped with knitted tactile sensors, they

are able to complete various complex manipulation tasks. 59

4-1 High-dimensional muscle-actuated humanoid control problem.

Reinforcement learning approaches struggle on high-dimensional con-

trol problems due to the high demand of stochastic sampled trajectories

to estimate the policy gradients. 62

15

4-2 Tactile Sensor Representation. 64

4-3 Computation graph of the simulation with BDF1 time step-

ping around time step 𝑡. We illustrate the computation graph for

gradient derivations of 𝜕ℒ/𝜕𝑞𝑡 and 𝜕ℒ/𝜕𝑢𝑡. The boxes (e.g., 𝑔, 𝜋𝜃)

represent functions, and the circles represent data/values. The grey

circles are the data unrelated to the gradient derivation at step 𝑡. The

red circles are the data (·) that we already have the gradient 𝜕ℒ/𝜕(·)

for when we arrive at step 𝑡 during backward propagation. The blue

circles are the data related to the gradients computation at step 𝑡. The

green arrows are the data flows completed by PyTorch, and the black

arrows are the data flows completed by our simulator. The dashed ar-

rows are the data flows whose gradients computations are not handled

by simulator or are not related to the derivation at the current step.

The orange shaded part is our simulation layer of step 𝑡 in the PyTorch

computation graph. 68

4-4 Tactile-based box pushing task. (a) The goal of the gripper policy

is to use its tactile feedback to push a box to a randomized target po-

sition/orientation. A time-varying external force is randomly applied

on the box during the task. (b) the training curve for each policy vari-

ation is averaged from the five independent runs with different random

seeds. 70

4-5 Visualization of the tactile sensor layouts on a WSG-50 Gripper. 71

16

4-6 Environments: Here are some of our environments for evaluation.

Three classical physical control RL benchmarks of increasing difficulty,

from left: Cartpole Swing Up + Balance, Ant, and Humanoid. In addi-

tion, we train the policy for the high-dimensional muscle-tendon driven

Humanoid MTU model from [1]. Whereas model-free reinforcement

learning (PPO, SAC) needs many samples for such high-dimensional

control problems, SHAC scales efficiently through the use of analytic

gradients from differentiable simulation with a parallelized implemen-

tation, both in sample complexity and wall-clock time. 75

4-7 Landscape comparison between BPTT and SHAC. We select

one single weight from a policy and change its value by ∆𝜃𝑘 ∈ [−1, 1]

to plot the task loss landscapes of BPTT and SHAC w.r.t. one pol-

icy parameter. The task horizon is 𝐻 = 1000 for BPTT, and the

short horizon length for our method is ℎ = 32. As we can see, longer

optimization horizons lead to noisy loss landscape that are difficult

to optimize, and the landscape of our method can be regarded as a

smooth approximation of the real landscape. 78

4-8 Computation graph of BPTT and SHAC. Top: BPTT propa-

gates gradients through an entire trajectory in each learning episode.

This leads to noisy loss landscapes, increased memory, and numerical

gradient problems. Bottom: SHAC subdivides the trajectory into

short optimization windows across learning episodes. This results in a

smoother surrogate reward function and reduces memory requirements,

enabling parallel sampling of many trajectories. The environment is

reset upon early termination happens. Solid arrows denote gradient-

preserving computations; dashed arrows denote locations at which the

gradients are cut off. 79

17

4-9 Learning curves comparison on four benchmark problems.

Each column corresponds to a particular problem, with the top plot

evaluating sample efficiency and the bottom plot evaluating wall-clock

time efficiency. For better visualization, we truncate all the curves up

to the maximal simulation steps/wall-clock time of our method (except

for Humanoid MTU), and we provide the full plots in Appendix ??.

Each curve is averaged from five random seeds, and the shaded area

shows the standard deviation. SHAC is more sample efficient than

all baselines. Model-free baselines are competitive on wall-clock time

on pedagogical environments such as the cartpole, but are much less

effective as the problem complexity scales. 87

4-10 Humanoid MTU: A sequence of frames from a learned running gait.

The muscle unit color indicates the activation level at the current state. 90

4-11 Learning curves of our method with fixed network architec-

tures and learning rates. We use the same network architectures

and learning rates used in Humanoid problem on all other problems,

and plot the training curves comparison with the ones using optimal

settings. The plot shows that our method still performs reasonably

well with the fixed network and learning rates settings. 93

4-12 Learning curves of our method with deterministic policy. We

test our method with deterministic policy choice. We use the same

network sizes and the hyperparameters as used in the stochastic policy

and remove the policy output stochasticity. We run our method on

each problem with five individual random seeds. The results show

that our method with deterministic policy works reasonably well on

all problems, and sometimes the deterministic policy even outperforms

the stochastic policy (e.g., Humanoid). The small performance drop

on the Ant problem comes from one single seed (out of five) which

results in a sub-optimal policy. 94

18

4-13 Study of short horizon length ℎ on Ant problem. A small ℎ

results in worse value estimation. A too large ℎ leads to an ill-posed

optimization landscape and longer training time. 94

5-1 Overview of the computational terrestrial robot design sys-

tem. The input to our system is a set of base robot components,

such as links, joints, and end structures, and at least one terrain, such

as stepped terrain or terrain with wall obstacles. A recursive graph

grammar is constructed to efficiently generate hundreds of thousands

of robot structures built with the given components. We then use

Graph Heuristic Search coupled with model predictive control (MPC)

to facilitate exploration of the large design space, and identify high

performing examples for a given terrain. Our approach enables co-

optimization of both robot structures and controllers. 100

5-2 An example of a kinematic tree (top) with the corresponding

robot graph (bottom). To enforce symmetry in leg pairs, after

adding nodes for connectors on both sides of the body, both legs of one

pair are defined in one branch of the graph. 101

5-3 Structural rules of our robot grammar. Here 𝑆,𝐻, 𝑌,𝐵, 𝑇, 𝑈,𝐸, 𝐽, 𝐿

are non-terminal symbols. Rule 𝑟1 initializes the body structure, while

𝑟2 can be used to extend the body. Note that each body segment 𝑈

can have at most one pair of limbs attached to it. Rule 𝑟3 enforces

symmetry of the limb pairs, and rule 𝑟4 allows body segments without

limbs. Rule 𝑟5 serves for extending the limbs, and 𝑟6 and 𝑟7 for adding

back and front limbs. 102

5-4 Component-based rules of the robot grammar. Initial-pose an-

gle 𝜃𝑖 and rotational range angle 𝜃𝑟 are attributes of joints. 103

19

5-5 A derivation sequence for a Simple Walker robot generated

with our grammar. Derivation begins with the start symbol 𝑆, then

creates the body and extends it with rules 𝑟1,𝑟2 respectively. Legs are

added on both body segments with rule 𝑟3 applied twice. Both pairs

of legs are extended, adding additional sets of joints and links, with 𝑟5.

For the Simple Walker, end structures are not used, hence we remove

them with 𝑟21,𝑟22, and 𝑟23. Finally, terminal components are added for

each segment of the robot, following the rules from Figure 5-4. 104

5-6 Selection of best-performing designs optimized with Graph

Heuristic Search for ridged, flat, frozen lake, and gapped ter-

rain respectively. 113

5-7 Training progress comparison with baselines. Cumulative maxi-

mum reward versus iteration for Graph Heuristic Search, Monte Carlo

tree search, and random search on four different terrains. Each solid

line is the mean of three different seeds, with the error band represent-

ing the range. Graph Heuristic Search consistently outperforms the

baselines. 115

5-8 Training loss, prediction error, and cumulative maximum re-

ward versus iteration for Graph Heuristic Search on multiple

grammars. Robots are optimized for flat terrain. Prediction error

is the absolute difference between predicted reward and evaluated re-

ward, and is averaged over 100 iterations. Each solid line is the mean

of at least three different seeds, with the error band representing the

range. Graph Heuristic Search consistently converges in all three criteria.116

20

5-9 Manipulator designs before and after optimization. Left col-

umn: only optimizing the control algorithm using a nominal robot

design fails to complete the task; Middle: co-optimization of mor-

phology and control results in success; Right: pictures of 3D-printed

manipulators. Our method outputs designs that are easy to print and

assemble. 118

5-10 End-to-end differentiable framework for morphology and con-

trol co-optimization. Blue arrows labeled as ℋ,ℳ,𝒫 , and ℒ are hi-

erarchical functions that evaluate the loss function given the high-level

morphology parameters, 𝜓𝑐 and controls, 𝑢. The corresponding green

arrows are the derivatives. 120

5-11 Optimization curves comparison. We run all the methods on all

tasks 5 times with different random seeds. Mean and standard devia-

tion in the loss objective are reported. The horizontal axis of each plot

is the number of simulation episodes, and vertical axis is the objective

loss value. L-BFGS-B optimization can terminate early once it satis-

fies the termination criterion. For better visualization, we extend the

actual learning curves that use L-BFGS-B horizontally using dotted

lines. We also smooth out the curves with a window size of 10. 126

5-12 Optimized designs and controls for four manipulator tasks. (1)

Finger Reach. (2) Flip Box. (3) Rotate Rubik’s Cube. (4) Assemble.

More visual results are provided in the supplementary video. 127

21

5-13 Free-form Gripper: The task is to pick up the object, as shown in

the top row. We compare deformation-based parameterization (ours)

and mesh-based parameterization. The optimization variables and op-

timized gripper morphology for the left gripper finger using both meth-

ods are shown in the bottom row. (a) our parameterization method :

all the cage handles are shown on the left sub-figure and the ones used

as optimization variables are highlighted in red. (b) mesh-based pa-

rameterization: we allow the optimization to directly optimize all the

mesh vertices highlighted in red in the left sub-figure. In both cases,

we do not modify the areas near the top of the gripper. The gripper

morphology generated by our method is much smoother. 130

5-14 Optimization curve comparison for Free-form Gripper task.

The horizontal axis is the number of simulation episodes during opti-

mization, and the vertical axis is the loss value. The experiment results

are averaged from 30 independent optimization runs with different ini-

tial guesses. 131

5-15 Test the optimized Flip Box manipulator design in real. We

test the robustness of the optimized design on the boxes of various sizes

(a) 5 cm, (b) 5.5 cm, (c) 6 cm. Our manufactured design is able to

successfully flip those boxes. 132

6-1 Parameter space and performance space of the Pareto poli-

cies. (Left) The Pareto set is composed from a disjoint set of policy

families in the 𝑁 dimensional parameter space. (Right) The policies

from each family map to a continuous segment on the Pareto front in

the performance space. 137

22

6-2 Pareto Metrics. (a) Hypervolume metric in 2-objective space is the

area (shaded) dominated by the Pareto front approximation and dom-

inating the reference point. (b) Sparsity metric in 2-objective space

measures the average square distance between consecutive points in

Pareto approximation. In this case, 𝒮 = 1
3
(𝑑20 + 𝑑21 + 𝑑22). 140

6-3 Overview of the algorithm. Warm-up stage: optimize 𝑛 initial

policies with different weights. Evolutionary stage: build an improve-

ment prediction model for each policy and solve a prediction-guided

optimization to select 𝑛 best policy-weight pairs to be processed. The

resulting polices are used to update the population and the prediction

models. Pareto analysis stage: identify different policy families and

construct a continuous Pareto representation. 141

6-4 The learning curves of our algorithm and baseline algorithms

on Walker2d-v2. The x-axis is the generation, the y-axis is the metric

and the shadow area is the standard deviation. The Hypervolume at

generation 0 is measured after the warm-up stage. The learning curve

of META is not plotted as its metrics can only be measured during the

final adaptation stage. (a) Hypervolume metric (higher is better). (b)

Sparsity metric (lower is better). 155

6-5 Pareto analysis for Walker2d-v2 problem. (Left) The policy fam-

ilies identified by t-SNE and 𝑘-means. (Right) Visualization of the

families in objective space. The curve going through each family is the

continuous Pareto approximation. 157

6-6 Illustration for continuous Pareto front accuracy evaluation.

We sample testing objectives on the continuous Pareto front to test

intra-family interpolation and on the boundary between families to

test inter-family interpolation. 158

23

6-7 Pareto front comparison on Walker2d-v2 problem. (a) META

v.s. Ours. The multi-family representation in our method helps achieve

better control for different preferences. (b) MOEA/D v.s. Ours. Our

algorithm is unable to recover the Pareto on the bottom right corner

due to the long-term local minima problem. 159

6-8 The learning curves of hypervolume and sparsity metrics of

different algorithms on all benchmark problems. The x-axis is

the generation, the y-axis is the metric and the shadow area is the

standard deviation. We do not plot the learning curve of META be-

cause it can be measured only during the final adaptation stage. For

Hopper-v3, we do not run PFA as the sequence of the weights in three

dimensional space is undefined. 160

6-9 The Pareto front approximation comparison for all 2-objective

benchmark problems. For each problem, we show the result for

each algorithm with the same random seed. The Pareto of META on

Humanoid-v2 problem is not plotted, since in our experiments, META

is not able to generate a Pareto front in the first quadrant. 161

6-10 The Pareto front approximation comparison for Hopper-v3. . 162

6-11 Pareto analysis results for 2-objective benchmark problems.

The first row is the family identification in the parameter space by

t-SNE and 𝑘-means. The second row is the corresponding objectives

of those families in the performance space. The third row is the con-

structed continuous Pareto front approximation. 162

6-12 Pareto analysis results for Hopper-v3. (left) The family identi-

fication in the parameter space by t-SNE and 𝑘-means. (middle) The

constructed continuous Pareto front approximation in the performance

space. (right) Embedding the continuous Pareto front approximation

in barycentric coordinates for better visualization. 162

24

6-13 A cartoon depicting the scalarization method. Weight pairs

form rays that project radially outward from the origin. Each circle

represents a point that might be found during a single objective opti-

mization using the weights defined by the ray of its color. Circles with

black borders are the optimal solutions to the corresponding weights,

which form a convex Pareto approximation front. 166

6-14 Overview of the Multi-Objective Graph Heuristic Search (MOGHS).

In each episode, the algorithm conducts three phases (similar to GHS).

Design Phase: A robot design is selected using a learned universal

graph heuristic function along with a randomly picked preference weight

𝜔. Evaluation Phase: The selected robot design is evaluated by MPC

for each objective. Learning Phase: All the designs seen so far are

leveraged to improve the heuristic. 167

6-15 Pareto front comparison of four of our two-objective experi-

ments, and example designs from the Pareto front. MOGHS

produces more diverse and better performing results than discrete

weights or the random baseline. 174

25

26

List of Tables

3.1 Summary of different Morphology Parameterization Methods 51

4.1 Metrics comparison on box pushing task. We compute the final

position/orientation errors of the best policy in each run and average

the metrics from five runs for each policy variation. GD-Privileged

gives a reference of the best possible metrics, and without the privileged

state information of the box, our GD-Tactile achieves much better

position error and rotation error than other two variations. 71

4.2 Observation vector of CartPole Swing Up problem 83

4.3 Observation vector of Ant problem 84

4.4 Observation vector of Humanoid problem 85

4.5 Observation vector of Humanoid MTU problem 86

4.6 Wall-clock performance breakdown of a single training episode.

The forward stage includes simulation, reward calculation, and obser-

vations. Backward includes the simulation gradient calculation and

actor update. Critic training, which is specific to our method, is listed

individually, and is generally a small proportion of the overall training

time. 89

4.7 A general setting of hyperparameters of SHAC. 92

5.1 Graph Heuristic Search hyperparameter values 111

27

5.2 List of simulation parameters 𝜓𝑝 121

5.3 List of hyper-parameters for each example. 123

5.4 Normalized Metric Comparison. We design the task-related met-

rics to measure how successful each method performs on the tasks. For

Finger Reach task, the metric is the time-averaged distance to the tar-

get tracking points. For Flip Box and Rotate Rubik’s Cube, the metrics

are the flipping/rotating angle error at the end of the task. For As-

semble, we measure the distance between the center of the small box

and the center of the hole on the movable mount. All the metrics are

normalized. 128

6.1 Evaluation of our algorithm and baseline algorithms on the

proposed benchmark problems. We run all algorithms on each

problem for 6 runs and report the average Hypervolume (Hv) and

Sparsity (Sp) metrics. Bold number is the best in each row. 154

6.2 Intra-family and Inter-family interpolation errors. We evaluate

the relative error for intra-family and inter-family interpolation respec-

tively. For two objective cases, we sample 1000 testing objectives for

intra-family interpolation and 100 testing objectives for inter-family

interpolation. For the three objective case the number of samples are

20000 and 5000 for intra-family and inter-family respectively. The av-

erage errors are reported below. 158

6.3 A comparison of the three numerical metrics among all three

algorithms presented. For each problem, metrics are presented in

the following order: HV, GD, IGD. Bolded numbers mean that col-

umn’s algorithm performed best for that algorithm/problem combi-

nation. MOGHS outperforms other methods in all metrics across all

problems . 176

28

Chapter 1

Introduction

Most organisms in nature have been “evolved” over millions of years to be adept at

their unique skills. For example, a lizard hunting prey may need to be proficient

at climbing trees and running; a duck in migration needs to be able to swim; a

human hurdler must be fast at running along bends and straightaways. The core to

what makes these organisms so capable of their particular skills is their specialized

body mechanisms and highly optimized brain systems with complex neuron arrays.

Because form informs function and vice versa, we similarly should expect that the

best-performing robots for different desired tasks have remarkably different designs.

The design, control, and construction of performing robotic systems for given tasks

are traditionally labor-intensive for finding the optimal configurations of its hardware

shape and/or software control. The underlying coupling of the hardware shape and

the software control of a robot results in an enormous parameter space involving both

discrete parameters (i.e., topology structure of the robot) and continuous parameters

(i.e., morphological dimensions of each robot link, the control parameters), optimiz-

ing which today requires significant amounts of expert knowledge from roboticists

and many manual design iterations. For example, as shown in Figure 1-1, hardware

components and control algorithms are typically constructed sequentially based on

the empirical experience of the robot designer (Design Phase). Then the designed

robot needs to be manufactured, and physical testing will be conducted to evaluate its

29

performance (Evaluation Phase). Based on the evaluated performance, the designer

has to come back to the first stage to improve the robot’s shape and control accord-

ingly (Human Improvement Phase). A performing robotic system typically requires

many such slow and manual iterations.

Intending to automate the robot design process, computational robot design has

attracted increasing attention from robotics, graphs, and artificial intelligence re-

searchers. Computational robot design first replaces the Design Phase with the Com-

putational Design Representation to be able to numerically represent the design of a

robot by a set of shape and control parameters. Next, instead of manufacturing and

evaluating the robots in real experiments, it computationally evaluates the robots

inside the digital simulators. Finally and most importantly, the manual improvement

phase is replaced by a computational optimization algorithm to automatically im-

prove the robot parameters. The replacements of these three stages then successfully

build a fully automated computational robot design process. Not only a computa-

tional robot design automation can significantly improve productivity by freeing up

the human labor from this time-consuming process, but it may also find potential

robot designs beyond human expertise limitations. Despite its attractive advantages,

building a general computational robot design process is extremely hard due to sev-

eral challenging problems, including but not limited to representation, optimization,

and performance evaluation problems.

In this thesis, we tackle the problems of computational design of task-driven

robots, and mainly focus on the context of articulated rigid robots. We identify some

of the key challenges overlooked by previous computational robot design works and

propose our corresponding solutions for them in the hope of making a pace towards

the ultimate goal of a general computational robot design pipeline.

30

Figure 1-1: Traditional robot design pipeline. Traditionally, a robotic expert need to
first empirically determine the robot hardware shape and software control strategy (Design
Phase). Then she needs to manufacture the design and test its performance in real experi-
ments (Evaluation Phase). Based on the performance, she has to come back to improve the
design based on her personal experience (Human Improvement Phase). A successful design
typically requires tens or hundreds of such manual design iterations.

Figure 1-2: Computational robot design pipeline. Computational robot design im-
prove the process by replacing the three phases with Computational Design Representation,
Computational Evaluation, and Computational Optimization modules.

31

1.1 Key Challenges in Computational Robot Design

1.1.1 Hardware Shape Representation

To achieve the goal of computationally constructing the robots, the first significant

challenge is how to represent the robot shape designs in a computational way. A

complete description of a robot shape should contain both discrete shape parameters

and continuous shape parameters. The discrete parameters may define the topological

structure of the robot (e.g., number of body links, how links connect together), and

the types of the joints connecting body links. On the other hand, the continuous

shape parameters usually contain the morphological dimensions of each robot link

(i.e., length, radius, width), the placements of the connection joints, stiffness and

damping coefficients of the joints, and the material parameters of the robot materials.

Traditionally, people overlooked this shape representation problem and typically

used arbitrary connections of primitive shapes (e.g., cylinders or cuboids) to repre-

sent the robot geometry. However, while easy to optimize, these primitives often

over-simplify the desired shape and are insufficient to model complex robot designs.

Furthermore, arbitrarily connecting different pieces of components also unintention-

ally produces robot designs that are infeasible in real manufacturing. Those limita-

tions of the existing works indicate us to find a proper way to represent the robot

shape so as to concisely and comprehensively structure this hybrid and vast robot

shape space while being amenable to optimization.

1.1.2 Control Representations

Once the robot hardware configuration is determined, the next thing we need to

consider for a robot is its controller. As a robot’s brain, the robotic control strategy

plays a crucial role in its task performance. The controller of a robot can usually be

represented in two approaches.

Traditionally, researchers define the control as an open-loop state-action trajectory

and then, during execution, apply classic feedback control algorithms (e.g., PID,

32

LQR) to control the robot to follow the predefined open-loop trajectory. However,

the design of the feedback control algorithm typically relies on a deep understanding

of the task-specific control strategy structure; thus, the design philosophy can hardly

be generalized to more complex robot problems. More recently, neural network policy

has become an increasingly popular alternative for controller representation due to

its feedback nature and demonstrated generalizability across various complex control

problems (e.g., in-hand manipulation control tasks). Therefore, selecting the proper

control representation for the best task performance and robustness is one of the

challenging system design choices in a computational robot design process.

1.1.3 Robot Performance Evaluation

In order to optimize the desired robot designs, we need the performance metrics to

guide the optimization algorithms. Effective performance metrics must reflect hu-

man subjective evaluations of different robot designs. The robot performance can

usually be represented by either a single objective or multiple different objectives.

While single-objective representation is simple to start with, most physical tasks in

the real world are evaluated by multiple metrics. For example, when we evaluate a

driver’s driving skill, we will consider both the speed and safety of her driving. A

similar analogy exists in robotic control problems. Robots in real life are versatile,

general-purpose, and rarely designed for maximizing their performance on a single ob-

jective only. For instance, when designing a control policy for a running quadruped

robot, we need to consider two conflicting objectives: running speed and energy effi-

ciency. When multiple conflicting objectives exist, there is no single optimal solution

that is optimal in every objective, instead we face a much more challenging task

to find a Pareto set of solutions making different trade offs among different objec-

tives. Therefore, in a computational robot design process, we have to decide on the

proper performance evaluation to make the best trade off between simplicity of the

optimization algorithm and the comprehensiveness of the robot evaluation.

33

1.1.4 Single-Objective Robot Optimization

Given the performance metrics and the robot representation, the next challenge is

finding an efficient algorithm to optimize the best robot in the represented robot de-

sign space under the selected performance evaluation. We first constrain our problems

within single-objective settings. We argue that even with a single objective, robot

optimization is nontrivial.

The very first question is that with a fixed robot hardware configuration, how to

optimize a control policy for it efficiently? Among various policy optimization tech-

niques, reinforcement learning (RL) has been a particularly successful tool for learning

policies for complex robotic systems using only high-level reward definitions. Despite

this success, RL requires large amounts of training data to approximate the policy

gradient, making learning expensive and time-consuming. The recent development of

differentiable simulators opens up new possibilities for accelerating the learning and

optimization of control policies via analytical gradient-based approaches. However,

the well-known local minima problem notoriously limits the application of differen-

tiable simulation on complex tasks. Therefore, an interesting question is, can we

actually combine reinforcement learning and differentiable simulation to achieve the

best of both worlds on the policy optimization problems?

While the controller serves as a brain of a robot, robot hardware actually plays

an equally important role as its control algorithm in its task performance. As an

example, a quadruped with longer legs can be easily controlled to run faster than

a quadruped with shorter legs, no matter how optimal the control algorithm of the

short-leg quadruped is. Thus, one meaningful question for us is how to effectively

co-optimize the robot shape and robot control simultaneously to achieve the best

performance. Despite its importance, an automated computational algorithm for

robot co-design is still an active and challenging research question. This is because

the hardware shape of a robot introduces an enormous and mixed optimization space

involving both discrete parameters and continuous parameters as we discussed above,

which imposes an intractable search space on the classical optimization algorithms.

34

1.1.5 Multi-Objective Robot Optimization

The challenges brought by a multi-objective performance evaluation are even more

substantial. While in single-objective problems, the main challenge comes from the

enormous and mixed search space for the optimization algorithms, the multi-objective

performance evaluation further increases the dimension of the optimal solution space

for the optimizers. This is because, in a multi-objective problem, different objectives

may conflict to each other. In such cases, multiple optimal solutions exist depending

on the chosen trade-off between these metrics, known as the Pareto set. Take the

quadruped control problem as an example again. One effective policy may prefer

high speed at the cost of lower energy efficiency, whereas another optimal policy

might prefer high energy efficiency at the cost of lower speed.

Most robotic works simplify this multi-objective problem by converting it into

a single scalar objective as a weighted sum of different objectives and then finding

the optimal solution for that specific preference weight setting. However, such sim-

plification relies on a set of pre-selected preference weights of objectives, which is

typically unavailable in most cases. Thus the users typically need to refine those

weights back and forth to achieve the desired behaviors. Besides, if the task and

the desired preference among objectives change, the computed solution immediately

becomes sub-optimal, and the users need to re-run the expensive optimization for the

new set of preference weights from scratch. Thus we desire to invent novel optimiza-

tion algorithms for multi-objective robot problems, which are capable of finding the

Pareto Optimal set of solutions. A human then has the full flexibility to select the

preference among different metrics based on the specific task, and this determines the

corresponding optimal policy in that particular scenario.

1.2 Thesis Overview

In this thesis, we demonstrate our solutions for the aforementioned challenges in a

computational robot design pipeline. In Chapter 2, we review the previous works

35

related to the topics of this thesis. In Chapter 3, we take the manipulator design

as an example and present our compact and expressive robot shape representations

for both discrete and continuous robot parameters that are amenable to optimization

[2, 3]. Our robot shape representations take the idea of using graph grammar for

discrete robot structure space and leveraging cage-based deformation to define the

continuous shape morphology space. With the proposed robot shape representations,

we then explore the corresponding robot optimization techniques. In Chapter 4, we

first introduce how we develop a differentiable simulator to help efficiently optimize

the tactile-based control policy for a manipulator robot with a fixed hardware con-

figuration [4], and then we demonstrate how to effectively combine the differentiable

simulation and reinforcement learning together to further speed up the policy learn-

ing process [5]. In Chapter 5, we explore the more complicated co-design problems

requiring optimization of both shape and control of a robot. We presents two novel

algorithms for co-design purpose: a Graph Heuristic Search algorithm which utilizes

a learning-based heuristic function to guide the search for the optimal combination of

the discrete shape structures and control for terrestrial robots [6]; and an end-to-end

differentiable framework to efficiently co-optimize the continuous shape morphology

and control for manipulator robots [2]. Finally in Chapter 6, we step further towards

the more sophisticated multi-objective robot design problems and presents our solu-

tions on multi-objective control policy optimization problems [7] and multi-objective

robot co-design problems [8]. Our proposed multi-objective robot design algorithms

search for a set of Pareto-optimal robot designs trading off multiple different objec-

tives and tasks.

36

Chapter 2

Related Work

2.1 Robot Shape Representation and Parameteriza-

tion

Computational design of robot shape typically requires a compact and expressive rep-

resentation of shape topological structure among links (e.g., number of links and how

links connect together) and continuous shape geometrical morphology (e.g., size). For

the shape topological structure, a graph representation has been naturally adopted [9,

10, 11]. However previous works usually allow the different parts can be connected

arbitrarily, which results in a physically invalid robot design. For example, two parts

may be connected at the middle of their body, or too many parts art connected to

one single part. As a part of computational design for the robots that can be manu-

factured in real, we need to consider whether a connection we need to impose more

physics constraints on the topological design space to make sure that all the robot

design can be represented are physically feasible.

There are more variants on the continuous geometrical morphology representation

side. Most existing works on robot co-design use simple primitive shapes to approxi-

mate the geometry of each robot link so that they can optimize the parameters easily

[12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. However, such over-simplified morphology

37

parameterization based on primitive shapes precludes the possibility of generating

complex geometric morphology for the robot. It is inadequate especially when the

geometry does affect the task dynamics with a rich amount of contact, such as in

in-hand manipulation tasks. CAD-based parameterization is one of the options to

support natural organic shapes, but it typically suffers from its slow inference speed

and non-differentiability. Schulz et al. [22] proposed an interactive system for CAD

models with an expensive precomputation cost. Hafner et al. [23] developed a differen-

tiable parameterization of CAD models for FEM simulation, but the differentiability

is not preserved in our rigid, multi-body simulation setting. Furthermore, CAD-based

parameterization requires extra expertise to select and constrain each parameter in

order to preserve model manufacturability throughout the optimization. It is also

non-trivial to support the connectivity constraints required in an articulated robot

structure. Truncated Signed Distance Functions (TSDF) and mesh-based parameter-

ization are used by Ha et al. [24] to optimize the shape of a free-form gripper. These

methods only work for a single body system, introduce a large number of parame-

ters, and usually do not result in natural organic shapes. Compared to these, our

deformation-based parameterization allows us to have a constrained but expressive

design space for natural shapes and seamlessly works for articulated robot designs.

2.2 Differentiable Physics-Based Simulation

Physics-based simulation has been widely used for various robotic applications [25,

26, 27]. Among them, differentiable physics-based simulators have gained increasing

popularity recently since their differentiability facilitates efficient gradient-based op-

timization for robotic control. Due to their inherent differentiability, neural network

based simulators have also been proposed to approximate physics [28, 29, 30, 31].

However, these works sacrifice generality and accuracy of physics for differentiability

of the neural network. Differentiable simulators have been developed for rigid bodies

[32, 33, 34, 35, 36, 37], soft bodies [38, 39, 40, 41, 42, 43], and cloth [44, 45]. Han-

dling contact response is the most important task in building a differentiable physics

38

simulator. Several approaches have been proposed for making the frictional contact

response differentiable such as differentiation of the coefficient matrices and vectors of

the linear complementarity problem arising from collisions [32, 33] or those that use

impulse-based velocity stepping methods [34]. However, the discontinuity stemming

from such approaches can cause difficulties for contact-rich tasks. Geilinger et al.

[35] proposed a differentiable penalty-based frictional contact model. However, their

contact model was only demonstrated to work for contact between the robot and a

stationary surface (e.g., ground and walls), and the simulation uses stiff springs to

approximate articulation.

2.3 Computational Robot Design for Single Objec-

tive

2.3.1 Control Optimization and Learning

Traditionally, an open-loop state-action trajectory is optimized via trajectory opti-

mization for a robot and classical feedback control is applied to control the robot

stablizing around the open-loop trajectory [46, 47, 48, 49].

More recently, neural network control policies have been explored to control the

robot movements. Deep reinforcement learning has become a prevalent tool for learn-

ing control policies for systems ranging from robots [50, 51, 52, 53, 54, 55], to complex

animation characters [56, 57, 58, 1]. Model-free RL algorithms treat the underlying

dynamics as a black box in the policy learning process. Among them, on-policy RL

approaches [59, 60] improve the policy from the experience generated by the current

policy, while off-policy methods [61, 62, 63, 64] leverage all the past experience as

a learning resource to improve sample efficiency. On the other side, model-based

RL methods [65, 66, 67, 68] have been proposed to learn an approximated dynamics

model from little experience and then fully exploit the learned dynamics model during

policy learning.

39

The recent development of differentiable simulators enables the optimization of

control policies via the provided gradient information. Backpropagation Through

Time (BPTT) [69] has been widely used in previous work to showcase differentiable

systems [40, 41, 44, 42, 38]. However, the noisy optimization landscape and explod-

ing/vanishing gradients in long-horizon tasks make such straightforward first-order

methods ineffective. A few methods have been proposed to resolve this issue. [70]

present a sample enhancement method to increase RL sample-efficiency for the simple

MuJoCo Ant environment. However, as the method follows a model-based learning

framework, it is significantly slower than state-of-the-art on-policy methods such as

PPO [60]. [71] propose interleaving a trajectory optimization stage and an imitation

learning stage to detach the policy from the computation graph in order to alleviate

the exploding gradient problem. They demonstrate their methods on simple control

tasks (e.g., stopping a pendulum). However, gradients flowing back through long tra-

jectories of states can still create challenging optimization landscapes for more com-

plex tasks. Furthermore, both methods require the full simulation Jacobian, which is

not commonly or efficiently available in reverse-mode differentiable simulators.

2.3.2 Control and Shape Co-Design

Co-design of robots typically involves optimizing geometry, mass properties, and con-

trol parameters, and involves of optimizing both discrete shape topology parameters

and continuous shape and control parameters. For articulated robot co-design, one

must consider extra variables for kinematics and dynamics relationships among links,

such as joint and body translations/orientations.

To optimize the discrete topology of the robot, evolutionary approaches and

search-based approaches have been adopted. Evolutionary approaches apply evolu-

tionary algorithms to iteratively improve robot form and behavior across generations.

Early notable work in this space includes [10] and [72], which evolved rigid robot mor-

phologies and controllers to produce agile creatures. It was recently demonstrated

that such techniques could be applied to the robust space of neural network con-

40

trollers [11]. Such techniques have also been applied to soft robots [73, 74, 75], evolv-

ing robots over geometry, actuation, and open-loop control. Evolutionary approaches

lead to high diversity but poor convergence. Search-based methods can both handle

combinatorial topology search and still have promising efficiency. In these methods,

discrete searches of joint and limb configurations are guided by heuristic functions

[76].

To optimize only the continuous shape geometrical morphology parameters, ana-

lytical methods are the main trend. Analytical methods use model gradients in order

to inform search. Rigid co-optimization over continuous morphological and control

parameters has been extensively studied over the last decade [18, 77, 12, 78, 13, 14,

16, 17]. Learning based methods have attracted more attention these days, where the

Reinforcement Learning framework is extended with the ability to optimize the con-

tinuous morphology parameters [19, 20, 21]. However, the limitations of all of those

existing methods is the the limited expressivity of the primitive shape representation

as discussed in previous sections.

2.4 Computational Robot Design for Multiple Ob-

jectives

2.4.1 Multi-Objective Optimization

Multi-objective optimization algorithms have been successfully deployed in a wide

variety of engineering domains, including material design [79], automotive engineer-

ing [80], thermodynamics [81], and medicine [82], to name a few. Core to these

applications is the development of search algorithms that can retrieve dense Pareto

fronts that are close to the ground-truth, with high sample efficiency. Two popu-

lar categories of strategies exist. The first is evolutionary algorithms; see [83] for

an introduction. Popular methods in this space include NGSA-II [84], NEAT [85],

CMA-ES [86], and MOEA/D [87]. These algorithms employ principled heuristics to

41

efficiently trade off exploration of the design space with exploitation of the estimated

Pareto front. Contrasted with evolutionary approaches are analytical methods such

as [88] or [89], which combine probabilistic search with local, gradient-based opti-

mization for increased efficiency. Particularly popular in this space are scalarization

approaches (like [88]), which perform continuous optimizations over sampled weight

combinations.

2.4.2 Multi-Objective Control Policy Optimization

Most of the previous multi-objective policy optimization work can be classified into

three categories. Single-policy methods convert the multi-objective problem into a

single-objective problem [90, 91] using a scalarization function. The main drawback

of these methods is that the preference weights must be set in advance. Multi-policy

methods compute a set of policies to approximate the real Pareto-optimal set [92, 93,

94]. The main bottleneck of these methods is the high computational requirement.

This prevents these methods from finding dense Pareto solutions for complex control

problems. Our work falls into this category but resolves this limitation by dynamically

allocating computing resource by a prediction-guided selection optimization. Meta

policy methods and single universal policy methods either compute a meta policy and

adapt it to different preferences, or directly generate output control conditioned on

input preference weights [95, 96, 97, 98]. Those methods share the same shortcomings

as assuming the optimal control strategies for different objectives trade offs are similar

to each others and thus can be represented by a single neural network. Finally, most

methods in this class still only work for problems with discrete action space and

simple mechanisms (e.g., deep sea treasure environment).

While multi-objective optimization techniques have been explored to robotic con-

trol problems, it is still under-explored for co-design problems yet.

42

Chapter 3

Robot Shape Representation

To achieve the goal of computationally constructing the shape and control of robotic

systems, the first significant challenge is how to computationally represent the robot

shape designs. A complete description of a robot shape should contain both discrete

shape parameters and continuous shape parameters. The discrete parameters may

define the topological structure of the robot (e.g., number of body links, how links

connect together), and the types of the joints connecting body links. The modifica-

tions on the discrete design parameters typically result in changes in the degrees of

freedom of the system, and the kinematic structure of the robot. On the other hand,

the continuous shape parameters usually contain the morphology dimensions of each

robot link (i.e., size), the placements of the connection joints, stiffness and damping

coefficients of the joints, and the material parameters of the robot materials. While

the changes of the continuous parameters usually does not affect the structure of the

robot, they are deeply related to the dynamics response behavior of the robots.

Since the hybrid nature of the robot shape parameters introduces an enormous

design search space, we need to find a proper way to represent the robot shape so

as to effectively structure this hybrid and vast robot shape space. An effective robot

shape representation has to describe the discrete part and the continuous part of the

robot shape concisely and comprehensively, as well as be amenable to optimization.

In this chapter, we introduce our solution to represent both the discrete part and

43

the continuous part of the robot shape, which covers a incredibly wide variety of

complex robot shapes while guaranteeing the represented designs to be always valid

for real manufacturing. We take the shape representation of the manipulator hand

design problem as a case study to illustrate our representation methods. We will

show in later chapters that our robot shape representations allow us to devise robot

shape optimization algorithms to search for the optimal robotic cyberphysical system

effectively and efficiently.

3.1 Graph Grammar Representation for Discrete Robot

Shape Topology

In this section, we present our graph-based shape representation for manipulator’s

topological structures and the corresponding graph grammar-based design space rep-

resentation for generating inherently fabricable manipulator hand designs.

Specifically, we represent each manipulator assembly design in the form of graph

𝐺 = (𝑉,𝐸). Each node 𝑣 ∈ 𝑉 of the graph is corresponding to a physically realiz-

able component module as shown in Figure 3-1, which can be either a finger segment

(e.g., fingertip, finger phalanx) or a joint. Each graph edge 𝑒 ∈ 𝐸 is correspond-

ing to a physical link between those components and encodes the connection-related

variables (e.g., relative rotation, translation, etc.). An example graph representation

of a manipulator design is shown in Figure 3-2. This choice of graph representation

guarantees that each assembly has a unique graph, and each graph corresponds to a

unique assembly.

In order to generate diverse manipulator structure designs for computational con-

struction purpose, we need an effective representation for the manipulator design

space. The graph representation of manipulator topology help reduce the task of

generating manipulator designs to generating design graphs. A desired design space

representation for computational robot design need to satisfy two challenging require-

ments: first, it should be expressive to produce various manipulator designs not only

44

Figure 3-1: 3D models of the grammar’s components with associated symbols.
Capital letters indicate that the component is a non-terminal symbol, while lowercase letters
indicate a terminal symbol.

c c c

c

w

n n

k

j p s s sjps s s

s

s

s

s

Figure 3-2: A manipulator structure expressed by our graph representation and
its corresponding graph representation.

including the traditional manipulator designs but also including tons of novel manip-

ulator designs which were not covered by human experts yet; second, it should be

valid, which means that the generated design graphs need to correspond to physically

fabricable manipulator designs.

We use a context-sensitive graph grammar for the manipulator design space rep-

resentation to achieve the desired requirements. The grammar consists of a set of

rules to combine input components in Fig. 3-1 to create sub-assemblies and from

the sub-assemblies create a graph of a manipulator. More specifically, the grammar

consists of

1) Terminal symbols (noted as lowercase letters). These represent the nodes and

edges of a graph.

45

2) Non-terminal symbols (noted as uppercase letters). These represent sub-assemblies

or sections of a graph.

3) A start symbol. A non-terminal symbol that initializes the design.

4) Expansion rules. These convert non-terminal symbols into other non-terminal

and terminal symbols. They allow the creation of many different graphs based

the order and selection of rules applied.

Fig. 3-1 shows the terminal and non-terminal components (with their associated

letter symbols) used to create the manipulators in this paper. It should be noted

that the “library" of input components shown here consists only of the components

required to make the manipulators in the experiments and that the “library" can be

augmented as desired.

More specifically, our manipulator grammar consists of two sub-grammars, a palm

grammar and a finger grammar with rules defined in Fig. 3-3. The palm grammar is

used to generate palms of different sizes, shapes, and numbers of finger slots. Once

the palm grammar produces a palm, the grammar proceeds with the finger grammar

to grow fingers from the palm.

To allow the palm grammar to create various shapes of palms, we built modular-

ized palm components (shown in Fig. 3-1 left). These components can be connected

in a grid-like, planar manner via the palm grammar rules to create a planar palm of

almost any shape (see Fig. 3-4). It should be noted that each palm grammar rule has

three variants by rotating the rule by 90𝑘(𝑘 ∈ 1, 2, 3) degrees. For example, a knuckle

node (k) can be connected to either left, right, top and bottom to a connector node

(C). Once the palm has been built, it is transformed into a start symbol for the finger

grammar to attach fingers to the palm if desired.

Similar to the structure of human fingers, the finger grammar combines the finger

components in Fig. 3-1 in a linear fashion: components can be added distally to the

fingertips to “grow" them in length until the finger is terminated with a fingertip.

Fig. 3-5 shows some of the diverse manipulator configurations that can be gener-

ated from our grammar. The number of different manipulator configurations increases

46

4. B j F(2)

1. P(k+) P(k – 1) e

C C k

1. 3. 5. 7.

2. 6.

PALM GRAMMAR (R!)

W w C W w k C C C C c

W w n C C n4.

FINGER GRAMMAR (R")

2. P(k) p

3. P(k+) P(k – 1) B

5. B S

6. B t

7. B j p B

8. B j T

9. B F(2)

10. F(k+) F(k – 1) B

11. F(k) f

12. T a t

13. T a S

14. S s S

15. S s

Figure 3-3: Grammar expansion rules for constructing fingers and palms. The
palm grammar is defined on a grid layout and the finger grammar is a parametric grammar
where the palm node “P” and fork node “F” contain an integer parameter 𝑘 to denote the
number of rule expansions can be made on the node. 𝑘+ means that rule can be applied
only when 𝑘 is positive.

W

R1, R5,
R4 w

C
C
k

w
c
CC

n

k

w
c
cc

n
c
n

k
R7, R5,

R6

R5, R7,
R6, R7

Figure 3-4: An example of palm grammar rule application. The palm grammar
rules are applied to grow the start symbol (W), add connector components (C), and attach
knuckles (k and n) to create the grid-based water bottle palm. The green components are
non-terminal, and the yellow components are terminal.

exponentially as we increase the number of applied rules in our grammar. As seen in

the figure, with only a small number of input components (thirteen in our work), our

grammar is able to produce a large variety of manipulator configurations in different

shapes of palm and fingers. On the order of 108 unique fingers can be generated

from fifteen finger expansion rules and six terminal finger components, assuming the

47

Figure 3-5: A sample of the diversity of manipulator designs that the grammar
rules and components can produce. The manipulators are shown before deformation.

fingers are arbitrarily limited to at most three finger segments in length for calcula-

tion purposes. Restricting the palm to a three by three grid (again for calculation

purposes) which may have at most six fingers attached, at least 1049 unique hands

exist within our constraints. Such a broad design space can be drastically increased

with additional grammar pieces.

Although we demonstrate the graph grammar representation approach on the ma-

nipulator hand design problem, it is actually a general approach for other types of

robots. We will show another example later in Chapter 5 where we use the graph

grammar representation for the terrestrial robot topology space to facilitate the op-

timal design search.

3.2 Deformation-Based Representation for Continu-

ous Robot Morphology

3.2.1 Motivation

The graph grammar representation allows us to represent tons of different robot

topology structures with different combinations of the components. However, the

continuous morphology parameters cannot be easily supported by the graph grammar

representation due to the discrete nature of the graph grammar approach. Indeed,

defining a representation of the continuous robot morphology design that is amenable

48

realsimulation

Figure 3-6: Manipulator morphology designs generated by our cage-based repre-
sentation. Left : a two-finger gripper and a single-finger gripper with complex geometry
shapes in simulation; Right: pictures of 3D-printed manipulators. Our method outputs de-
signs that are easy to print and assemble.

to optimization is an even more significant challenge than the discrete robot topology.

A good continuous morphology representation should: (a) result in designs that can

be manufactured; (b) enable design of articulated robots with complex geometric

shapes; and (c) allow the use of powerful optimization methods such as gradient

descent.

Several recent works have studied the design representation problem [6, 9, 20,

21, 24]. One strategy is to represent the design as a graph, where each edge de-

notes connection between two components of the robot [6, 9]. However, just defining

the topology is insufficient: it is also necessary to parameterize the shape of each

component. While there are many ways to represent the shape of a single object,

the shape representation of an articulated system is a challenge. It is because the

shape representation must span a rich space of geometric designs while simultane-

ously satisfying connectivity constraints between components and the manufacturing

limitations. A popular strategy is to model each component by a simple primitive

shape (i.e., cylinder, cuboids, etc.) [9, 13, 17, 20, 21]. However, while easy to opti-

49

mize, these primitives are often an over-simplification of the desired shape and are

insufficient to model complex gripper designs as shown in Figure 3-6.

An alternative to basic shape primitives is the CAD parameterization. However,

this approach has several downsides: generating models from CAD parameterization

is slow [22], and updates in CAD model parameters often results in failures such

as the model being disconnected or even failure in generating the model. Other

options for rich shape representations are voxel grid, point cloud, signed distance

functions [24], etc. Unfortunately, these are not suitable for articulated robot design

because it is hard to impose connectivity constraints between individual components.

A drastic alternative to overcoming the connectivity problem without compromising

rich shape parameterization is to directly optimize the shape of the entire robot

instead of individual components. But this does not solve the problem either because

now identifying individual joints and components, which is necessary for simulation

and manufacturing, becomes a problem. Another consideration worth discussing is

that for learning to control one must first import the shape into the simulator. While

CAD designs can be easily imported they do not provide analytical gradients. Other

representations discussed above must be first converted to a mesh, a step that is non-

differentiable. Without analytical gradients one must rely on data inefficient gradient

free methods for solving the shape optimization problem.

Motivated by the challenges of the problem and the limitations of the existing

approaches, we study the effective parameterization for the continuous shape mor-

phology assuming a fixed robot topology. We propose a general morphology represen-

tation for articulated robot designs based on cage-based deformation (CBD) models.

Cage-based deformations [99, 100] have been widely used in computer graphics to

deform a mesh through a few number of cage “handles” (i.e., cage vertices) in real-

time while preserving local geometric features. Instead of specifying a large number

of optimization parameters for modelling complex shapes, CBD maintains an ex-

pressive shape design space with only a few parameters. Furthermore, as we will

describe later the cage representation allows imposition of a rich set of manufacturing

and connectivity constraints. Most importantly, CBD is not tied to a specific shape

50

Table 3.1: Summary of different Morphology Parameterization Methods

Parameterization
Method

Primitive Shapes
[12, 13, 17, 18, 77]

CAD Parameterization
[22, 23] TSDF [24] Mesh-based Deformation-based

(ours)

Mesh Inference Fast Slow Slow Fast Fast
Complex Shape No Support Support Support Support
Differentiability Support No No Support Support

Dimension Low Controllable High High Controllable
Feature-preserving No Yes No No Yes
Articulated Design Support No No No Support

HIERARCHICAL DESIGN PARAMETRIZATION

𝜕𝜓!
𝜕𝜓"

𝜕𝜓#
𝜕𝜓!

Cage Handles
𝜓!

Meshes
𝜓"

High-level
Morphology

Parameters 𝜓#

ℋ ℳ

Figure 3-7: Hierarchical design parameterization for articulated robot morphology
designs. Blue arrows labeled as ℋ,ℳ. The corresponding green arrows are the derivatives.

representation and can be easily used with different representations such as meshes,

point clouds etc. It is computationally inexpensive for inference, flexible (i.e., user

can easily control the degrees of freedom describing the shape by changing the number

of cage handles), and differentiable. We summarize the comparison among different

morphology parameterization methods in Table 3.1.

We test our framework on multiple manipulation problems, some of which are

shown in Figure 3-6. The experiments show that our deformation-based parameteri-

zation provides us an expressive design space and the expressed designs can be easily

manufactured (Figure 3-6 right).

51

Figure 3-8: Our component database for our manipulators. From left to right: finger
base, phalanx segment, finger tip, knuckle, and joint. Each component comes with its own
deformation cage. (a) The components in the yellow cages can be deformed arbitrarily with
the cage, whereas (b) the components in the green cages can only be expanded along the
axis of rotation.

3.2.2 Hierarchical Morphology Parameterization

We now describe our novel deformation-based design space for articulated robot mor-

phology. A key insight of our morphology design space is the use of cage-based

deformation, which allows us to morph the underlying mesh using a small number of

cage “handles”. More specifically, as shown in Figure 3-7, we use a two-level hierarchy

to parameterize the shape. The high-level morphology parameters (shown in red,

green, blue, and yellow arrows) controls the positions of the cage vertices (handles),

and the cage handles in turn deform the underlying mesh.

Morphology optimization relies on an effective morphology design space, which

further depends on an effective morphology shape parameterization. In this section,

we describe our approach to leverage the cage-based deformation as the morphology

parameterization for articulated robots with complex component shapes. As shown

in Figure 3-7, we use a two-level hierarchy to parameterize the shape of the robot:

the cage-based deformationℳ and high-level morphology parameterization ℋ.

Cage-based Deformation (ℳ) Cage-based deformation (CBD) is a classic

geometry processing technique in computer graphics used to deform a high-resolution

mesh in a real-time and feature-preserving manner. With a coarse, closed cage, CBD

controls the enclosed space’s deformation by moving the cage vertices, or cage handles

around. Let 𝒞 denote the cage and 𝐻 denote the cage vertices (i.e., handles) of 𝒞

52

with 𝜓ℎ being the positions of the handles in 𝐻 in the rest configuration, and let 𝒮

be the space enclosed by cage 𝒞. For any arbitrary point 𝑠 ∈ 𝒮, CBD computes a

normalized barycentric coordinate 𝑤 ∈ R|𝐻| for the point, called deformation weights,

which satisfies:

𝑠 =

|𝐻|∑︁
𝑗

𝑤𝑗𝜓ℎ(𝑗) and
|𝐻|∑︁
𝑗

𝑤𝑗 = 1. (3.1)

These deformation weights then define a linear function to transfer the translation of

handle vertices to the movement of the associated point at run time through:

𝑠 =

|𝐻|∑︁
𝑗

𝑤𝑗𝜓ℎ(𝑗), (3.2)

where 𝜓ℎ is the new positions of the cage handles, and 𝑠 is the new position of 𝑠

under deformation. The deformation weights are precomputed for each particular

point in the space 𝒮 and kept constant at run time. CBD methods preserve various

features of the underlying, high-resolution mesh after deformation by carefully de-

signing the weight construction algorithms. Among various CBD methods, we choose

the mean value coordinates method [100] for its simplicity, stability, and capability

to be extended to deform articulated structures.

Inspired by its power, we apply cage-based deformation to parameterize the shape

of each robot component by the positions of a set of cage handles around the shape

mesh. In practice, the cage handles of each component can be defined by the users

based on their demands. For our purpose in this work, we construct a component

database for manipulator construction as shown in Figure 3-8. Each component is

represented by a mesh 𝑀 𝑖 and is associated with a predefined cage 𝒞𝑖 around it. We

then use the mean value coordinates method to precompute the deformation weight

matrix 𝐷𝑖 for each component mesh 𝑀 𝑖, and reuse those weights afterwards. Let 𝑉 𝑖

be the set of vertices of mesh 𝑀 𝑖 and 𝐻 𝑖 be the set of handles in cage 𝒞𝑖. Then 𝐷𝑖 is a

|𝑉 𝑖|-by-|𝐻 𝑖| matrix storing the deformation weight for each vertex on the mesh with

respect to each handle on the cage. The deformation weights precomputation by mean

value coordinates method is cheap, with a computational cost 𝒪(|𝑉 𝑖| · |𝐻 𝑖|). Such

53

precomputation and the run-time linear combination enable a fast mesh inference

given the new cage handle positions. Moreover, by controlling the high-resolution

mesh’s morphology through a coarse cage, we effectively reduce the morphology space

into a relatively low-dimensional space for natural deformed shapes. This provides us

a constrained yet expressive morphology design space. Furthermore, the dimension

of the deformation is still fully controllable. By adding more handle points, one can

deform the underlining mesh with more degrees of freedom, which makes it possible to

find a good trade-off between low-dimensional morphology parameter space and fine-

grained morphology deformation for different applications. Most importantly, this

linear combination gives us a fully differentiable function ℳ mapping from handle

positions 𝜓𝐻 to the positions of mesh vertices 𝜓𝑀 .

High-level Morphology Parameterization (ℋ) The CBD method described

above works for any single mesh with an arbitrary shape. However, parameterizing

an articulated robot poses extra challenges, since independently manipulating the

cage handles arbitrarily for different robot components will easily lead to a design

that is not connected and not manufacturable, as shown in Figure 3-9(c). In order to

handle proper articulation, we need to take two extra constraints into consideration:

the fabrication constraint and the connectivity constraint.

The fabrication constraint requires us to have different deformation constraints

for different components based on their manufacturing methods. For instance, the

finger body part can be manufactured using a 3D printer, so it can undergo free-

form deformation. In contrast, the joint component is usually composed of some

commercially-sourced products (e.g., screws, spring pins, etc.), which come in pre-

defined, standard sizes. Thus, components such as joints can only be expanded in

directions that maintain the geometric integrity of the model where it interfaces with

these standard-sized parts. We achieve this through further parameterizing the cage

with a few extra parameters to control the allowed deformation for each component.

Connectivity constraint is a more challenging problem for articulated designs,

requiring components to remain connected after deforming each underlying mesh. It is

54

Figure 3-9: Cage-based deformation for articulated robot morphology parame-
terization. A joint component and a body phalanx segment component are shown in the
figures. We parameterize the articulated components into lower-dimensional parameters 𝜓𝑐
by posing different deformation constraints on each component and merging their handle
points on the connection surface (highlighted in blue in (a) and (b)). We can then freely
explore the 𝜓𝑐 space to change the underlining articulated robot shape (d). The two compo-
nents come apart from each other and become to be not manufacturable if they are deformed
individually and arbitrarily by their associated cages (c).

non-trivial for CAD-based and mesh-based parameterizations to satisfy this constraint

since they are unable to track the connectedness of the interface surfaces between

components while varying the parameters. We instead leverage a special property of

mean value coordinates to resolve the connectivity issue. Let ⟨𝐻1, 𝐻2, 𝐻3⟩ be three

handles of a triangle on the cage mesh 𝒞, and 𝑠 be a point in the enclosed space.

With mean value coordinates, if 𝑠 and ⟨𝐻1, 𝐻2, 𝐻3⟩ are coplanar, and 𝑠 is inside the

triangle ⟨𝐻1, 𝐻2, 𝐻3⟩, then the deformation weights for 𝑠 have the following property:

𝜔𝑠𝑖 =

⎧⎨⎩ 0, if 𝑖 ̸∈ {𝐻1, 𝐻2, 𝐻3}

> 0, if 𝑖 ∈ {𝐻1, 𝐻2, 𝐻3}.
(3.3)

In other words, 𝑠 is fully controlled by the triangle that contains it.

With this property in mind, we construct the cage for each component so that, for

each component’s connection surface (i.e., interface to a neighboring component), we

55

always construct a cage that is coplanar with and fully contains the connection surface

as shown by the blue faces in Figure 3-9(a). We call the handles on the connection

surface plane connection handles. For two components that can be potentially con-

nected, their connection handles are constructed to be identical, which ensures that

the connection surfaces on two components share the same connection handle layout.

While connecting two components, we merge their overlapped connection handles

(Figure 3-9(b)). Such merge operation is equivalent to adding a constraint on the

handles on the connection surface so that their connection handles always have the

same motion. Due to the property of mean value coordinates in Eq. 3.3, this place-

ment of connection handles ensures that the connectivity constraint is automatically

satisfied.

By considering both the fabrication constraint and the connectivity constraint,

we parameterize the whole cage via a small number of high-level morphology cage

parameters 𝜓𝑐. This extra layer of parameters implicitly imposes constraints on all

cage handle positions to move around in a unified fashion. Specifically, 𝜓𝑐 consists

of: (a) the scale information of the cages (e.g., length of each cage, and width/height

of each connection cage, shown as red, blue, and green arrows in Figure 3-7); and

(b) any other auxiliary cage points (e.g., yellow vertical arrow in Figure 3-7). The

scale parameters are component-dependent and are based on their fabrication con-

straint. For example, the joint cage can only be scaled along the joint axis direction.

Through such cage parameterization, we can map the high-level cage parameters 𝜓𝑐

to the cage handle positions 𝜓ℎ by 𝜓ℎ = ℋ(𝜓ℎ), and effectively construct a high-level

morphology design space with only bound constraints. Note that this high-level cage

parameterization is not a fixed choice; the parameterization can be modified based

on the application and user’s demand.

3.2.3 Results

To demonstrate the quality of the morphology design space represented by our deformation-

based parameterization, we randomly sample the high-level morphology parameters

56

𝜓𝑐 for two manipulator topologies: single-finger and two-finger gripper configura-

tions (Figure 3-10). Our deformation-based parameterization method has a compact,

yet expressive and rich design space. As shown in Figure 3-10, using only 9 and 17

design parameters respectively for the two configurations, our method is able to gen-

erate various natural and fabricable morphology designs of articulated robots while

maintaining the connectivity of the articulated manipulators. Furthermore, the rep-

resented manipulator designs can be easily manufactured by 3d printing the parts

and assembling the parts together as shown in Figure 3-6 (Right).

Figure 3-10: Morphology design space. The initial morphology of the single finger
and the two-finger gripper designs are shown on the left. We randomly sample different
parameters for each configuration and show the deformed morphology on the right.

3.3 Hybrid Shape Representation for Robot Designs

By combining the graph grammar representation for robot shape topology and the de-

formation based representation for continuous robot morphology shape, we obtained

a complete two-stage hybrid representation for robot designs shown in Figure 3-11.

Take the manipulator as an example again. In the first stage, the graph grammar

is applied to define the topology structure of the manipulator. Once the manipulator

topology is determined, the representation process enters the second stage where the

cage-based deformation is utilized to define the continuous morphology shape of each

manipulator component.

57

Start Symbol Create Palm Create Fingers

(A) APPLY GRAMMAR RULES TO CREATE MANIPULATOR (B) DEFORMATION-BASED SHAPE EDITING

Figure 3-11: Proposed hybrid representation for manipulator shape designs: A
manipulator topology structure (discrete part) is formed from grammar representation (A),
and then the cage-based representation parameterize the continuous geometry shape of each
manipulator component (B).

Technically, a deformation cage is predefined for each primitive manipulator com-

ponent in our database shown in Figure 3-1 and Figure 3-8. To meet the connectivity

constraint described in Section 3.2.2 and Figure 3-9, the cages are constructed in

the way that any pair of connectable components share an identical cage face at

the connecting interface plane of the components. To make the hybrid representation

computationally seamless, during the grammar rule application, the geometry meshes

of the manipulator components, as well as their associated deformation cages, are au-

tomatically connected. The output articulated geometry meshes and the articulated

cages of the robot are served as input to the second stage for further continuous shape

changing.

To better illustrate our hybrid shape representation, we developed a design inter-

face (as shown in Fig. 3-11) for our manipulator designs, where the design interface

enables the users to explore the enormous manipulator designs spanned by our hy-

brid shape representation. The constructed designs from our interface can be easily

3d printed and assembled. To further increase the capability of the manipulators,

we equipped the manipulators with knitted tactile sensors [101]. The manufactured

manipulators can then be controlled to successfully complete various complex ma-

nipulation tasks such as picking up an egg, screwing a wing nut, pouring water, and

cutting paper with scissors as shown in Figure 3-12.

58

Figure 3-12: Manipulator designs (combined with tactile sensors) constructed
from our developed design interface. First row: The digital designs output from our
software with red surfaces representing where to put tactile sensor one. Second row: The
corresponding 3d printed manipulator designs. When equipped with knitted tactile sensors,
they are able to complete various complex manipulation tasks.

59

60

Chapter 4

Computational Robot Control Design

via Differentiable Physics

Being the brain of a robot, the robotic control strategy plays a crucial role in its task

performance. Given a task specification and a predefined robot hardware design,

control optimization aims to find the best control strategy for this robot to achieve

the optimal performance on this task. In the framework of computational robot

co-design, the control strategy serves as an evaluation of a robot shape so as to

provide feedback to the robot shape optimization. Therefore, finding the optimal

control strategy for a given robot shape is a prerequisite for an unbiased robot shape

evaluation, thus being the cornerstone for computational robot design.

Traditionally, researchers compute an open-loop state-action trajectory via nu-

merical trajectory optimization methods [49] and then apply classic feedback control

algorithms (e.g., PID, LQR) to control the robot to follow the optimized open-loop

trajectory. However, the design of the classical control architecture typically relies on

a deep understanding of the task-specific control strategy structure. More recently,

neural network policy has become an increasingly popular alternative for controller

representation due to the generalizability of the neural network architecture on the

complex control problems. Among various policy learning techniques, reinforcement

learning (RL) has been a particularly successful tool to learn policies for systems

61

ranging from robots (e.g., Cheetah, Shadow Hand) [50, 54] to complex animation

characters (e.g., muscle-actuated humanoids) [1] using only high-level reward defini-

tions. Despite this success, RL requires large amounts of training data to approxi-

mate the policy gradient, making learning expensive and time-consuming, especially

for high-dimensional problems (Figure 4-1). The recent development of differentiable

simulators opens up new possibilities for accelerating the learning and optimization of

control policies. A differentiable simulator may provide accurate first-order gradients

of the task performance reward with respect to the control inputs. In this chap-

ter, we argue that such additional gradient information offered by the differentiable

simulators allows the use of efficient gradient-based methods to optimize policies.

Figure 4-1: High-dimensional muscle-actuated humanoid control problem. Rein-
forcement learning approaches struggle on high-dimensional control problems due to the
high demand of stochastic sampled trajectories to estimate the policy gradients.

As evidences, we first introduce a novel differentiable tactile simulator that is able

to reliably and efficiently simulate the tactile feedback for articulated rigid robots

and provide the analytical first-order gradients of the simulation with respect to

the policy parameters. We demonstrate that for basic tactile-based manipulation

62

tasks, by using straightforward backpropagation through time technique (BPTT) to

compute policy gradients via the differentiable simulation, we are able to improve the

policy learning efficiency and obtain better-performing policy by large margin over the

state-of-the-art reinforcement learning approaches. While BPTT works in basic cases,

the numerical gradient based optimization typically poses problems (e.g., prone to

local minima) in more complicated task scenarios. In the second part of this chapter,

we present our novel policy learning algorithm SHAC (Short-Horizon Actor-Critic) to

significantly improve the policy learning efficiency on complex and high-dimensional

control tasks by combining differentiable simulation and reinforcement learning.

4.1 Differentiable Articulated Rigid Body Simula-

tion with Tactile Feedback

In this section, we argue that differentiable physics simulator can help us optimize the

robotic control policy. Simply applying a gradient descent optimizer (e.g., Adam) with

naive backpropagation through time gradient computation can significantly improve

the efficiency of the policy training and the performance of the trained policy. To

demonstrate that, we present a novel differentiable tactile simulator for articulated

rigid robots that can efficiently and reliably simulate both normal and shear tactile

force fields covering the entire contact surface. We develop a fast penalty-based

tactile model which can run at 1000 frames/s on a single core of Intel i7-9700 CPU.

Our tactile model can reasonably approximate the soft contact nature of soft tactile

sensor material such as the elastomer used in GelSlim [102], generate dense tactile

force fields (e.g., the dense marker array on GelSlim), and is compatible with arbitrary

tactile sensor spatial layout (i.e., flat plane, hemisphere, etc.). Most importantly, our

compact tactile formulation is differentiable, which allows the simulator to provide

fast analytical gradients for the entire dynamics chain.

63

B

𝑥

𝑦 𝑧

tactile
point 𝑖

E

Figure 4-2: Tactile Sensor Representation.

4.1.1 Tactile Sensor Representation

Each tactile point 𝑖 on a sensor pad is represented by a tuple ⟨B𝑖,E𝑖, 𝜉𝑖⟩ as shown in

Fig. 4-2. B𝑖 is the rigid body the tactile point is attached to, and E𝑖 ∈ SE(3) is the

position/orientation of the point in the local coordinate frame of the body, with the

𝑥𝑖 and 𝑦𝑖 axes in the shear-direction plane and the 𝑧𝑖 axis along the normal tactile

direction. (These axes are the same for all points for a planar sensor pad.) Finally,

𝜉𝑖 are the simulation parameters of the penalty-based tactile model, which will be

introduced later in §4.1.2. Our representation for tactile points is flexible, allowing us

to specify any number of points in arbitrary geometry layouts on a robot, and each

tactile sensor can have its individual configuration parameters.

4.1.2 Penalty-based Frictional Contact and Tactile Model

Analytic articulated dynamics simulation can be non-smooth and even discontinuous

when contact and joint limits are introduced, and special care must be taken to ensure

smooth dynamics. To model contact, we extend the differentiable penalty-based

contact model of Geilinger et al. [35], adapted to our reduced coordinate approach.

We make two critical changes to make their penalty-based approach work in our

manipulation settings.

First, we add support for frictional contact between two dynamic bodies, rather

than between a single dynamic body and a stationary surface (e.g., floor and walls).

To solve this, we use a signed distance field augmented with derivative information.

64

This distance field is attached to the contact body, which we assume is rigid. For

collision detection, we query the signed distance function attached to the collision

body, which gives us the following quantities:

𝑑, 𝑑 penetration distance and speed

n contact normal

v𝑡 tangential velocity

as well as the derivatives of these quantities with respect to the state of the robot q.

Second, we modify the contact damping force so that it is continuous. The original

formulation by Geilinger et al. [35] has a discontinuity, which we found can cause

convergence problems when there are collisions between two moving dynamic objects.

In their formulation, the contact damping force is proportional to the penetration

speed, 𝑑n, which means that there will be a sudden change in the magnitude of this

damping force at 𝑑 = 0, since 𝑑 is not necessarily zero when 𝑑 is zero. To fix this,

we instead make the damping force be proportional to both the penetration distance

and speed, 𝑑𝑑n, which ensures that the force remains continuous at the moment of

collision. If needed, we can also use a sigmoid function around 𝑑 to make the damping

force match the original formulation when 𝑑 becomes large.

Mathematically, our penalty-based frictional contact model is as follows:

𝑓𝑛 = (−𝑘𝑛 + 𝑘𝑑𝑑)min(𝑑, 0)n (4.1a)

𝑓𝑡 = −
v𝑡
‖v𝑡‖

min(𝑘𝑡‖v𝑡‖, 𝜇‖𝑓𝑐‖) (4.1b)

where 𝑓𝑛,𝑓𝑡 are the contact normal force and contact friction force respectively, and

𝑘𝑛, 𝑘𝑑, 𝑘𝑡, 𝜇 are contact stiffness, contact damping coefficient, friction stiffness and

coefficient of friction respectively.

We use the same penalty-based model in Eq. 4.1a to characterize the tactile force

on each tactile point. The coefficients 𝑘𝑛, 𝑘𝑑, 𝑘𝑡, 𝜇 are specified for each tactile point to

reflect spatially varying tactile material property and they together form the simula-

65

tion parameters 𝜉 of the tactile point: i.e., for the 𝑖𝑡ℎ tactile point, 𝜉𝑖 = {𝑘𝑖𝑛, 𝑘𝑖𝑑, 𝑘𝑖𝑡, 𝜇𝑖}.

After the frictional contact force is computed for each point as 𝑓 = 𝑓𝑛+𝑓𝑡, we trans-

form this force into the local coordinate frame of the tactile point to acquire the

desired shear and normal tactile force magnitudes:

𝑇𝑠𝑥 = 𝑓
⊤𝑥, 𝑇𝑠𝑦 = 𝑓

⊤𝑦, 𝑇𝑛 = 𝑓⊤𝑧, (4.2)

where 𝑥,𝑦, 𝑧 are the axes of frame E.

4.1.3 Forward Dynamics

Our simulator follows the reduced-coordinate rigid-body dynamics formulation of

RedMax [37] so that the equations of motion are expressed compactly using a minimal

set of degrees of freedom. The dynamics equations are implicitly integrated in time

with the BDF1 scheme [103] with step site ℎ step forward the simulation.

Mathematically, at each time step 𝑡, we take a state in reduced coordinate repre-

sentation (𝑞𝑡−1, �̇�𝑡−1) and get the state (𝑞𝑡, 𝑞𝑡) through solving the following equation

with Newton’s Method:

𝑞𝑡 = 𝑞𝑡−1 + ℎ�̇�𝑡

�̇�𝑡 = �̇�𝑡−1 + ℎ𝑞𝑡(𝑞𝑡, �̇�𝑡,𝑢𝑡)

⎫⎬⎭⇒ 𝑞𝑡 − 𝑞𝑡−1 − ℎ�̇�𝑡−1 − ℎ2𝑞𝑡(𝑞𝑡, �̇�𝑡,𝑢𝑡)⏟ ⏞
𝑔(𝑞𝑡−1,�̇�𝑡−1,𝑢𝑡,𝑞𝑡)

= 0 (4.3)

with

𝑞𝑡(𝑞𝑡, �̇�𝑡,𝑢𝑡) = M−1
𝑟 (𝑞𝑡)

[︂
f𝑟(𝑞𝑡, �̇�𝑡) + J⊤(𝑞𝑡)f𝑚(𝑞𝑡, �̇�𝑡) + f𝑄𝑉 𝑉 (𝑞𝑡, �̇�𝑡) + 𝑢𝑡

]︂
, (4.4)

where 𝑞 is the simulation state (i.e., joint angles), 𝑢 is the action (e.g., joint torque),

M𝑟 is the generalized mass matrix in reduced coordinates, J is the jacobian, f𝑟 is the

generalized force vector generated by joint-space effect (e.g., joint damping), f𝑚 is the

maximal wrench (e.g., gravity, Coriolis forces, contact forces, external forces, etc.),

f𝑄𝑉 𝑉 is the quadratic velocity vector. Whenever we need the velocity, we compute it

66

from the positions: �̇�𝑡 = (𝑞𝑡 − 𝑞𝑡−1)/ℎ. We will not go into details of Eq. ?? since

they are standard and can be found in any simulation tutorials.

We also developed forward dynamics which is implicitly integrated in time with

the BDF2 scheme, with SDIRK2 for the initial step, but we skip the derivation for it

in this thesis.

We analytically derive all the derivatives required by these implicit time integra-

tion schemes, and we solve the resulting non-linear equations using Newton’s Method

with line search.

4.1.4 Backward Gradient Computation

Since we use an implicit time integration scheme for forward dynamics, the core step

of gradients computation is to differentiate through the nonlinear equations of motion.

We start by formulating a finite-horizon tactile-based policy optimization problem:

minimize
𝜃

ℒ =
𝐻∑︁
𝑡=1

ℒ𝑡
(︀
𝑢𝑡, 𝑞𝑡, v𝑡(𝑞𝑡)

)︀
(4.5a)

s.t. 𝑔(𝑞𝑡−1, �̇�𝑡−1,𝑢𝑡, 𝑞𝑡) = 0 (Equations of Motion) (4.5b)

𝑢𝑡 = 𝜋𝜃
(︀
𝑞𝑡−1, ṽ𝑡−1(𝑞𝑡−1), 𝑇𝑡−1(𝑞𝑡−1, �̇�𝑡−1)

)︀
. (Policy Execution) (4.5c)

Here, 𝐻 is the task horizon, ℒ𝑡 is a step-wise task-dependent reward function, 𝑢 is

the action (e.g., joint torque), 𝑞 is the simulation state (i.e., joint angles), and v is

the derived auxiliary simulation variables (e.g., fingertip positions) which themselves

are a function of 𝑞. Eq. 4.5b describes the nonlinear equations of motion (see Eq. 4.3

and Eq. 4.4). Eq. 4.5c represents the inference of the control policy 𝜋𝜃 to obtain

the desired action given the partial observation of the simulation state 𝑞, partial

observation of the simulation computed variables ṽ, and the tactile force values 𝑇

from Eq. 4.2.

We embed our simulator as a differentiable layer into the PyTorch computation

graph and use reverse mode differentiation to backward differentiate through dy-

67

𝑔!(𝒒!"#, �̇�!"#, 𝒖!, 𝒒!)𝒖!

�̇�!"#

𝑞!"#

𝑞!

�̇�!

𝐯!

𝑇!

𝑔!$#(𝒒!, �̇�!, 𝒖!$#, 𝒒!$#)

𝜋% 𝒖!"#

𝑞!$#

�̇�!$#

𝐯!$#

𝑇!$#

𝜋% 𝒖!"$

𝑔!$&(𝒒!$#, �̇�!$#, 𝒖!$&, 𝒒!$&) 𝑞!$&

ℒ!

Figure 4-3: Computation graph of the simulation with BDF1 time stepping around
time step 𝑡. We illustrate the computation graph for gradient derivations of 𝜕ℒ/𝜕𝑞𝑡 and
𝜕ℒ/𝜕𝑢𝑡. The boxes (e.g., 𝑔, 𝜋𝜃) represent functions, and the circles represent data/values.
The grey circles are the data unrelated to the gradient derivation at step 𝑡. The red circles
are the data (·) that we already have the gradient 𝜕ℒ/𝜕(·) for when we arrive at step 𝑡 during
backward propagation. The blue circles are the data related to the gradients computation
at step 𝑡. The green arrows are the data flows completed by PyTorch, and the black arrows
are the data flows completed by our simulator. The dashed arrows are the data flows whose
gradients computations are not handled by simulator or are not related to the derivation at
the current step. The orange shaded part is our simulation layer of step 𝑡 in the PyTorch
computation graph.

namics time integration. To better illustrate the gradients derivation, we draw the

computation graph in Fig. 4-3. The computation steps such as loss/reward computa-

tion and policy inference (i.e., green arrows in the figure) are completed by PyTorch,

and the dynamics-related computation (i.e., black arrows) are processed by our sim-

ulator in C++. Each step of our simulation can be regarded as a function (shown in

the orange shaded box in Fig. 4-3) in the computation graph:

(𝑞𝑡, v𝑡, 𝑇𝑡) = Sim(𝑞𝑡−1, �̇�𝑡−1,𝑢𝑡). (4.6)

We compute the gradients 𝑑ℒ/𝑑𝜃 = (𝑑ℒ/𝑑𝑢𝑡)(𝑑𝑢𝑡/𝑑𝜃) for policy optimization.

The first gradient, 𝑑ℒ/𝑑𝑢𝑡, which includes the tactile derivatives, is derived analyti-

cally. The second gradient, 𝑑𝑢𝑡/𝑑𝜃, is computed by PyTorch’s auto-differentiation.

Now we show how to compute 𝑑ℒ/𝑑𝑢𝑡. We compute 𝑑ℒ/𝑑𝑢𝑡 in reverse order,

starting from the last time step. At the time step 𝑡, we assume that we have the

following gradients computed: 𝜕ℒ/𝜕v𝑡,𝑡+1,..., 𝜕ℒ/𝜕𝑇𝑡,𝑡+1,..., 𝜕ℒ/𝜕𝑞𝑡+1,𝑡+2,... (red circles

in Fig. 4-3). To complete the gradients backpropagation at step 𝑡, we need to compute

68

two derivatives 𝜕ℒ/𝜕𝑞𝑡 and 𝑑ℒ/𝑑𝑢𝑡:

𝜕ℒ
𝜕𝑞𝑡

=
𝜕ℒ𝑡
𝜕𝑞𝑡

+
𝜕ℒ
𝜕𝑞𝑡+1

(︂
𝜕𝑞𝑡+1

𝜕𝑞𝑡
+
𝜕𝑞𝑡+1

𝜕�̇�𝑡

𝜕�̇�𝑡
𝜕𝑞𝑡

)︂
+

(︂
𝜕𝐿

𝜕𝑇𝑡+1

𝜕𝑇𝑡+1

𝜕�̇�𝑡+1

+
𝜕𝐿

𝜕𝑞𝑡+2

𝜕𝑞𝑡+2

𝜕�̇�𝑡+1

)︂
𝜕�̇�𝑡+1

𝜕𝑞𝑡
,

(4.7a)

𝑑ℒ
𝑑𝑢𝑡

=
𝜕ℒ𝑡
𝜕𝑢𝑡

+

(︂
𝜕ℒ
𝜕𝑞𝑡

+
𝜕ℒ
𝜕v𝑡

𝜕v𝑡
𝜕𝑞𝑡

+
𝜕ℒ
𝜕𝑇𝑡

(︀𝜕𝑇𝑡
𝜕𝑞𝑡

+
𝜕𝑇𝑡
𝜕�̇�𝑡

𝜕�̇�𝑡
𝜕𝑞𝑡

)︀)︂ 𝜕𝑞𝑡
𝜕𝑢𝑡

. (4.7b)

The derivatives 𝜕v𝑡/𝜕𝑞𝑡 can be computed from the functions v(𝑞) easily. The

derivatives 𝜕𝑇𝑡/𝜕𝑞𝑡, 𝜕𝑇𝑡/𝜕�̇�𝑡 and 𝜕𝑇𝑡+1/𝜕�̇�𝑡+1 can be derived from the tactile force

formulation 4.2. The derivatives of 𝜕�̇�𝑡/𝜕𝑞𝑡, 𝜕�̇�𝑡+1/𝜕𝑞𝑡 and 𝜕�̇�𝑡+2/𝜕𝑞𝑡+1 can be

computed from the BDF1 equations (Eq. 4.3).

𝜕�̇�𝑡
𝜕𝑞𝑡

=
1

ℎ
I (4.8a)

𝜕�̇�𝑡+1

𝜕𝑞𝑡
= −1

ℎ
I. (4.8b)

To computing the remaining derivatives 𝜕𝑞𝑡+1/𝜕𝑞𝑡, 𝜕𝑞𝑡+1/𝜕�̇�𝑡, 𝜕𝑞𝑡+2/𝜕�̇�𝑡+1, and

𝜕𝑞𝑡/𝜕𝑢𝑡 we must differentiate through the implicit function 𝑔(𝑞𝑡−1, �̇�𝑡−1,𝑢𝑡, 𝑞𝑡) = 0.

We show the derivation for 𝜕𝑞𝑡/𝜕𝑢𝑡 and how to compute Eq. 4.7b efficiently through

adjoint method; the same approach can be used for computing others and Eq. 4.7a.

We apply implicit function theorem on 𝑔(𝑞𝑡−1, �̇�𝑡−1,𝑢𝑡, 𝑞𝑡) = 0,

d𝑔
d𝑢𝑡
≡ 0⇒ 𝜕𝑔

𝜕𝑞𝑡

𝜕𝑞𝑡
𝜕𝑢𝑡

+
𝜕𝑔

𝜕𝑢𝑡
≡ 0⇒ 𝜕𝑞𝑡

𝜕𝑢𝑡
= −

(︂
𝜕𝑔

𝜕𝑞𝑡

)︂−1
𝜕𝑔

𝜕𝑢𝑡
. (4.9)

Plugging this into Eq. (4.7b):

𝜕ℒ
𝜕𝑢𝑡

=
𝜕ℒ𝑡
𝜕𝑢𝑡
−

(︂
𝜕ℒ
𝜕𝑞𝑡

+
𝜕ℒ
𝜕v𝑡

𝜕v𝑡
𝜕𝑞𝑡

+
𝜕ℒ
𝜕𝑇𝑡

(︀𝜕𝑇𝑡
𝜕𝑞𝑡

+
𝜕𝑇𝑡
𝜕�̇�𝑡

𝜕�̇�𝑡
𝜕𝑞𝑡

)︀)︂
⏟ ⏞

𝑏

(︂
𝜕𝑔

𝜕𝑞𝑡⏟ ⏞
𝐴

)︂−1
𝜕𝑔

𝜕𝑢𝑡
. (4.10)

To efficiently calculate Eq. (4.10), we apply adjoint method to first solve 𝑐 from

69

Goal Pose
Random

External Force

(a) (b)

Figure 4-4: Tactile-based box pushing task. (a) The goal of the gripper policy is to
use its tactile feedback to push a box to a randomized target position/orientation. A time-
varying external force is randomly applied on the box during the task. (b) the training
curve for each policy variation is averaged from the five independent runs with different
random seeds.

the linear equation 𝐴⊤𝑐 = 𝑏⊤ and then compute Eq. (4.7b) as

𝜕ℒ
𝜕𝑢𝑡

=
𝜕ℒ𝑡
𝜕𝑢𝑡
− 𝑐⊤ 𝜕𝑔

𝜕𝑢𝑡
. (4.11)

To further speed up the backward pass of 𝑑ℒ
𝑑𝑢𝑡

, during the forward pass, we store

some auxiliary variables, such as the matrix factors of the final Newton iteration

of each time step and the partial derivatives of the loss function. Then during the

backward pass, we compute the final derivative with a block banded triangular solver

using these auxiliary variables stored during the forward pass without the need to

re-compute them.

With the gradient 𝑑ℒ
𝑑𝜃

computed, we can simply apply any gradient-based numer-

ical optimizer such as Adam [104] to optimize the policy 𝜋𝜃 for the given task.

4.1.5 Experiments

We design a box pushing task similar to [105] to demonstrate how we can lever-

age the provided analytical gradients from our differentiable simulator to help learn

70

Figure 4-5: Visualization of the tactile sensor layouts on a WSG-50 Gripper.

Pos. Error Ori. Error
GD-Privileged 0.037± 0.002m 0.043± 0.003∘

GD-Reduced 0.126± 0.009m 0.255± 0.021∘

PPO-Tactile 0.123± 0.034m 0.241± 0.123∘

GD-Tactile 0.058± 0.0030.058± 0.0030.058± 0.003m 0.074± 0.0200.074± 0.0200.074± 0.020∘

Table 4.1: Metrics comparison on box pushing task. We compute the final position/
orientation errors of the best policy in each run and average the metrics from five runs
for each policy variation. GD-Privileged gives a reference of the best possible metrics, and
without the privileged state information of the box, our GD-Tactile achieves much better
position error and rotation error than other two variations.

tactile-based control policies better and faster.

Task Specification As shown in Fig. 4-4(a), the task here is to use a WSG-50

parallel-jaw gripper (with only one finger kept) to push the box to a randomly sampled

goal location and orientation. The gripper has a tactile pad installed at fingertip with

a tactile marker resolution of 13× 10 as shown in Figure 4-5. The ranges of the goal

location coordinates are 𝑥𝑔 ∈ [0.15 m, 0.25 m], 𝑦𝑔 ∈ [−0.2 m, 0.2 m]. The range of the

goal orientation is 𝛼𝑔 ∈ [𝑦𝑔𝜋 − 𝜋/16, 𝑦𝑔𝜋 + 𝜋/16]. The initial position of the box is

randomly disturbed ([−0.02 m, 0.02 m] along the direction of the finger surface). A

random external force 𝑓ext (with 𝑓𝑥ext, 𝑓
𝑦
ext ∈ [−1, 1] N) is applied continually on the

box, which changes every 0.25 s. The control frequency is 40 Hz.

71

Reward Function The reward function is defined at each control step as

ℛ𝑡 = ℛpos +ℛrot +ℛtouch +ℛu (4.12a)

ℛpos = −0.01
(︀‖𝑝𝑥𝑦 − [𝑥𝑔, 𝑦𝑔]‖

𝜎pos

)︀2
, 𝜎pos = 0.01 m (4.12b)

ℛrot = −0.1
(︀𝛼− 𝛼𝑔
𝜎rot

)︀2
, 𝜎rot =

𝜋

36
rad (4.12c)

ℛtouch = −
(︀‖𝑝finger − 𝑝box‖

𝜎touch

)︀2
, 𝜎touch = 0.02 m (4.12d)

ℛu = −0.1‖𝑢‖2, (4.12e)

where 𝑝𝑥𝑦 is the position of the box in the 𝑥-𝑦 plane, 𝛼 is the rotation angle of the

box around the vertical axis (𝑧 axis), 𝑝finger is the position of the center of the gripper

finger, 𝑝box is the position of the center of the box surface closest to the finger, and 𝑢

is the policy action (normalized to [−1, 1]).

Comparing Policy Learning Algorithms We train the control policies through

four different combinations of learning algorithms and observation spaces.

1) GD-Privileged: This variation uses the gradient-based optimizer Adam by utiliz-

ing the analytical policy gradients computed from our differentiable simulation.

The policy observation contains all the privileged state information of the grip-

per, the box, and the goal. This policy provides an upper-bound performance

reference.

2) GD-Reduced: Similar to GD-Privileged, except that the observation space only

contains the state information that can be acquired on a real system such as

the gripper state and the goal.

3) GD-Tactile: Other than the state information used in GD-Reduced, we also

include the tactile sensor readings in the policy input. The policy is trained

using the analytical policy gradients.

4) PPO-Tactile: Similar to GD-Tactile, but the policy is trained by PPO.

All the policies are trained to maximize the same reward function. We run each

variation five times with different random seeds, and plot their training curves av-

72

eraged from five runs in Fig. 4-4(b). We also randomly sample 300 goal poses and

measure the final position and orientation errors between the box and the goal pose

of the best policy from each run, and report the average metrics across five seeds in

Table 4.1. The results show that when neither state information of the box or tactile

information is available (i.e., GD-Reduced), the policy cannot reliably push the box

to the target location since the gripper has no any clue when the box goes outside

of the control of the gripper due to the random initial box position perturbation

and the random external forces. With tactile information feedback (i.e., PPO-Tactile

and GD-Tactile), the gripper has this tactile information to keep the gripper touch-

ing the box and allowing it to push the box to the goal effectively. However, the

high dimensional tactile observation space results in higher computational cost with

PPO which relies on stochastic samples to estimate the policy gradients. In contrast,

with the help of our differentiable tactile simulation, GD-Tactile makes use of the

analytical policy gradients and leads to faster policy learning and better policy per-

formance. This experiment demonstrates the necessity of using the tactile feedback

in the pushing task, and shows that with our differentiable simulation, a simple gradi-

ent descent optimizer with backpropagation through time gradient computation can

significantly improve the efficiency of the policy training and the performance of the

trained policy.

4.1.6 Summary

We presented an efficient differentiable simulator that can handle dense tactile force

fields with both normal and shear components. Our contact and tactile model are

based on penalty-based approach. We demonstrate that by simply applying backprop-

agation through time to compute the policy gradient, the first-order gradient-based

optimizer can achieve significantly faster convergence rate and find better policy than

the model-free reinforcement learning approaches on a tactile-based box pushing task.

However, how to effectively leverage analytical gradients for more complex tactile-

based tasks is still an open question due to the well-known local minima problems of

73

gradient-based optimization and it require more advanced policy learning algorithms

such as the one we will describe in the next section.

4.2 Accelerated Policy Learning with Parallel Differ-

entiable Simulation

4.2.1 Motivation

Learning control policies is an important task in robotics and computer animation.

Among various policy learning techniques, reinforcement learning (RL) has been a

particularly successful tool to learn policies for systems ranging from robots (e.g.,

Cheetah, Shadow Hand) [50, 54] to complex animation characters (e.g., muscle-

actuated humanoids) [1] using only high-level reward definitions. Despite this success,

RL requires large amounts of training data to approximate the policy gradient, mak-

ing learning expensive and time-consuming, especially for high-dimensional problems

(Figure 4-6, Right). The recent development of differentiable simulators opens up new

possibilities for accelerating the learning and optimization of control policies. A differ-

entiable simulator may provide accurate first-order gradients of the task performance

reward with respect to the control inputs. As shown in the previous section, such

additional information potentially allows the use of efficient gradient-based methods

to optimize policies. As recently [106] show, however, despite the availability of dif-

ferentiable simulators, it has not yet been convincingly demonstrated that they can

effectively accelerate policy learning in complex high-dimensional and contact-rich

tasks, such as some traditional RL benchmarks. There are several reasons for this:

1) Local minima may cause gradient-based optimization methods to stall.

2) Numerical gradients may vanish/explode along the backward path for long tra-

jectories.

3) Discontinuous optimization landscapes can occur during policy failures/early

termination.

74

Figure 4-6: Environments: Here are some of our environments for evaluation. Three clas-
sical physical control RL benchmarks of increasing difficulty, from left: Cartpole Swing Up
+ Balance, Ant, and Humanoid. In addition, we train the policy for the high-dimensional
muscle-tendon driven Humanoid MTU model from [1]. Whereas model-free reinforcement
learning (PPO, SAC) needs many samples for such high-dimensional control problems,
SHAC scales efficiently through the use of analytic gradients from differentiable simula-
tion with a parallelized implementation, both in sample complexity and wall-clock time.

Because of these challenges, previous work has been limited to the optimization

of open-loop control policies with short task horizons [40, 42], or the optimization of

policies for relatively simple tasks (e.g., contact-free environments) [71, 38]. In this

work, we explore the question: Can differentiable simulation accelerate policy learning

in tasks with continuous closed-loop control and complex contact-rich dynamics?

Inspired by actor-critic RL algorithms [107], we propose an approach to effectively

leverage differentiable simulators for policy learning. We alleviate the problem of local

minima by using a critic network that acts as a smooth surrogate to approximate the

underlying noisy reward landscape resulted by complex dynamics and occurrences

of policy failures (Figure 4-7). In addition, we use a truncated learning window

to shorten the backpropagation path to address problems with vanishing/exploding

gradients, reduce memory requirements, and improve learning efficiency.

A further challenge with differentiable simulators is that the backward pass typi-

cally introduces some computational overhead compared to optimized forward-dynamics

physics engines. To ensure meaningful comparisons, we must ensure that our learn-

ing method not only improves sample-efficiency, but also wall-clock time. GPU-based

physics simulation has shown remarkable effectiveness for accelerating model-free RL

algorithms [108, 109], given this, we develop a GPU-based differentiable simulator

that can compute gradients of standard robotics models over many environments in

parallel. Our PyTorch-based simulator allows us to connect high-quality simulation

75

with existing algorithms and tools.

To the best of our knowledge, this work is the first to provide a fair and com-

prehensive comparison between gradient-based and RL-based policy learning meth-

ods, where fairness is defined as (a) benchmarking on both RL-favored tasks and

differentiable-simulation-favored tasks, (b) testing complex tasks (i.e., contact-rich

tasks with long task horizons), (c) comparing to the state-of-the-art implementation

of RL algorithms, and (d) comparing both sample efficiency and wall-clock time. We

evaluate our method on standard RL benchmark tasks, as well as a high-dimensional

character control task with over 150 actuated degrees of freedom (some of tasks are

shown in fig:envs). We refer to our method as Short-Horizon Actor-Critic (SHAC),

and our experiments show that SHAC outperforms state-of-the-art policy learning

methods in both sample-efficiency and wall-clock time.

4.2.2 GPU-Based Differentiable Dynamics Simulation

We introduced our differentiable rigid body simulator in Section 4.1. Here we intro-

duce our another differentiable rigid body simulator which parallelizes the simulation

with GPU. Briefly recap the simulation dynamics here. Conceptually, we treat the

simulator as an abstract function s𝑡+1 = ℱ(s𝑡, a𝑡) that takes a state s from a time

𝑡→ 𝑡+1, where a is a vector of actuation controls applied during that time-step (may

represent joint torques, or muscle contraction signals depending on the problem).

To model the dynamics function ℱ , our physics simulator solves the forward dy-

namics equations

Mq̈ = J𝑇 f(q, q̇) + c(q, q̇) + 𝜏 (q, q̇, a), (4.13)

where q, q̇, q̈ are joint coordinates, velocities and accelerations respectively, f repre-

sents external forces, c includes Coriolis forces, and 𝜏 represents joint-space actua-

tion. The mass matrix M, and Jacobian J, are computed in parallel using one thread

per-environment. We use the composite rigid body algorithm (CRBA) to compute

76

articulation dynamics which allows us to cache the resulting matrix factorization at

each step (obtained using parallel Cholesky decomposition) for re-use in the back-

wards pass. After determining joint accelerations q̈ we perform a semi-implicit Euler

integration step to obtain the updated system state s = (q, q̇).

We use the same penalty-based frictional contact model as described in Sec-

tion 4.1.2. To model joint limits, a similar continuous penalty-based force is applied:

𝑓limit =

⎧⎨⎩ 𝑘limit(𝑞lower − 𝑞), 𝑞 < 𝑞lower

𝑘limit(𝑞upper − 𝑞), 𝑞 > 𝑞upper

(4.14)

where 𝑘limit is the joint limit stiffness, and [𝑞lower, 𝑞upper] is the bound for the joint

angle 𝑞.

For simple environments we actuate our agents using torque-based control, in

which the policy outputs 𝜏 at each time-step. For the more complex case of muscle-

actuation, each muscle consists of a list of attachment sites that may pass through

multiple rigid bodies, and the policy outputs activation values for each muscle. A mus-

cle activation signal generates purely contractive forces (mimicking biological muscle)

with maximum force prescribed in advance [1].

We build our differentiable simulator on PyTorch [110] and use a source-code

transformation approach to generate forward and backward versions of our simulation

kernels [111, 41]. We parallelize the simulator over environments using distributed

GPU kernels for the dense matrix routines and evaluation of contact and joint forces.

4.2.3 Optimization Landscape Analysis

Although smoothed physical models improve the local optimization landscape, the

combination of forward dynamics and the neural network control policy renders each

simulation step non-linear and non-convex. This problem is exacerbated when thou-

sands of simulation steps are concatenated and the actions in each step are coupled

by a feedback control policy. The complexity of the resulting reward landscape leads

simple gradient-based methods to easily become trapped in local optima.

77

-1 1
k

ob
je

ct
iv

e
lo

ss

BPTT

-1 1
k

SHAC

Figure 4-7: Landscape comparison between BPTT and SHAC. We select one single
weight from a policy and change its value by Δ𝜃𝑘 ∈ [−1, 1] to plot the task loss landscapes
of BPTT and SHAC w.r.t. one policy parameter. The task horizon is 𝐻 = 1000 for BPTT,
and the short horizon length for our method is ℎ = 32. As we can see, longer optimization
horizons lead to noisy loss landscape that are difficult to optimize, and the landscape of our
method can be regarded as a smooth approximation of the real landscape.

Furthermore, to handle agent failure (e.g., a humanoid falling down) and improve

sample efficiency, early termination techniques are widely used in policy learning

algorithms [112]. Although these have proven effective for model-free algorithms,

early termination introduces additional discontinuities to the optimization problem,

which makes methods based on analytical gradients less successful.

To analyze this problem, inspired by previous work [113], we plot the optimization

landscape in Figure 4-7 (Left) for a humanoid locomotion problem with a 1000-step

task horizon. Specifically, we take a trained policy, perturb the value of a single pa-

rameter 𝜃𝑘 in the neural network, and evaluate performance for the policy variations.

As shown in the figure, with long task horizons and early termination, the landscape

of the humanoid problem is highly non-convex and discontinuous. In addition, the

norm of the gradient 𝜕ℒ
𝜕𝜃

computed from backpropagation can be larger than 106.

Thus, due to the noisy landscape and exploded gradient problems of BPTT method,

most previous works based on differentiable simulation focus on short-horizon tasks

with contact-free dynamics and no early termination, where pure gradient-based op-

timization (e.g., BPTT) can work successfully.

78

Learning episode of horizon length 𝐻

𝜋!

ℱ

𝑎!

𝑆" 𝑆#

𝑎" 𝑎#

𝑆$

𝑎$

𝑆%

𝑎%

……

𝑎"#$

𝑆!"#

𝑎"#%

𝑆!"$

𝑎"#&

𝑆'𝑆!"%𝑆! 𝑆!"&

𝑎"#'

……

𝑉(𝑠!)

Learning episode of short horizon length ℎ

𝜋!

ℱ

𝑎!

𝑆"

𝑎"

𝑆!

𝑎(#'

𝑆(#'

Envs
…… ……

𝑆$'"&

𝑎$'"&

𝑉(𝑠"!)

Learning episode of short horizon length ℎ

Reset
𝑆)

𝑎)

𝑆)* 𝑆)*

𝑎)*

Figure 4-8: Computation graph of BPTT and SHAC. Top: BPTT propagates gra-
dients through an entire trajectory in each learning episode. This leads to noisy loss land-
scapes, increased memory, and numerical gradient problems. Bottom: SHAC subdivides
the trajectory into short optimization windows across learning episodes. This results in a
smoother surrogate reward function and reduces memory requirements, enabling parallel
sampling of many trajectories. The environment is reset upon early termination happens.
Solid arrows denote gradient-preserving computations; dashed arrows denote locations at
which the gradients are cut off.

4.2.4 Short-Horizon Actor-Critic (SHAC)

To resolve the aforementioned issues of gradient-based policy learning, we propose the

Short-Horizon Actor-Critic method (SHAC). Our method concurrently learns a policy

network (i.e., actor) 𝜋𝜃 and a value network (i.e., critic) 𝑉𝜑 during task execution,

and splits the entire task horizon into several sub-windows of smaller horizons across

learning episodes (Figure 4-8). A multi-step reward in the sub-window plus a terminal

value estimation from the learned critic is used to improve the policy network. The

differentiable simulation is used to backpropagate the gradient through the states

and actions inside the sub-windows to provide an accurate policy gradient. The

trajectory rollouts are then collected and used to learn the critic network in each

learning episode.

Specifically, we model each of our control problems as a finite-horizon Markov

decision process (MDP) with state space 𝒮, action space 𝒜, reward function ℛ,

transition function ℱ , initial state distribution 𝒟s0 , and task horizon 𝐻. At each

step, an action vector a𝑡 is computed by a feedback policy 𝜋𝜃(a𝑡|s𝑡). While our

79

method does not constrain the policy to be deterministic or stochastic, we use the

stochastic policy in our experiments to facilitate extra exploration. Specifically, the

action is sampled by a𝑡 ∼ 𝒩 (𝜇𝜃(s𝑡), 𝜎𝜃(s𝑡)). The transition function ℱ is modeled by

our differentiable simulation (Section 4.2.2). A single-step reward 𝑟𝑡 = ℛ(s𝑡, a𝑡) is

received at each step. The goal of the problem is to find the policy parameters 𝜃 that

maximize the expected finite-horizon reward.

Our method works in an on-policy mode as follows. In each learning episode,

the algorithm samples 𝑁 trajectories {𝜏𝑖} of short horizon ℎ ≪ 𝐻 in parallel from

the simulation, which continue from the end states of the trajectories in the previous

learning episode. The following policy loss is then computed:

ℒ𝜃 = −
1

𝑁ℎ

𝑁∑︁
𝑖=1

[︂(︁ 𝑡0+ℎ−1∑︁
𝑡=𝑡0

𝛾𝑡−𝑡0ℛ(s𝑖𝑡, a𝑖𝑡)
)︁
+ 𝛾ℎ𝑉𝜑(s

𝑖
𝑡0+ℎ

)

]︂
, (4.15)

where s𝑖𝑡 and a𝑖𝑡 are the state and action at step 𝑡 of the 𝑖-th trajectory, and 𝛾 < 1 is a

discount factor introduced to stabilize the training. Special handling such as resetting

the discount ratio is conducted when task termination happens during trajectory

sampling.

To compute the gradient of the policy loss 𝜕ℒ𝜃

𝜕𝜃
, we treat the simulator as a dif-

ferentiable layer in the PyTorch computation graph and perform regular backprop-

agation. We apply reparameterization sampling method to compute the gradient

for the stochastic policy. Our algorithm then updates the policy using one step of

Adam [104]. The differentiable simulator plays a critical role here, as it allows us to

fully utilize the underlying dynamics linking states and actions, as well as optimize

the policy, producing better short-horizon reward inside the trajectory and a more

promising terminal state for the sake of long-term performance. We note that the

gradients are cut off between learning episodes to prevent unstable gradients during

long-horizon backpropagation.

After we update the policy 𝜋𝜃, we use the trajectories collected in the current

learning episode to train the value function 𝑉𝜑. The value function network is trained

80

by the following MSE loss:

ℒ𝜑 = E
s∈{𝜏𝑖}

[︂
‖𝑉𝜑(s)− 𝑉 (s)‖2

]︂
, (4.16)

where 𝑉 (s) is the estimated value of state s, and is computed from the sampled short-

horizon trajectories through a td-𝜆 formulation [114], which computes the estimated

value by exponentially averaging different 𝑘-step returns to balance the variance and

bias of the estimation:

𝑉 (s𝑡) = (1− 𝜆)
(︂ ℎ−𝑡−1∑︁

𝑘=1

𝜆𝑘−1𝐺𝑘
𝑡

)︂
+ 𝜆ℎ−𝑡−1𝐺ℎ−𝑡

𝑡 , (4.17)

where 𝐺𝑘
𝑡 =

(︁∑︀𝑘−1
𝑙=0 𝛾

𝑙𝑟𝑡+𝑙

)︁
+ 𝛾𝑘𝑉𝜑(s𝑡+𝑘) is the 𝑘-step return from time 𝑡. The esti-

mated value 𝑉 (s) is treated as constant during critic training, as in regular actor-critic

RL methods. In other words, the gradient of Eq. 4.16 does not flow through the states

and actions in Eq. 4.17.

We further utilize the target value function technique [115] to stabilize the training

by smoothly transitioning from the previous value function to the newly fitted one,

and use the target value function 𝑉𝜑′ to compute the policy loss (Eq. 4.15) and to

estimate state values (Eq. 4.17). In addition, we apply observation normalization as is

common in RL algorithms, which normalizes the state observation by a running mean

and standard deviation calculated from the state observations in previous learning

episodes. The pseudo code of our method is provided in Algorithm 1.

Our actor-critic formulation has several advantages that enable it to leverage sim-

ulation gradients effectively and efficiently. First, the terminal value function absorbs

noisy landscape over long dynamics horizons and discontinuity introduced by early

termination into a smooth function, as shown in Figure 4-7 (Right). This smooth sur-

rogate formulation helps reduce the number of local spikes and alleviates the problem

of easily getting stuck in local optima. Second, the short-horizon episodes avoid nu-

merical problems when backpropagating the gradient through deeply nested update

chains. Finally, the use of short-horizon episodes allows us to update the actor more

81

Algorithm 1: SHAC (Short-Horizon Actor-Critic) Policy Learning
Initialize policy 𝜋𝜃, value function 𝑉𝜑, and target value function 𝑉𝜑′ ← 𝑉𝜑.
for 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑒𝑝𝑖𝑠𝑜𝑑𝑒← 1, 2, ...,𝑀 do

Sample 𝑁 short-horizon trajectories of length ℎ by the parallel differentiable
simulation from the end states of the previous trajectories.
Compute the policy loss ℒ𝜃 defined in Eq. 4.15 from the sampled trajectories
and 𝑉𝜑′ .
Compute the analytical gradient 𝜕ℒ𝜃

𝜕𝜃
and update the policy 𝜋𝜃 one step with

Adam.
Compute estimated values for all the states in sampled trajectories with Eq.
4.17.
Fit the value function 𝑉𝜑 using the critic loss defined in Eq. 4.16.
Update target value function: 𝑉𝜑′ ← 𝛼𝑉𝜑′ + (1− 𝛼)𝑉𝜑.

end for

frequently, which, when combined with parallel differentiable simulation, results in a

significant speed up of training time.

4.2.5 Experiments

We design experiments to investigate five questions: (1) How does our method com-

pare to the state-of-the-art RL algorithms on classical RL control tasks, in terms

of both sample efficiency and wall-clock time efficiency? (2) How does our method

compare to the previous differentiable simulation-based policy learning methods? (3)

Does our method scale to high-dimensional problems? (4) Is the terminal critic nec-

essary? (5) How important is the choice of short horizon length ℎ for our method?

4.2.5.1 Experiment Setup

To ensure a fair comparison for wall-clock time performance, we run all algorithms

on the same GPU model (TITAN X) and CPU model (Intel Xeon(R) E5-2620).

Furthermore, we conduct extensive hyperparameter searches for all algorithms and

report the performance of the best hyperparameters settings for each problem. For

our method, we run for 500 learning episodes for CartPole Swing Up problem and

for 2000 learning episodes for other five problems. For baseline algorithms, we run

82

each of them for sufficiently long time in order to acquire the policies with the highest

rewards. We run each algorithm with five individual random seeds, and report the

average performance.

4.2.5.2 Benchmark Control Problems

For comprehensive evaluations, we select six broad control tasks, including five clas-

sical RL tasks across different complexity levels (CartPole Swing Up, HalfCheetah,

Hopper, Ant and Humanoid) as well as one high-dimensional control task with a

large action space (Humanoid MTU). All tasks have stochastic initial states to fur-

ther improve the robustness of the learned policy. We introduce four representative

tasks in Figure 4-6 in this thesis.

CartPole Swing Up: CartPole Swing Up is one of the simplest classical RL

control tasks. In this problem, the control policy has to swing up the pole to the

upward direction and keeps it in that direction as long as possible. We have 5-

dimensional observation space as shown in Table 4.2 and 1-dimensional action to

control the torque applied to the prismatic joint of the cart base.

Table 4.2: Observation vector of CartPole Swing Up problem

Observation Degrees of Freedom

position of cart base: 𝑥 1

velocity of the cart base: �̇� 1

sine and cosine of the pole angle: sin(𝜃), cos(𝜃) 2

angular velocity of pole: 𝜃 1

The single-step reward is defined as:

ℛ = −𝜃2 − 0.1𝜃2 − 0.05𝑥2 − 0.1�̇�2 (4.18)

83

The initial state is randomly sampled. The task horizon is 240 steps and there is

no early termination in this environment so that it can be used to test the algorithms

which are not compatible with early termination strategy.

Ant: In this problem, a four-legged ant is controlled to run forward as fast as

possible. We have 37-dimensional observation space as shown in Table 4.3 and 8-

dimensional action to control the torque applied to each joint.

Table 4.3: Observation vector of Ant problem

Observation Degrees of Freedom

height of the base: ℎ 1

rotation quaternion of the base 4

linear velocity of the base: 𝑣 3

angular velocity of the base 3

joint angles 8

joint angle velocities 8

up and heading vectors projections 2

actions in last time step 8

The single-step reward is defined as:

ℛ = ℛ𝑣 + 0.1ℛ𝑢𝑝 +ℛℎ𝑒𝑎𝑑𝑖𝑛𝑔 +ℛℎ𝑒𝑖𝑔ℎ𝑡, (4.19)

where ℛ𝑣 = 𝑣𝑥 is the forward velocity, ℛ𝑢𝑝 = projection(upward direction) encour-

ages the agent to be vertically stable, ℛℎ𝑒𝑎𝑑𝑖𝑛𝑔 = projection(forward direction) en-

courages the agent to run straight forward, and ℛℎ𝑒𝑖𝑔ℎ𝑡 = ℎ − 0.27 is the height

reward.

The initial state is randomly sampled. The task horizon is 1000 steps and early

termination is triggered when the height of the ant is lower than 0.27m.

Humanoid: In this problem, a humanoid robot is controlled to run forward as

84

fast as possible. We have a 76-dimensional observation space as shown in Table 4.4

and a 21-dimensional action vector to control the torque applied to each joint.

Table 4.4: Observation vector of Humanoid problem

Observation Degrees of Freedom

height of the torso: ℎ 1

rotation quaternion of the torso 4

linear velocity of the torso: 𝑣 3

angular velocity of the torso 3

joint angles 21

joint angle velocities 21

up and heading vectors projections 2

actions in last time step 21

The single-step reward is defined as:

ℛ = ℛ𝑣 + 0.1ℛ𝑢𝑝 +ℛℎ𝑒𝑎𝑑𝑖𝑛𝑔 +ℛℎ𝑒𝑖𝑔ℎ𝑡 − 0.002‖a‖2, (4.20)

where ℛ𝑣 = 𝑣𝑥 is the forward velocity, ℛ𝑢𝑝 is the projection of torso on the upward

direction encouraging the agent to be vertically stable, ℛℎ𝑒𝑎𝑑𝑖𝑛𝑔 is the projection of

torso on the forward direction encouraging the agent to run straight forward, and

ℛℎ𝑒𝑖𝑔ℎ𝑡 is defined by:

ℛℎ𝑒𝑖𝑔ℎ𝑡 =

⎧⎨⎩−200∆
2
ℎ, ∆ℎ < 0

10∆ℎ, ∆ℎ ≥ 0
(4.21)

∆ℎ = clip(ℎ− 0.84,−1, 0.1) (4.22)

The initial state is randomly sampled. The task horizon is 1000 steps and early

termination is triggered when the height of torso is lower than 0.74m.

Humanoid MTU: To assess how our method scales to high-dimensional tasks,

85

we examine the challenging problem of muscle-actuated humanoid control (Figure 4-

6, Right). In this problem, a lower body of the humanoid model from [1] is actuated

by 152 muscle-tendon units (MTUs). Each MTU contributes one actation degree

of freedom that controls the contractile force applied to the attachment sites on the

connected bodies. We have a 53-dimensional observation space as shown in Table 4.5

and a 152-dimensional action vector.

Table 4.5: Observation vector of Humanoid MTU problem

Observation Degrees of Freedom

height of the pelvis: ℎ 1

rotation quaternion of the pelvis 4

linear velocity of the pelvis: 𝑣 3

angular velocity of the pelvis 3

joint angles 22

joint angle velocities 18

up and heading vectors projections 2

The single-step reward is defined as:

ℛ = ℛ𝑣 + 0.1ℛ𝑢𝑝 +ℛℎ𝑒𝑎𝑑𝑖𝑛𝑔 +ℛℎ𝑒𝑖𝑔ℎ𝑡 − 0.001‖a‖2, (4.23)

where ℛ𝑣 = 𝑣𝑥 is the forward velocity, ℛ𝑢𝑝 = projection(upward direction) encour-

ages the agent to be vertically stable, ℛℎ𝑒𝑎𝑑𝑖𝑛𝑔 = projection(forward direction) en-

courages the agent to run straight forward, and ℛℎ𝑒𝑖𝑔ℎ𝑡 is defined by:

ℛℎ𝑒𝑖𝑔ℎ𝑡 =

⎧⎨⎩−200∆
2
ℎ, ∆ℎ < 0

4∆ℎ, ∆ℎ ≥ 0
(4.24)

∆ℎ = clip(ℎ− 0.51,−1, 0.05) (4.25)

The initial state is randomly sampled. The task horizon is 1000 steps and early

86

0 2 4 6 8 10
simulation steps (×105)

3000

2500

2000

1500

1000

500

R
ew

ar
d

CartPole Swing Up

0 1 2 3 4
simulation steps (×106)

0

1000

2000

3000

4000

5000

6000

7000

8000

R
ew

ar
d

Ant

0 1 2 3 4
simulation steps (×106)

0

2000

4000

6000

8000

R
ew

ar
d

Humanoid

0 10 100 500
simulation steps (×106)

0

1000

2000

3000

4000

5000

6000

R
ew

ar
d

Humanoid MTU

0 1 2 3 4 5 6
wall-clock time (min)

3000

2500

2000

1500

1000

500

R
ew

ar
d

0 10 20 30 40
wall-clock time (min)

0

1000

2000

3000

4000

5000

6000

7000

8000

R
ew

ar
d

0 20 40 60 80 100
wall-clock time (min)

0

2000

4000

6000

8000

R
ew

ar
d

0 1 5 10 20
wall-clock time (h)

0

1000

2000

3000

4000

5000

6000

R
ew

ar
d

SHAC (Ours) PPO SAC BPTT PODS No Critic

Figure 4-9: Learning curves comparison on four benchmark problems. Each column
corresponds to a particular problem, with the top plot evaluating sample efficiency and the
bottom plot evaluating wall-clock time efficiency. For better visualization, we truncate all
the curves up to the maximal simulation steps/wall-clock time of our method (except for
Humanoid MTU), and we provide the full plots in Appendix ??. Each curve is averaged
from five random seeds, and the shaded area shows the standard deviation. SHAC is more
sample efficient than all baselines. Model-free baselines are competitive on wall-clock time
on pedagogical environments such as the cartpole, but are much less effective as the problem
complexity scales.

termination is triggered when the height of pelvis is lower than 0.46m.

4.2.5.3 Results

Comparison to model-free RL. We compare SHAC with Proximal Policy Opti-

mization (PPO) [60] (on-policy) & Soft Actor-Critic (SAC) [64] (off-policy). We use

high-performance implementations from RL games [116]. To achieve state-of-the-art

performance, we follow [117]: all simulation, reward and observation data remain on

the GPU and are shared as PyTorch tensors between the RL algorithm and simulator.

The PPO and SAC implementations are parallelized and operate on vectorized states

and actions. With PPO we used short episode lengths, an adaptive learning rate, and

large mini-batches during training to achieve the best possible performance.

As shown in the first row of Figure 4-9, our method shows significant improvements

in sample efficiency over PPO and SAC in three classical RL problems, especially when

the dimension of the problem increases (e.g., Humanoid). The analytical gradients

87

provided by the differentiable simulation allow us to efficiently acquire the expected

policy gradient through a small number of samples. In contrast, PPO and SAC have

to collect many Monte-Carlo samples to estimate the policy gradient.

Model-free algorithms typically have a lower per-iteration cost than methods based

on differentiable simulation; thus, it makes sense to also evaluate wall-clock time

efficiency instead of sample-efficiency alone. As shown in the second row of Figure

4-9, the wall-clock time performance of PPO, SAC, and our method are much closer

than the sample efficiency plot. Interestingly, the training speed of our method is

slower than PPO at the start of training. We hypothesize that the target value

network in our method is initially requiring sufficient episodes to warm up.

We observe that our method achieves better policies than RL methods in all

problems. We hypothesize that, while RL methods are effective at exploration far

from the solution, they struggle to accurately estimate the policy gradient near the

optimum, especially in complex problems.

To better analyze the wall-clock time performance of our method, we provide the

detailed wall-clock time performance breakdown of a single learning episode of our

method in Table 4.6. As shown in the table, the forward simulation and backward

simulation time scales up when the dimensionality of the problem increases, while the

time spent in critic value function training is almost constant across problems. As

expected, the differentiable simulation brings extra overhead for its backward gradient

computation. Specifically in our differentiable simulation, the backward computation

time is roughly 2× of the forward time. This indicates that our method still has

room to improve its overall wall-clock time efficiency through the development of

more optimized differentiable simulators with fast backward computation.

Comparison with previous gradient-based methods. We compare our ap-

proach to three gradient-based learning methods: (1) Backpropagation Through Time

(BPTT), which has been widely used in the differentiable simulation literature [40, 38],

(2) PODS [71], and (3) Sample Enhanced Model-Based Policy Optimization (SE-

MBPO) [70].

88

Forward (s) Backward (s) Critic Training (s)

CartPole SwingUp 0.15 0.23 0.34

Ant 0.25 0.37 0.32

Humanoid 0.91 1.97 0.32

SNU Humanoid 0.82 1.66 0.33

Table 4.6: Wall-clock performance breakdown of a single training episode. The
forward stage includes simulation, reward calculation, and observations. Backward includes
the simulation gradient calculation and actor update. Critic training, which is specific to
our method, is listed individually, and is generally a small proportion of the overall training
time.

1) BPTT : The original BPTT method backpropagates gradients over the entire

trajectory, which results in exploding gradients as shown in Section 4.2.3. We

modify BPTT to work on a shorter window of the tasks (64 steps for CartPole

and 128 steps for other tasks), and also leverage parallel differentiable simulation

to sample multiple trajectories concurrently to improve its time efficiency. As

shown in Figure 4-9, BPTT successfully optimizes the policy for the contact-free

CartPole Swing Up task, whereas it falls into local minima quickly in all other

tasks involving contact. For example, the policy that BPTT learns for Ant is a

stationary position leaning forward, which is a local minimum.

2) PODS : We compare to the first-order version of PODS, as the second-order

version requires the full Jacobian of the state with respect to the whole action

trajectory, which is not efficiently available in a reverse-mode differentiable sim-

ulator (including ours). Since PODS relies on a trajectory optimization step to

optimize an open-loop action sequence, it is not clear how to accommodate early

termination where the trajectory length can vary during optimization. There-

fore, we test PODS performance only on the CartPole Swing Up problem. As

shown in Figure 4-9, PODS quickly converges to a local optimum and is unable

to improve further. This is because PODS is designed to be a method with high

gradient exploitation but little exploration. Specifically, the line search applied

in the trajectory optimization stage helps it converge quickly, but also prevents

89

Figure 4-10: Humanoid MTU: A sequence of frames from a learned running gait. The
muscle unit color indicates the activation level at the current state.

it from exploring more surrounding space. Furthermore, the extra simulation

calls introduced by the line search and the slow imitation learning stage make

it less competitive in either sample or wall-clock time efficiency.

3) SE-MBPO : [70] propose to improve a model-based RL method MBPO [66] by

augmenting the rollout samples using data augmentation that relies on the Jaco-

bian from the differentiable simulator. Although SE-MBPO shows high sample

efficiency, the underlying model-based RL algorithm and off-policy training lead

to a higher wall-clock time. As a comparison, the officially released code for

SE-MBPO takes 8 hours to achieve a reasonable policy in the Ant problem used

by [70], whereas our algorithm takes less than 15 minutes to acquire a policy

with the same gait level in our Ant problem. Aiming for a more fair comparison,

we adapt their implementation to work on our Ant problem in our simulator.

However, we found that it could not successfully optimize the policy even after

considerable hyperparameter tuning. Regardless, the difference in wall-clock

time between two algorithms is obvious, and the training time of SE-MBPO is

unlikely to be improved significantly by integrating it into our simulation en-

vironment. Furthermore, as suggested by [70], SE-MBPO does not generalize

well to other tasks, whereas our method can be successfully applied to various

complexity levels of tasks.

Scalability to high-dimensional problems. We test our algorithm and RL base-

lines on the Humanoid MTU example to compare their scalability to high-dimensional

90

problems. With the large 152-dimensional action space, both PPO and SAC struggle

to learn the policy as shown in Figure 4-9 (Right). Specifically, PPO and SAC learn

significantly worse policies after more than 10 hours of training and with hundreds of

millions of samples. This is because the amount of data required to accurately esti-

mate the policy gradient significantly increases as the state and action spaces become

large. In contrast, our method scales well due to direct access to the more accurate

gradients provided by the differentiable simulation with the reparameterization tech-

niques. To achieve the same reward level as PPO, our approach only takes around

35 minutes of training and 1.7M simulation steps. This results in over 17× and 30×

wall-clock time improvement over PPO and SAC, respectively, and 382× and 170×

more sample efficiency. Furthermore, after training for only 1.5 hours, our method is

able to find a policy that has twice the reward of the best-performing policy from the

RL methods. A learned running gait is visualized in Figure 4-10. Such scalability to

high-dimensional control problems opens up new possibilities for applying differen-

tiable simulation in computer animation, where complex character models are widely

used to provide more natural motion.

Ablation study on the terminal critic. We introduce a terminal critic value in

Eq. 4.15 to account for the long-term performance of the policy after the short episode

horizon. In this experiment, we evaluate the importance of this term. By removing

the terminal critic from Eq. 4.15, we get an algorithmic equivalent to BPTT with

a short-horizon window and discounted reward calculation. We apply this no-critic

variation on all four problems and plot the training curve in Figure 4-9, denoted by

“No Critic”. Without a terminal critic function, the algorithm is not able to learn a

reasonable policy, as it only optimizes a short-horizon reward of the policy regardless

of its long-term behavior.

Robustness of SHAC to hyperparameters. In the previous results, we fine

tune the network architectures of policy and value function for each algorithm on

each problem to get their maximal performance for a fair comparison. In this section,

91

we test the robustness of our method by using a fixed network architecture and fixed

set of hyperparameters (e.g. learning rates) to train on all problems. Specifically,

we use a same setting of network architecture and the hyperparameters reported in

Table 4.7 in all problems, and plot the training curves in Figure 4-11.

Table 4.7: A general setting of hyperparameters of SHAC.

Hyperparameter names Values

short horizon length ℎ 32

number of parallel environments 𝑁 64

policy learning rate 0.002

critic learning rate 0.0005

discount factor 𝛾 0.99

value estimation 𝜆 0.95

target value network 𝛼 0.995

number of critic training iterations 16

number of critic training minibatches 4

Experiment SHAC with deterministic policy Our method does not constrain

the policy to be stochastic or deterministic. We choose to use the stochastic policy in

the most experiments for the extra exploration that it provides. In this experiment,

we test our method with the deterministic policy choice. Specifically, we change the

policy of our method in each problem from stochastic policy to deterministic policy

while keeping all other hyperparameters such as network dimensions and learning

rates the same. The training curves of the deterministic policy is plotted in Figure

4-12. The results show that our method works reasonably well with deterministic

policy, and sometimes the deterministic policy even outperforms the stochastic policy

(e.g. Humanoid). The small performance drop on the Ant problem comes from one

single random seed (out of five) which results in a sub-optimal policy.

92

0 2 4 6 8 10
simulation steps (×105)

3000

2500

2000

1500

1000

500

R
ew

ar
d

CartPole Swing Up

0 1 2 3 4
simulation steps (×106)

0

1000

2000

3000

4000

5000

6000

7000

8000

R
ew

ar
d

Ant

0 1 2 3 4
simulation steps (×106)

0

2000

4000

6000

8000

R
ew

ar
d

Humanoid

0 1 2 3 4
simulation steps (×106)

0

1000

2000

3000

4000

5000

6000

R
ew

ar
d

Humanoid MTU

0 2 4 6
wall-clock time (min)

3000

2500

2000

1500

1000

500

R
ew

ar
d

0 10 20 30 40
wall-clock time (min)

0

1000

2000

3000

4000

5000

6000

7000

8000

R
ew

ar
d

0 20 40 60 80 100
wall-clock time (min)

0

2000

4000

6000

8000

R
ew

ar
d

0.00 0.25 0.50 0.75 1.00 1.25 1.50
wall-clock time (h)

0

1000

2000

3000

4000

5000

6000

R
ew

ar
d

SHAC (optimal setting) SHAC (fixed setting)

Figure 4-11: Learning curves of our method with fixed network architectures
and learning rates. We use the same network architectures and learning rates used in
Humanoid problem on all other problems, and plot the training curves comparison with the
ones using optimal settings. The plot shows that our method still performs reasonably well
with the fixed network and learning rates settings.

Study of short horizon length ℎ. The choice of horizon length ℎ is important

for the performance of our method. ℎ cannot be too small, as it will result in worse

value estimation by td-𝜆 (Eq. 4.17) and underutilize the power of the differentiable

simulator to predict the sensitivity of future performance to the policy weights. On

the other hand, a horizon length that is too long will lead to a noisy optimization

landscape and less-frequent policy updates. Empirically, we find that a short horizon

length ℎ = 32 with 𝑁 = 64 parallel trajectories works well for all tasks in our

experiments. We conduct a study of short horizon length on the Ant task to show the

influence of this hyperparameter. We run our algorithm with six short horizon lengths

ℎ = 4, 8, 16, 32, 64, 128. We set the corresponding number of parallel trajectories

𝑁 = 512, 256, 128, 64, 32, 16 for the variant, such that each one generates the same

amount of samples in single learning episode. We run each variant for the same

number of episodes 𝑀 = 2000 with 5 individual random seeds. In Figure 4-13, we

report the average reward of the best policies from 5 runs for each variant, as well as

the total training time. As expected, the best reward is achieved when ℎ = 16 or 32,

and the training time scales linearly as ℎ increases.

93

0 2 4 6 8 10
simulation steps (×105)

3000

2500

2000

1500

1000

500

R
ew

ar
d

CartPole Swing Up

0 1 2 3 4
simulation steps (×106)

0

1000

2000

3000

4000

5000

6000

7000

8000

R
ew

ar
d

Ant

0 1 2 3 4
simulation steps (×106)

0

2000

4000

6000

8000

R
ew

ar
d

Humanoid

0 1 2 3 4
simulation steps (×106)

0

1000

2000

3000

4000

5000

6000

R
ew

ar
d

Humanoid MTU

0 1 2 3 4 5 6
wall-clock time (min)

3000

2500

2000

1500

1000

500

R
ew

ar
d

0 10 20 30 40
wall-clock time (min)

0

1000

2000

3000

4000

5000

6000

7000

8000

R
ew

ar
d

0 20 40 60 80 100
wall-clock time (min)

0

2000

4000

6000

8000

R
ew

ar
d

0.00 0.25 0.50 0.75 1.00 1.25 1.50
wall-clock time (h)

0

1000

2000

3000

4000

5000

6000

R
ew

ar
d

SHAC (stochastic policy) SHAC (deterministic policy)

Figure 4-12: Learning curves of our method with deterministic policy. We test our
method with deterministic policy choice. We use the same network sizes and the hyperpa-
rameters as used in the stochastic policy and remove the policy output stochasticity. We
run our method on each problem with five individual random seeds. The results show that
our method with deterministic policy works reasonably well on all problems, and sometimes
the deterministic policy even outperforms the stochastic policy (e.g., Humanoid). The small
performance drop on the Ant problem comes from one single seed (out of five) which results
in a sub-optimal policy.

4 8 16 32 64 128
Short Horizon Length h

1000

2000

3000

4000

5000

6000

7000

B
es

t R
ew

ar
d

0

15

30

45

60

75

90

105

120
Tr

ai
ni

ng
 T

im
e

(m
in

)

Figure 4-13: Study of short horizon length ℎ on Ant problem. A small ℎ results
in worse value estimation. A too large ℎ leads to an ill-posed optimization landscape and
longer training time.

4.2.6 Summary

In this work, we propose an approach to effectively leverage differentiable simula-

tion for policy learning. At the core is the use of a critic network that acts as a

94

smooth surrogate to approximate the underlying noisy optimization landscape. In

addition, a truncated learning window is adopted to alleviate the problem of explod-

ing/vanishing gradients during deep backward paths. Equipped with the developed

parallel differentiable simulation, our method shows significantly higher sample ef-

ficiency and wall-clock time efficiency over state-of-the-art RL and gradient-based

methods, especially when the problem complexity increases. As shown in our experi-

ments, model-free methods demonstrate efficient learning at the start of training, but

SHAC is able to achieve superior performance after a sufficient number of episodes. A

compelling future direction for research is how to combine model-free methods with

our gradient-based method in order to leverage the strengths of both. Furthermore,

in our method, we use a fixed and predetermined short horizon length ℎ throughout

the learning process; however, future work may focus on implementing an adaptive

short horizon schedule that varies with the status of the optimization landscape.

95

96

Chapter 5

Computational Robot Shape and

Control Co-Design

While the controller serves as a brain of a robot and a significant amount of re-

search effort has been paid to optimize the control for a fixed robot hardware design,

robot hardware actually plays an equally important role as its control algorithm in

its task performance. As an example, a quadruped with longer legs can typically run

faster than a quadruped with shorter legs no matter how optimal the control algo-

rithm of the short-leg quadruped is. Despite of its importance, co-optimizing both

shape and control of a robotic system is still under-explored. Today this process is

labor-intensive and time-consuming. For instance, hardware components and control

algorithms are typically constructed sequentially making the integration of different

modules difficult which necessitates many design iterations. A computational auto-

mated algorithm for this co-design purpose is still an active and challenging research

question. This is because the hardware shape of a robot introduces a mixed opti-

mization space involving both discrete parameters and continuous parameters as we

discussed in Chapter 3. Though we have paced one step forward by proposing effective

representation for those different categories of shape parameters, how to efficiently

optimize those shape parameters is still questionable. Furthermore, the underlying

coupling of the hardware shape and the software control of a robot results in an

97

enormous optimization space. As different robot shape designs have different optimal

control strategies, control optimization, which alone is already a hard enough research

topic, now becomes to a sub-problem of a control-shape optimization problem.

Co-optimizing the shape and control typically follows two strategies: (a) a bi-

level optimization scheme where a shape optimization serves as an outer loop while a

control optimization serves as the inner loop to evaluate each proposed shape design

from the outer loop; (b) a joint optimization scheme where the shape parameters

and the control parameters are optimized simultaneously. In this chapter, we focus

on the robot shape and control co-optimization problems, and argue that different

co-optimization schemes are appropriate for different categories of shape parameters.

Specifically, we present a learning-based bi-level optimization scheme for optimizing

the robot control and discrete shape topology in Section 5.1, and further present a

joint optimization approach enhanced by differentiable physics simulation for opti-

mizing the robot control and continuous shape morphology in Section 5.2.

5.1 Co-Optimizing Robot Control and Discrete Shape

Topology: Graph Heuristic Search

5.1.1 Motivation

Automating the discovery of the novel robot structure and the controller for given

tasks has long been a key research question. This is a particularly challenging research

problem as the design space is vast and intractable and there are limited tools for

automatically and efficiently exploring it. To enable large scale search and optimiza-

tion of robots, we have introduced in Chapter 3.1 our novel graph grammar based

representation for the manipulator topological structure design space. However, the

graph grammar space provides a large combinatorial search space for the optimization

algorithm.

98

To address this challenge, we introduce a novel computational algorithm for si-

multaneously optimizing the physical structures and controllers of robots. We take

the terrestrial robot as a case study for this purpose. Similarly as manipulators, we

construct a recursive graph grammar for terrestrial robots that emphasizes mobility

and fabricability. The goal of the search algorithm is to take the graph grammar

robot structure space as input and generate an optimal robot structure and con-

troller for traversing a given terrain. To provide the performance evaluation for a

robot structure design, we use model predictive control (MPC) to provide a stochas-

tic approach to controller learning. To efficiently search the design space of robot

graphs, we introduce a novel Graph Heuristic Search algorithm (GHS) which general-

izes the knowledge of explored designs to predict performance of unexplored branches

of the search space. Specifically, our search algorithm takes a learning-based approach

inspired by reinforcement learning, iteratively exploring a large space of robot designs

for a given task, and learning a heuristic function to gradually steer that search to-

ward optimal designs. Our learning model takes a neural-based approach, exploiting

a graph neural network architecture to provide a fast method for approximating the

performance metrics of best designs.

In summary, we present the following key contributions:

• A Graph Heuristic Search method for efficiently searching the design space

described with the terrestrial robot grammar. This is bench-marked against

alternatives including Monte Carlo tree search and random search.

• A demonstration of terrain-driven optimization using MPC based stochastic

evaluation of each proposed design. We show the variety of innovative robot

designs that are obtained across six different terrains. In addition, our approach

identifies a number of high-performing robots for a single terrain.

The following section of this paper reviews related work presenting current state-

of-the-art research. In Section 5.1.2 we provide an overview of the different systems

and algorithms used to enable the grammar-driven exploration and optimization of

robots. Section 5.1.3 briefly describes the graph grammar which is developed to

99

Input terrains

Input components

Grammar generated structures Optimized robot structure and controller

graph
grammar

graph
heuristic
search

MPC

Figure 5-1: Overview of the computational terrestrial robot design system. The
input to our system is a set of base robot components, such as links, joints, and end struc-
tures, and at least one terrain, such as stepped terrain or terrain with wall obstacles. A
recursive graph grammar is constructed to efficiently generate hundreds of thousands of
robot structures built with the given components. We then use Graph Heuristic Search
coupled with model predictive control (MPC) to facilitate exploration of the large design
space, and identify high performing examples for a given terrain. Our approach enables
co-optimization of both robot structures and controllers.

express a wide range of different terrestrial robots. In Section 5.1.4 we present the

optimization process, providing details of the Graph Heuristic Search. The results are

presented in Section 5.1.5, showing best-performing designs generated using Graph

Heuristic Search for six different terrains. We conclude with a discussion of the

limitations of our approach and identify avenues for future work.

5.1.2 System Overview

Our whole computational terrestrial robot design system consists of three main com-

ponents listed below. Figure 5-1 provides a graphical overview.

First, a recursive graph grammar (named RoboGrammar) is constructed to rep-

resent the terrestrial robot structure design space (Section 5.1.3). We use a graph

representation for robot structure and define the set of components and grammar

rules which can be used to assemble robots.

The second and the core component of our system is the novel Graph Heuristic

Search (GHS) algorithm described in Section 5.1.4. GHS searches over the design

space defined by the grammar to efficiently identify optimal robots and controllers.

The algorithm exploits a graph neural network-based heuristic function, whose archi-

100

connector

mount part

limb segment

body segment roll
joint

knee
joint

body segment

connector connector

mount part

limb segment

knee
joint

connector

Figure 5-2: An example of a kinematic tree (top) with the corresponding robot
graph (bottom). To enforce symmetry in leg pairs, after adding nodes for connectors on
both sides of the body, both legs of one pair are defined in one branch of the graph.

tecture is analogous to the graph-like structure of rigid robots. The heuristic function

is learned as the search progresses using ground-truth data from the MPC-based eval-

uations.

5.1.3 Graph Grammar for Terrestrial Robot Topology Design

Robot Graph Representation We represent robots in the form of directed acyclic

graphs. Each node of the graph represents a physically realizable component. We

consider robot structures to consist of body segments and limbs, with optional head

and tail. The structures are composed of rigid links and rigid or articulated joints.

Each body segment can have at most one pair of legs attached to it.

As our design space is based on arthropods, we impose symmetry on the robot

structure. Legs are always added in pairs and each pair has identical leg structure

101

S H

Body structure

B T

T TY B

Adding appendage to body

B U

M

E

B U

r₁:

r₂:

r₃:

r₄:

Appendages

E ELJr₅:

r₆: T

r₇:

E

H E

start symbol

mount part
connector

head part

tail part

body joint
body part

body link

limb end
limb joint
limb link

CC

M

M

S
H
Y
B
T

Legend

U
C
M
E

L

Grammar structural rules

J
C

C

Figure 5-3: Structural rules of our robot grammar. Here 𝑆,𝐻, 𝑌,𝐵, 𝑇, 𝑈,𝐸, 𝐽, 𝐿 are
non-terminal symbols. Rule 𝑟1 initializes the body structure, while 𝑟2 can be used to extend
the body. Note that each body segment 𝑈 can have at most one pair of limbs attached to
it. Rule 𝑟3 enforces symmetry of the limb pairs, and rule 𝑟4 allows body segments without
limbs. Rule 𝑟5 serves for extending the limbs, and 𝑟6 and 𝑟7 for adding back and front limbs.

on both sides. We encode symmetry and repetition by representing each pair of legs

with a single branch in the robot graph (see Figure 5-2). After deriving a full robot

graph, we convert it to a kinematic tree for efficient simulation.

Graph Grammar for Terrestrial Robot We use a context-free graph grammar

for terrestrial robot design space. Let us revisit the graph grammar. A graph grammar

is a collection of non-terminal symbols, terminal symbols, and expansion/production

rules. Non-terminal symbols are temporary graph nodes that help us construct dif-

ferent body and leg parts. Terminal symbols are final graph nodes which represent

physical robot components (e.g., links, joints, wheels, etc.). We refer to graphs with

only terminal symbols as “complete” robot designs, and all other graphs as “partial”

robot designs. In addition, we assign attributes to several terminal symbols. The

attributes define the initial state of the robot by determining initial positions and

angles between robot parts.

Each production rule detects and replaces a non-terminal symbol in a “partial”

102

body link
15cm

limb link
15cm

limb link
10cm

rigid joint

rigid joint

roll joint
θr∈[0°,360°]

U

E

T

Y

H

M

C

L

J

twist joint
θr∈[0°,360°]

roll joint
θr∈[0°,360°]

r₈

θr

θr

θr

θr

θi

θr

θi

knee joint
θr∈[0°,180°]
θi∈{60°,120°}

elbow joint
θr∈[0°,180°]
θi∈{-90°,90°}

r₁₀r₉

connector

mount link

wheel

r₁₁
r₁₂

r₁₃

r₁₄
r₁₅ r₁₆

r₁₇ r₁₈

r₁₉

r₂₀

r₂₁
r₂₂

r₂₃

Figure 5-4: Component-based rules of the robot grammar. Initial-pose angle 𝜃𝑖 and
rotational range angle 𝜃𝑟 are attributes of joints.

robot graph with a sub-graph. We construct two categories of production rules: struc-

tural rules (Figure 5-3) and component-based rules. Structural rules serve to construct

a physically realistic topology for the robot and define the number of body and limb

segments. Component-based rules replace non-terminal symbols with terminal sym-

bols representing robot components.

An example robot derived from grammar 𝒢, along with the sequence of production

rules applied, is shown in Figure 5-5. Our recursive grammar is designed in a way

that allows for a potentially infinite number of legs and body segments. In order to

limit the design space, our implementation uses a recursion counter. The recursion

counter counts the total number of derivation steps. We set the maximum as 40 in

our experiments. Increasing this parameter would allow for creation of more complex

designs, while also exponentially enlarging the design space.

103

S H B Tr₁ r₂

TY BH B
r₃ , r₃

U

M

E

CC

TYH U

M

E

CC

U

M

E

CC

TYH U

M

CC

L

J

E

L

J

r₅,r₅

r₂₁,r₂₁,

U

M

CC

Y U

M

CC

L

J

L

J

r₈,r₈,r₁₂,
r₂₂,r₂₃ 4 x r₁₈,

2 x r₁₉,
2 x r₁₆,
2 x r₁₀

Figure 5-5: A derivation sequence for a Simple Walker robot generated with our
grammar. Derivation begins with the start symbol 𝑆, then creates the body and extends
it with rules 𝑟1,𝑟2 respectively. Legs are added on both body segments with rule 𝑟3 applied
twice. Both pairs of legs are extended, adding additional sets of joints and links, with 𝑟5.
For the Simple Walker, end structures are not used, hence we remove them with 𝑟21,𝑟22,
and 𝑟23. Finally, terminal components are added for each segment of the robot, following
the rules from Figure 5-4.

5.1.4 Graph Heuristic Search

While our grammar constrains the search space of all robotic structures to a tractable

and meaningful subset, the robot design space spanned by our grammar is still in-

credibly enormous. Intuitively, we can apply any valid rule from total 23 rules in

each of 40 derivation steps, thus the number of possible rule sequences with length

40 is exponentially proportional to the number of derivation steps. To tackle such

an enormous search space, we describe our novel search and optimization algorithms

named Graph Heuristic Search that efficiently search for high-performing designs and

controllers, exploiting the search space this grammar provides.

With our robot grammar, we convert the task of searching the optimal robot

topology structure into searching the optimal grammar rule application sequence,

that results in a robot graph whose corresponding robot design achieves the optimal

performance on the given terrain type. From another perspective, we treat the robot

design as a sequential decision making problem, that given a current partial design of

the robot after applying 𝑘 grammar rules, we need to make the decision at (𝑘+1)-th

step about what is the next optimal rule to apply towards the optimal performing

robot.

Starting from this angle, we then draw inspirations from reinforcement learning

104

approaches to solve our robot design optimization problem and invent a “heuristic”

function guided search algorithm. Our heuristic search algorithm is learning-based,

using a learned heuristic function to inform and guide the search of the design space,

which plays the same role as the value function in a value-based reinforcement learning

algorithm. This heuristic takes the form 𝑉 (𝑔) : (𝒱 , ℰ) → R. The input to the

function is a graph representing a partial robot design, where some nodes correspond

to non-terminal symbols. The partial design may be expanded into one of many

complete designs which have only terminal symbols. The function 𝑉 (𝑔) aims to

outputs the highest achievable performance across all of these complete designs. Our

search algorithm is agnostic to the model used for the heuristic, and thus we describe

it in general terms. In practice, we take a deep-learning-based approach and use

graph neural networks to create our learnable heuristic.

5.1.4.1 Search Algorithm

Our Graph Heuristic Search algorithm works by interleaving a design phase (in which

a candidate robot is sampled, guided by our heuristic function), an evaluation phase

(in which the candidate robot is evaluated in simulation), and a learning phase (in

which the heuristic function is improved based on the simulated data). These three

phases are repeated over 𝑁 episodes, or until they converge on an optimal design.

The algorithm is described in Alg. 2.

Design Phase During the design phase, 𝐾 possible candidate robot designs are

generated and one of them is selected for evaluation. Each design is generated by the

following procedure. Starting from a partial robot design 𝑠0, composed solely of the

initial start symbol (𝑠0 := 𝑆), production rules of the grammar are iteratively applied

to the partial robot design until it contains only terminal symbols. The selection of

production rules is inspired by 𝑄-learning [118] and follows an 𝜖-greedy approach.

Given a partial robot design 𝑠𝑙 after 𝑙 production rules have been applied, the 𝑙 + 1th

rule 𝑎𝑙+1 is selected as follows. With probability 𝜖, a random rule is applied from the

105

Algorithm 2: Graph Heuristic Search
Inputs: Number of iterations 𝑁 , number of candidate designs 𝑀 , Adam optimization
steps opt_iter and batch size 𝑀 .
Output: The best design 𝑠*.
Initialize the look up table 𝑉 ← {}.
Initialize the graph neural network 𝑉𝜃(𝑠) with random parameters 𝜃.
Initialize the best design 𝑠* ← None, 𝑟* ← 0.
for episode 𝑗 ← 1 to 𝑁 do

▷ Design Phase: Generate a candidate design
𝒫 ← {} ▷ Initialize possible design candidates
▷ Sample 𝐾 designs by 𝜖-greedy approach
for 𝑘 ← 1 to 𝐾 do
𝑠← initial design graph
while 𝑠 has non-terminals do

With probability 𝜖 select a random rule 𝑎 from available rules
otherwise select 𝑎 = argmax𝑎 𝑉𝜃(𝑃 (𝑠, 𝑎)).
𝑠← 𝑃 (𝑠, 𝑎)

end while
Add possible candidate 𝑠 to 𝒫.

end for
▷ Choose one to be the candidate
With probability 𝜖 select a random sampled design from 𝒫 as the candidate design 𝑑,
otherwise select 𝑑 =𝑑∈𝒫 𝑉𝜃(𝑑) by heuristic function 𝑉𝜃.
▷ Evaluation Phase: Compute the average reward for the design
Run MPC to evaluate 𝑑 and get average reward 𝑟.
▷ Update the best design and 𝑉
if 𝑟 > 𝑟* then
𝑠* ← 𝑑
𝑟* ← 𝑟

end if
for Each partial ancestor design 𝑑𝑝 of 𝑑 do

Update 𝑉 (𝑑𝑝)← max(𝑉 (𝑑𝑝), 𝑟).
end for
▷ Learning Phase: train heuristic value function 𝑉𝜃
for 𝑖 ← 1 to opt_iter do

Sample a minibatch 𝑆 of seen designs (partial or complete) of size 𝑀 .
Update 𝑉𝜃(𝑠) one step by Adam with the loss:∑︁

𝑠∈𝑆
‖𝑉𝜃(𝑠)− 𝑉 (𝑠)‖2

end for
end for

106

set of possible rules. Otherwise, with probability (1 − 𝜖), the rule that leads to the

design with the highest heuristic score is applied, i.e. 𝑎𝑙+1 ← argmax𝑎 𝑉𝜃(𝑃 (𝑠𝑙, 𝑎)),

where 𝑃 (𝒮,𝒜) is a function which applies production rule 𝒜 to partial design 𝒮. Once

a candidate design with only terminal symbols is produced, it is added to the list of

possible candidate designs. From the final list of 𝐾 candidates, a random robot is

selected with probability 𝜖; with probability 1−𝜖, the design with the highest heuristic

score is chosen as the candidate to continue to the evaluation phase.

Two 𝜖-greedy selection steps are applied during candidate robot generation. This

strategy is necessary to ensure that the space of possible robot designs is sufficiently

explored; if one begins with a pure greedy strategy, the algorithm quickly converges

to a suboptimal design. This is because we are taking a learning-based approach; our

heuristic function is inaccurate at the beginning (and not strictly admissible) and im-

proves in accuracy as the algorithm progresses. Until the heuristic function converges

to an accurate estimator mapping robot design to performance, it is necessary to gen-

erate a diverse collection of robot designs from which to learn from (beginning with

𝜖 = 1). The first 𝜖-greedy exploration rule, within a given design generation, helps

guarantee a diverse collection of possible candidate designs (with the variance of that

set parameterized by 𝜖). Since 𝐾 applications of this process (with large 𝐾 and small

𝜖) makes it likely that at least one robot resembling the pure greedy-strategy will be

generated, the second 𝜖-greedy exploration guarantees that the same best candidate

is not chosen each time. 𝜖 is decreased with each episode toward 0 as the heuristic’s

accuracy increases, according to an exponential decay schedule (as in Q-learning);

this is made possible by a fast, accurate learned heuristic function, and shifts the

algorithm from exploration to exploitation.

Evaluation Phase After a candidate robot has been decided on, its performance

must be evaluated. We simulate the candidate robot with actuation inputs generated

by the MPC algorithm (specifically MPPI). It is possible for the same design candidate

to be proposed multiple times. Because our MPC algorithm is sampling-based and

stochastic, different average rewards 𝑉 may be seen for the same design between

107

episodes. We consider the 𝑉 of a design to be the best average reward over all

evaluations of the design. If this average reward is the best seen so far, the candidate

is stored as the current best design, along with 𝑉 . Regardless, the candidate robot

design and its corresponding 𝑉 are stored (or updated) in a lookup table, and the 𝑣

label of all of that design’s partial design ancestors are updated to be the maximum

of their current value and the candidate robot’s average reward. This is important

for the upcoming learning phase, which must learn a heuristic function that is valid

for both complete and partial designs.

The number of candidate designs evaluated in each iteration is an algorithm design

trade-off. Evaluating more candidates will collect more data, helping to train a more

accurate prediction function. It will also significantly increase the computation time,

however, since evaluation is the time bottleneck in our algorithm. We therefore choose

to evaluate only one design per iteration.

Learning Phase The heuristic is trained using the data stored in the lookup table.

For opt_iter epochs, minibatches of (𝑠𝑖, 𝑉𝑖) pairs are sampled, and the loss 𝐿 =

1
2
‖𝑉𝜃(𝑠𝑖)− 𝑉 ‖22 is minimized using Adam [119].

5.1.4.2 Heuristic Function Model

To implement our heuristic function, we choose to leverage the expressive nature of

graph neural networks. Graph neural networks (GNNs) are neural network architec-

tures which aim to extend the benefits of deep learning to a graphical setting. Unlike

other neural network types such as CNNs, which operate on images and data with

fixed grid-like topologies, graph neural networks aim to be flexible and operate on

structures with arbitrary topologies. The input to a GNN consists of a graph topology

(e.g. an adjacency matrix), and values associated with nodes (e.g. feature vectors).

While many GNN models have been proposed in recent years, our architecture is

based on the differentiable-pooling model. This model was designed for inference

tasks involving graphs with a hierarchical nature, by iteratively reducing the graph to

108

a “lower resolution” graph in a manner similar to hierarchical clustering. Please see

[120] for more details. This model is well-suited for our scenario, where each robot is

itself created through a hierarchical substitution of grammar rules.

The differentiable-pooling GNN extends the GraphSage framework from [121],

which in turn is based on graph convolutional networks (GCN) [122]. Analogously

to CNNs, GCNs apply a generalized convolution operator that operates on graphs

rather than grids. We adopt a similar model as [120]. In this model, two “mean”

GraphSage+BatchNormalization layers are applied, followed by the hierarchical clus-

tering DiffPool layer, followed by three layers of graph convolutions. This process is

repeated one additional time, followed by a final GraphSage layer, a mean pooling

layer, and a final ReLU. The output is a positive real-valued scalar representing pre-

dicted robot performance. Each DiffPool layer reduces the node set’s cardinality by

75%.

An important property of this GNN model is that it is isomorphism-invariant,

meaning any two isomorphic graphs will have the same value and gradient without

the need for explicit transposition tables. This greatly simplifies the bookkeeping in

Graph Heuristic Search.

We convert robot design graphs into inputs for the GNN model as follows. The

graph is first converted to a kinematic tree, so that each link has a unique joint

connecting it to its parent link. Each link and its parent joint is considered a node

in this new graph. Note that this representation differs from the one described in

Section 5.1.3. Next, an 𝑚-dimensional feature vector is extracted from each node. If

the link associated with the node is a terminal symbol, the feature vector encodes

the link’s initial position, orientation, and geometric description. The parent joint’s

rotation and servo parameters are included similarly, if present. If either the link or

joint are non-terminal symbols, the feature vector one-hot encodes the non-terminal

type.

109

5.1.5 Experiments

5.1.5.1 Implementation Details

Hyperparameters We run all experiments with the same hyperparameters unless

otherwise specified. The exploration parameter 𝜖 in GHS follows an exponential decay

schedule: 𝜖(𝑖) = 𝜖1 + (𝜖0 − 𝜖1) exp
(︁
− 𝑖/𝑁
𝜖𝑑𝑒𝑐𝑎𝑦

)︁
, where 𝑖 is the current iteration, 𝑁 is the

total number of iterations, 𝜖0 = 1, 𝜖1 = 0.1 and 𝜖𝑑𝑒𝑐𝑎𝑦 = 0.3. We run GHS for 2,000

iterations (𝑁 = 2000). In the design phase of each iteration, GHS uses the two

𝜖-greedy steps to select one design to be tested by MPC from 16 sampled possible

candidate robots. In the learning phase, the Adam optimizer runs for 25 steps with

batch size 32 and learning rate 1× 10−4. A summary of hyperparameters is provided

in Table 5.1.

Experiment Setup & Computational Time We implemented our Graph Heuris-

tic Search algorithm in Python, and the simulation and MPC in C++. Experiments

were run on VM instances with either 32 or 64 Intel Cascade Lake vCPUs on Google

Cloud Platform. Each iteration of GHS spends less than 1 second per possible candi-

date robot in the design phase, 40-60 seconds in the MPC evaluation phase, and 6-8

seconds in the learning phase. Since each possible candidate robot is sampled inde-

pendently, the design phase can be fully parallelized for further speedup. The time

bottleneck of the MPC evaluation phase shows the necessity of our Graph Heuristic

Search algorithm, which is able to find the best-performing robots while evaluating a

significantly fewer number of robot designs.

5.1.5.2 Task Specification

Here, we describe the remaining (user-specified) components needed to define a co-

optimization problem with RoboGrammar.

110

Table 5.1: Graph Heuristic Search hyperparameter values

Hyperparameter Value
Number of iterations (𝑁) 2000
Initial 𝜖 (𝜖0) 1.0
Final 𝜖 (𝜖1) 0.1
𝜖 exponential decaying factor (𝜖𝑑𝑒𝑐𝑎𝑦) 0.3
Number of possible candidate robots (𝐾) 16
Optimization steps (opt_iter) 25
Optimization batch size (𝑀) 32
Adam learning rate 1× 10−4

Reward Function A single reward function (Equation 5.1) is used to evaluate

designs on every terrain, and is computed at every time step of the simulation. For

the purposes of design optimization we use the average reward across all time steps.

𝑟(𝑡) = 𝑤𝑥 · 𝑑𝑥(𝑡) + 𝑤𝑦 · 𝑑𝑦(𝑡) + 𝑤𝑣 · �⃗�(𝑡) (5.1)

We consider the base link of the robot, or the forwardmost wide body segment, to

be representative of the robot’s motion. 𝑑𝑥 and 𝑑𝑦 are unit vectors pointing forward

and upward in the base link’s reference frame, respectively, and �⃗� is the base link’s

velocity. All quantities are expressed in world coordinates.

𝑤𝑥 = [−2, 0, 0]𝑇 , 𝑤𝑦 = [0, 2, 0]𝑇 , and 𝑤𝑣 = [2, 0, 0]𝑇 are weighting vectors which set

the relative importance of each term. They also scale the reward function’s magnitude

to the range expected by the design search algorithm.

The first two terms encourage maintaining the initial orientation, and the last

term rewards forward progress. The robot starts with its local 𝑥-axis pointing in the

negative 𝑥 direction in world coordinates.

Terrains Terrains, in conjunction with the reward function, define tasks to optimize

robot structures for. Each terrain is intended to result in a different set of optimal

designs.

1) Flat terrain: A featureless surface with a friction coefficient of 0.9, the flat

terrain accommodates the greatest variety of locomotion styles.

111

2) Frozen lake terrain: A flat surface with a low friction coefficient of 0.05, the

frozen lake terrain encourages designs which maximize traction or use the low

friction to their advantage.

3) Ridged terrain: Ridges or hurdles spaced an average of one meter apart span

the entire width of the ridged terrain, requiring designs to jump or crawl in

order to make progress.

4) Wall terrain: Walls which are too high to traverse directly are placed in a

slalom-like arrangement. Designs must move around the walls, requiring them

to change their direction of motion rapidly.

5) Gap terrain: A series of platforms separated by gaps require designs to tread

carefully. As the gaps become progressively wider, designs with the ability to

take larger steps are favored.

6) Upward stepped terrain: A series of steps resembling a flight of stairs test the

ability of designs to climb. The steps are of varying height, producing different

gait variations over time.

5.1.5.3 Results

Here we demonstrate our co-design approach on a collection of different problems, ex-

amining how terrain affects which designs and controllers are optimal. Furthermore,

we quantitatively analyze the efficiency of our Graph Heuristic Search algorithm com-

pared to the baselines.

Terrain Driven Optimization As an end-to-end demonstration of our co-design

approach, we run Graph Heuristic Search on several different terrains. Each search

run consists of 2,000 iterations. A selection of best-performing designs is shown in

Figure 5-6.

Optimal designs for the ridged terrain are characterized by long limbs which are

able to swing upwards and clear obstacles. Although the set of optimal designs

112

Figure 5-6: Selection of best-performing designs optimized with Graph Heuristic
Search for ridged, flat, frozen lake, and gapped terrain respectively.

consists mainly of quadrupeds, a few tripedal designs emerge. These designs use

their body as a third point of contact with the ground.

The flat terrain, despite having no obstacles, still produces specialized designs.

One successful strategy is to place short limbs spaced far apart on the body, giving

them a full range of motion. Although short limbs would be unable to clear obstacles

on most of the other terrains, their low inertia enables quick movement.

The frozen lake is superficially similar to the flat terrain, but its low friction

coefficient requires a different strategy. Successful designs can both overcome the low

friction and use it to their advantage. The bottom-left design in Figure 5-6 serves as

an example. Highly articulated yet compact arms maintain contact with the ground

during the stance phase, while the rear body segment slides freely.

The gap terrain tends to produce designs with long limbs, much like the ridged

terrain. However, designs for gap terrain tend to have limbs that are optimized

for forward reaching instead of climbing. Green joints, which enable limbs to move

horizontally, are more prevalent than orange joints, which enable vertical motion.

113

Efficiency of Graph Heuristic Search To show the efficiency of the proposed

Graph Heuristic Search algorithm, we compare our algorithm with two baselines

on four different terrain tasks (flat terrain, frozen lake terrain, ridged terrain, and

wall terrain). Specifically, the first baseline is an adapted Monte Carlo tree search

(MCTS) algorithm. The second baseline algorithm is a random search algorithm,

where in each iteration, one candidate design is selected by applying random rules.

Due to the stochasticity of the search algorithms, we run each algorithm on each

task at least three times with different random seeds. Note that we run our Graph

Heuristic Search algorithm for only 2,000 iterations, as opposed to 5,000 iterations

for each baseline algorithm. The results in Figure 5-7 show that Graph Heuristic

Search consistently finds better designs (achieves greater reward) than the baseline

algorithms in much fewer iterations. Due to the expensive MPC-based evaluation of

designs and the combinatorial nature of our design space, this sample efficiency is

key to finding high-performing designs in a reasonable amount of time. The efficiency

comes from the ability of the learned heuristic function to generalize knowledge from

explored designs to predict the performance of untested designs and effectively prune

the search space.

Running 2,000 iterations of Graph Heuristic Search requires approximately 31

hours on a 32-core Google Cloud machine (instance type n2-highcpu-32). This

computational intensity is comparable to other state-of-the-art robot design methods.

For example, Neural Graph Evolution [11] is evaluated using 12 hours on a 64-core

machine. Note that we simulate designs with greater numbers of joints on more

complex terrains, resulting in more expensive evaluations. Evaluations account for

approximately 20 hours out of our total run time.

Convergence of Graph Heuristic Search To demonstrate that Graph Heuristic

Search is agnostic to the specific grammar described (the standard grammar), we

optimize robots for flat terrain using two modified grammars. The simple grammar

removes the rules for long limb links and elbow joints (𝑟9 and 𝑟17 in Figure 5-4 re-

spectively), whose functionality is provided by other rules. The asymmetric grammar

114

0 1000 2000 3000 4000 5000
iteration

4.0

4.5

5.0

5.5

6.0

re
w

ar
d

Flat Terrain

algorithm
GHS
MCTS
random

0 1000 2000 3000 4000 5000
iteration

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

re
w

ar
d

Frozen Lake Terrain

algorithm
GHS
MCTS
random

0 1000 2000 3000 4000 5000
iteration

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

re
w

ar
d

Ridged Terrain

algorithm
GHS
MCTS
random

0 1000 2000 3000 4000 5000
iteration

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

re
w

ar
d

Wall Terrain

algorithm
GHS
MCTS
random

Figure 5-7: Training progress comparison with baselines. Cumulative maximum
reward versus iteration for Graph Heuristic Search, Monte Carlo tree search, and random
search on four different terrains. Each solid line is the mean of three different seeds, with
the error band representing the range. Graph Heuristic Search consistently outperforms the
baselines.

115

0 1000 2000
iteration

0.0

0.2

0.4

0.6

0.8

1.0
lo

ss

Training Loss

grammar
standard
simple
asymmetric

0 1000 2000
iteration

0

1

2

3

4

5

er
ro

r

Average Prediction Error

0 1000 2000
iteration

3

4

5

6

re
w

ar
d

Best Reward

Figure 5-8: Training loss, prediction error, and cumulative maximum reward ver-
sus iteration for Graph Heuristic Search on multiple grammars. Robots are opti-
mized for flat terrain. Prediction error is the absolute difference between predicted reward
and evaluated reward, and is averaged over 100 iterations. Each solid line is the mean of
at least three different seeds, with the error band representing the range. Graph Heuristic
Search consistently converges in all three criteria.

increases complexity by allowing opposite limbs to develop independently. Figure 5-8

shows that Graph Heuristic Search consistently converges in training loss, prediction

error, and maximum cumulative reward. More complex grammars require a greater

number of iterations to achieve the same reward.

5.1.6 Summary

Intelligent and efficient generative robot design methods will drive the future of design

processes for robotics. In this work we present a novel approach which leverages a

learning-based method to co-optimize the control and discrete shape topology for

terrain-driven robot. We introduce a Graph Heuristic Search algorithm to search the

combinatorial search space, and couple it with MPC for control evaluation. Unlike

many alternative approaches to generative robot design, this allows us to structure

and limit the design space by applying a graph grammar, whilst allowing creative

solutions to emerge. Importantly, the emergent designs are observably physically

fabricable and there is significant potential for the designs to be translated to real-

world scenarios and environments.

116

5.2 Co-Optimizing Robot Control and Continuous

Shape Morphology: An End-to-End Differentiable

Framework

5.2.1 Motivation

We have shown in the last section how we leverage a graph grammar design space and

a learning-based algorithm to efficiently co-optimize the control and discrete shape

topology for robots. In this section, we focus on how to efficiently co-optimize the

robotic control and its continuous shape morphology with a predefined robot topology.

We demonstrate our approach on the manipulator co-design problems as described

in Section 3.2.

The design, control, and construction of manipulators is the cornerstone of robotics.

Today this process is manual and time-consuming as concurrent design of many dif-

ferent components is required. For example, hardware components and control al-

gorithms are typically constructed sequentially making the integration of different

modules difficult which necessitates many design iterations. Ensuring that the de-

signed manipulator meets the desired specifications is challenging since there is a

complex interplay between the robot design, manufacturing constraints, and the con-

trol algorithm.

Due to the long iteration cycle, in practice, roboticists either (i) explore a rich

design space, but make use of simple control algorithms [123, 124] or (ii) develop

complex algorithms to control existing robots [125, 126, 127]. The end result is

a sub-optimal system for the given task. Co-optimizing both the design and the

control scheme can significantly improve the performance of today’s robotic systems.

One significant challenge is in defining a representation of the robot design that is

amenable to optimization. We have demonstrated in Section 3.2 our deformation-

based robot morphology representation which defines an expressive morphology space

while being computationally inexpensive for inference, flexible (i.e., user can easily

117

Figure 5-9: Manipulator designs before and after optimization. Left column: only
optimizing the control algorithm using a nominal robot design fails to complete the task;
Middle: co-optimization of morphology and control results in success; Right: pictures of
3D-printed manipulators. Our method outputs designs that are easy to print and assemble.

control the degrees of freedom describing the shape by changing the number of cage

handles), and differentiable. We utilize the same shape representation here. Another

challenge in co-optimization is the substantial increase in the number of parameters

to be optimized. We tackle this challenge by presenting an end-to-end differentiable

co-optimization framework for robot design so that we can leverage the analytical

gradients to optimize numbers of parameters efficiently.

Specifically, we exploit the differentiability of the proposed deformation-based

parameterization in Section 3.2, and further develop a differentiable articulated rigid

body simulator for contact-rich tasks. Our simulator is based off the differentiable

simulator introduced in Section 4.1. Additionally, to be able to optimize for the

shape of the robots, we further derive the analytical gradients for a full spectrum of

simulation parameters shown in Table 5.2, including the positions of contact points.

The combination of the proposed deformation-based parameterization and the dif-

118

ferentiable simulator allows us to build an end-to-end differentiable framework (Figure

5-10) for co-optimizing robot morphology and control for contact-rich manipulation

tasks using analytical gradients. We test our framework on multiple manipulation

problems, some of which are shown in Figure 5-9. The experiments show that due to

the key feature of end-to-end differentiability, the proposed method outperforms sev-

eral state-of-the-art gradient-free approaches and model-free reinforcement learning

methods at jointly optimizing the control scheme and the robot morphology.

5.2.2 Method

We now describe our end-to-end differentiable framework for contact-aware robot

co-design. The first part of our framework is the deformation-based design space

detailed in Section 3.2 (shown in top-left block of Figure 5-10). To complete the

whole framework, in Section 5.2.2.1, we describe our differentiable articulated rigid

body dynamics simulation. As shown in the right block of Figure 5-10, the simulation

takes the deformed meshes and a control sequence as input, executes the forward

steps, and computes the objective loss ℒ. By combining the two key techniques

above, in Section 5.2.2.2, we describe our end-to-end framework for robot design.

Since each step is differentiable, the overall framework is differentiable, allowing us

to use a gradient-based optimization method to search for the design parameters and

the controls.

5.2.2.1 Differentiable Articulated Rigid Body Simulation

From the deformation-based parameterization (Section 3.2 and top-left block in Fig-

ure 5-10), we obtain the mesh vertices 𝜓𝑀 . In order to simulate the constructed

morphology, we further convert 𝜓𝑀 into the simulation parameters 𝜓𝑝 through an

analytical function 𝒫 . As shown in Table 5.2, the simulation parameters 𝜓𝑝 include

both kinematics- and dynamics-related parameters. Specifically, the kinematic pa-

rameters are the relative transformations of the joints with respect to their parent

joints, 𝐸𝑗, and the relative transformations of the bodies with respect to their parent

119

HIERARCHICAL DESIGN PARAMETRIZATION SIMULATION EVALUATION

!"!
!""

!"#
!"!

Cage Handles
"!

Meshes
"#

Simulation Parameters
"$

Differentiable
Simulation

Inertia,
joint locations
contact points,
etc. (Table II)!"$

!"#

High-level
Morphology

Parameters ""

Control Sequence " = ("%, "&, … , "')CONTROL

ℋ ℳ &

!ℒ
!$

!ℒ
!"$

ℒ

Figure 5-10: End-to-end differentiable framework for morphology and control co-
optimization. Blue arrows labeled as ℋ,ℳ,𝒫, and ℒ are hierarchical functions that
evaluate the loss function given the high-level morphology parameters, 𝜓𝑐 and controls, 𝑢.
The corresponding green arrows are the derivatives.

joint, 𝐸𝑏; and the dynamic parameters are the generalized inertia, 𝐼, contact point

positions with respect to the bodies, 𝐶𝑏, and surface area for each contact point, 𝑎.

For the generalized inertia, we use cuboids for ease of differentiability, but it is also

possible to use mesh-based inertia. (Note, however, that the 3D printed parts may

not necessarily match the mesh-based inertia, depending on the in-fill.) In order to

acquire the contact points 𝐶𝑏 in the deformed mesh, we presample a uniformly dis-

tributed set of contact points on the surface of each mesh in the rest configuration.

We then track the positions of these presampled contact points through the same

cage-based deformation as the mesh vertices. Thus, the deformation-based param-

eterization provides us with differentiability not only for the mesh but also for the

contact point positions. The approximate contact point area, 𝑎, is used to scale the

magnitude of the frictional contact forces. To compute this parameter, we use the

change in the total surface area of the cage before and after deformation.

In addition to the previous differentiable simulator mentioned in Section 4.1 which

only computes the gradients of the simulation only with respect to control parameters

𝜕ℒ/𝜕𝑢, our simulator also provides the analytical gradients 𝜕ℒ/𝜕𝜓𝑝 for a full spec-

trum of simulation parameters described above. Such extension is non-trivial and is

essential for allowing gradient-based morphology optimization.

Formally speaking, the simulation parameters 𝜓𝑝 and the control sequence 𝑢, are

the input to the differentiable articulated rigid body simulator. Our simulator uses

120

Table 5.2: List of simulation parameters 𝜓𝑝

Type Notation Parameter Description Dimension

Kinematics
𝐸𝑗 Joint transformation SE(3)× 𝑛𝑏
𝐸𝑏 Body transformation SE(3)× 𝑛𝑏

Dynamics

𝐼 Generalized inertia 𝑛DOF

𝐶𝑏 Contact points on body 3× 𝑛𝑐
𝑎 Contact area 𝑛𝑐

reduced coordinates as before (Section 4.1). The dynamics equations are implicitly

integrated in time. We adopted two implicit time integration schemes, BDF1, and

BDF2 (with SDIRK2 for the initial step). Since our simulation dynamics is now

conditioned on the simulation parameters, the simulation dynamics in Eq. 4.3 and

Eq. 4.4 need to be modified accordingly. For brevity, the simulation dynamics with

BDF1 integration scheme is now:

𝑞𝑡 = 𝑞𝑡−1 + ℎ�̇�𝑡

�̇�𝑡 = �̇�𝑡−1 + ℎ𝑞𝑡(𝑞𝑡, �̇�𝑡,𝑢𝑡,𝜓𝑝)

⎫⎬⎭⇒ 𝑞𝑡 − 𝑞𝑡−1 − ℎ�̇�𝑡−1 − ℎ2𝑞𝑡(𝑞𝑡, �̇�𝑡,𝑢𝑡,𝜓𝑝)⏟ ⏞
𝑔(𝑞𝑡−1,�̇�𝑡−1,𝑢𝑡,𝑞𝑡,𝜓𝑝)

= 0

(5.2)

with

𝑞𝑡(𝑞𝑡, �̇�𝑡,𝑢𝑡,𝜓𝑝) = M−1
𝑟 (𝑞𝑡,𝜓𝑝)

[︂
f𝑟(𝑞𝑡, �̇�𝑡,𝜓𝑝)+J⊤(𝑞𝑡,𝜓𝑝)f𝑚(𝑞𝑡, �̇�𝑡,𝜓𝑝)+f𝑄𝑉 𝑉 (𝑞𝑡, �̇�𝑡,𝜓𝑝)+𝑢𝑡

]︂
,

(5.3)

We analytically derive all the derivatives required by these implicit time integration

schemes, and we solve the resulting non-linear equations using Newton’s Method with

line search.

For the optimization, we consider open-loop control sequence instead of control

policy as our control representation. To compute the gradients with respect to the

control variables as well as the simulation parameters, we formulate the co-design

121

optimization problem as follows:

minimize
𝑢,𝜓𝑝

ℒ =
𝐻∑︁
𝑡=1

ℒ𝑡
(︀
𝑢𝑡, 𝑞𝑡, v𝑡(𝑞𝑡,𝜓𝑝)

)︀
(Step-wise Objective) (5.4a)

s.t. 𝑔(𝑞𝑡−1, �̇�𝑡−1,𝑢𝑡, 𝑞𝑡,𝜓𝑝) = 0 (Equations of Motion) (5.4b)

We use the same adjoint method as described in Section 4.1.4 to compute the

simulation derivatives, 𝜕ℒ
𝜕𝜓𝑝

and 𝜕ℒ
𝜕𝑢

.

5.2.2.2 End-to-End Differentiable Co-Design Framework

By combining the proposed deformation-based parameterization and the differentiable

simulator, we build an end-to-end differentiable framework for robot co-design as

shown in Figure 5-10.

Mathematically speaking, our co-design framework starts with a three-layer mor-

phology parameterization ℱ = 𝒫 ∘ℳ ∘ ℋ : R𝑚 → R|𝐻|×3 → R|𝑉 |×3 → R𝑝, where 𝑚

is the number of high-level morphology parameters, |𝐻| is the total number of cage

handles, |𝑉 | is the total number of mesh vertices, and 𝑝 is the number of low-level kine-

matic and dynamic parameters in the simulation. This hierachical parameterization

converts high-level morphology parameters 𝜓𝑐 into low-level simulation parameters

𝜓𝑝, going through three analytically differentiable steps including the morphology

parameterizations ℋ and ℳ in Section 3.2.2, and the simulation parameter compu-

tation 𝒫 in Section 5.2.2.1:

𝜓𝑝 = 𝒫(𝜓𝑀), 𝜓𝑀 =ℳ(𝜓ℎ), 𝜓ℎ = ℋ(𝜓𝑐). (5.5)

The differentiability of each step allows us to efficiently compute the derivatives from

the simulation parameters 𝜓𝑝 all the way to the high-level morphology parameters 𝜓𝑐

through the chain rule:
𝜕𝜓𝑝
𝜕𝜓𝑐

=
𝜕𝜓𝑝
𝜕𝜓𝑀

𝜕𝜓𝑀
𝜕𝜓ℎ

𝜕𝜓ℎ
𝜕𝜓𝑐

. (5.6)

122

The framework then proceeds with the simulation described in Section 5.2.2.1 with

the simulation parameters 𝜓𝑝 and a control sequence 𝑢 as input, and computes the

task-specific objective loss ℒ. As our simulator is differentiable with respect to both

the kinematic/dynamic parameters and control variables, we are able to compute

the analytical derivatives 𝜕ℒ
𝜕𝜓𝑐

= 𝜕ℒ
𝜕𝜓𝑝

𝜕𝜓𝑝

𝜕𝜓𝑐
and 𝜕ℒ

𝜕𝑢
for the full framework efficiently.

With the analytical derivatives calculated, we can use any gradient-based optimizer

(e.g., L-BFGS-B) to co-optimize the control and continuous morphology parameters.

5.2.3 Experiments

5.2.3.1 Implementation

We implemented our differentiable rigid body simulation in C++ and the deformation-

based design parameterization in Python. The two components of the code are con-

nected through Python bindings. The control sequence input to the simulation con-

sists of the torques applied to the joints at each simulation time step. In all the

tasks shown in below, we use L-BFGS-B [128] for co-optimization with our analytical

derivatives, 𝜕ℒ/𝜕𝜓𝑐 and 𝜕ℒ/𝜕𝑢.

Table 5.3: List of hyper-parameters for each example.
Task ∆𝑡𝑠 𝑛𝑡 𝑛𝑐𝑡𝑟𝑙 |𝑢| |𝜓𝑐| |𝜓𝑝|

Finger Reach 0.005 600 20 120 9 376

Flip Box 0.005 150 5 180 9 1478

Rotate Rubik’s Cube 0.005 200 5 240 9 1478

Assemble 0.001 500 5 800 17 1226

Free-form Gripper 0.005 400 1 - 396 9228

5.2.3.2 Morphology and Control Co-Optimization

Tasks In order to test the performance of our differentiable contact-aware co-optimization

framework, we designed four manipulation tasks as shown in Figure 5-12, consisting

of three single-finger tasks and one two-finger task:

123

1) Finger Reach: In this task, the base of the finger is mounted on the wall, and the

finger is required to reach four scattered target points in the space sequentially.

The initial design of the finger is not long enough to reach two of them. Thus

it requires the algorithm to optimize to finger to be longer in order to reach all

four points. The cost ℒ of this task is computed by:

ℒ =
𝑇∑︁
𝑡=1

𝑐𝑢‖𝑢𝑡‖2 + 𝑐𝑝‖𝑝𝑡 − 𝑝𝑡‖ (5.7)

with 𝑐𝑢 = 0.1, 𝑐𝑝 = 10

where 𝑢𝑡 ∈ [−1, 1] is the action at time 𝑡, 𝑝𝑡 is the finger tip position at time 𝑡,

and 𝑝𝑡 is the target points at time 𝑡.

2) Flip Box : This task requires the finger to flip a heavy box by 90∘ and be as

energy-efficient as possible. The bottom front edge of the heavy box is attached

to the ground with a revolute joint. This task is more difficult than the previous

one since the finger needs to interact with the box, which involves a rich amount

of contacts and requires leverage of the contact force to flip the heavy box. The

cost of this task is computed by:

ℒ =
𝑇∑︁
𝑡=1

𝑐𝑢‖𝑢𝑡‖2 + 𝑐𝑡𝑜𝑢𝑐ℎ‖𝑝𝑡 − 𝑝𝑡𝑜𝑢𝑐ℎ‖2 + 𝑐𝑓𝑙𝑖𝑝‖𝜃𝑡 −
𝜋

2
‖2 (5.8)

with 𝑐𝑢 = 5, 𝑐𝑡𝑜𝑢𝑐ℎ =

⎧⎨⎩ 1 𝑡 < 𝑇/2

0 𝑡 ≥ 𝑇/2
, 𝑐𝑓𝑙𝑖𝑝 = 50

where 𝑢𝑡 ∈ [−1, 1] is the action at time 𝑡, 𝑝𝑡 is the finger tip position at time 𝑡,

𝑝𝑡𝑜𝑢𝑟𝑐ℎ is a point on the back surface of the box, and 𝜃𝑡 is the rotation angle of

the box at time 𝑡. The second term is designed to encourage the manipulator

to touch the box and provide some simple heuristics of solving the task.

3) Rotate Rubik’s Cube: A finger is required to rotate the top layer of a Rubik’s

cube by 90∘. The bottom of the Rubik’s cube is fixed on the ground. In this

task, there is no clear heuristics in the objective function to guide the finger to

124

touch a specific place on the cube, so the finger needs to be optimized to find

the correct strategy. The cost of this task is defined by:

ℒ =
𝑇∑︁
𝑡=1

(︀
𝑐𝑢‖𝑢𝑡‖2 + 𝑐𝑡𝑜𝑢𝑐ℎ‖𝑝𝑡 − 𝑝𝑐𝑢𝑏𝑒‖2

)︀
+ 𝑐𝑟𝑜𝑡𝑎𝑡𝑒‖𝜃𝑇 −

𝜋

2
‖2 (5.9)

with 𝑐𝑢 = 5, 𝑐𝑡𝑜𝑢𝑐ℎ = 0.1, 𝑐𝑟𝑜𝑡𝑎𝑡𝑒 = 1000

where 𝑢𝑡 and 𝑝𝑡 are same as previous tasks, 𝑝𝑐𝑢𝑏𝑒 is the center of the Rubik’s

cube, and 𝜃𝑇 is the rotation angle of the top layer of the cube at the last time

step.

4) Assemble: Two fingers need to collaborate to push and insert a small cube into

its movable mount. The cube and the hole on the mount have similar sizes, mak-

ing the task much more challenging and requiring high-accuracy manipulation.

Moreover, the movable mount needs to stay as close as possible to the original

position to mimic a restricted working platform environment. The two fingers

are mounted on a manipulator base that is allowed to move in the horizontal

plane. The cost of this task is computed as:

ℒ =
𝑇∑︁
𝑡=1

𝑐𝑚𝑜𝑢𝑛𝑡‖𝑝𝑀𝑡 − 𝑝𝑀0 ‖2 + 𝑐𝑡𝑜𝑢𝑐ℎ(‖𝑝𝑙𝑒𝑓𝑡𝑡 − 𝑝𝑀𝑡 ‖2 + ‖𝑝
𝑟𝑖𝑔ℎ𝑡
𝑡 − 𝑝𝑏𝑜𝑥𝑡 ‖2)

+ 𝑐𝑝‖𝑝𝑏𝑜𝑥𝑡 − 𝑝ℎ𝑜𝑙𝑒‖2 + 𝑐𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛‖𝜃𝑀𝑡 − 𝜃𝑏𝑜𝑥𝑡 ‖2 (5.10)

with 𝑐𝑚𝑜𝑢𝑛𝑡 = 15, 𝑐𝑡𝑜𝑢𝑐ℎ = 1, 𝑐𝑝 = 5, 𝑐𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = 50

where 𝑝𝑀𝑡 is the position of the movable mount at time 𝑡, 𝑝𝑙𝑒𝑓𝑡𝑡 and 𝑝𝑟𝑖𝑔ℎ𝑡𝑡 are the

finger tip positions of left finger and right finger at time 𝑡, 𝑝𝑏𝑜𝑥𝑡 is the position

of the small box at time 𝑡, 𝜃𝑀𝑡 and 𝜃𝑏𝑜𝑥𝑡 are the rotation angle of the mount and

the box. The first term is used to penalize moving the mount too far away from

the original place, the second term is designed to encourage the fingers to touch

on the objects (but not indicate any specific position on the object), and the

third term and the last term together is to measure how well the box is inserted

into the mount.

125

Figure 5-11: Optimization curves comparison. We run all the methods on all tasks 5
times with different random seeds. Mean and standard deviation in the loss objective are
reported. The horizontal axis of each plot is the number of simulation episodes, and vertical
axis is the objective loss value. L-BFGS-B optimization can terminate early once it satisfies
the termination criterion. For better visualization, we extend the actual learning curves
that use L-BFGS-B horizontally using dotted lines. We also smooth out the curves with a
window size of 10.

The hyper-parameters of each task are listed in Table 5.3, where ∆𝑡𝑠 is the simu-

lation time steps size, 𝑛𝑡 is the total number of simulation steps of the task, |𝑢| and

|𝜓𝑐| are the total numbers of control and morphology variables in optimization respec-

tively, and |𝜓𝑝| is the number of simulation parameters. We optimize for the control

signals not every simulation step but every 𝑛𝑐𝑡𝑟𝑙 steps, giving us |𝑢| = (𝑛𝑡/𝑛𝑐𝑡𝑟𝑙) · |𝑢𝑖|

where |𝑢𝑖| is the number of control degrees of freedom of the robot.

Baselines We adopted the following three baseline algorithms for comparison.

126

(1) (2)

(3) (4)

Figure 5-12: Optimized designs and controls for four manipulator tasks. (1) Finger
Reach. (2) Flip Box. (3) Rotate Rubik’s Cube. (4) Assemble. More visual results are
provided in the supplementary video.

1) ES : Evolutionary strategy is widely used to search for optimal design and con-

trol parameters for robots [15, 16]. We tried various ES algorithms in the

open-sourced Nevergrad library [129] and found that the (1 + 1)-ES [130, 131]

algorithm and CMA-ES [132] work best on the proposed tasks.

2) RL: Luck et al. [20] is one of the state-of-the-art morphology and control co-

optimization approaches using sample-efficient reinforcement learning (soft ac-

tor critic, SAC) algorithm and particle swarm optimization. We used their

released implementation as a baseline.

3) Control Only : In this algorithm, we freeze the morphology parameters and only

optimize the control sequence with L-BFGS-B.

Experiment Setup We use the same morphology parameterization for baselines

and our method. The control parameter for the RL baseline is a neural network con-

troller (a policy network) as proposed by Luck et al. [20], and is an open-loop control

sequence for all other methods. We try both ES algorithms due to their different per-

formances on different tasks. For fair comparison, we finetune the parameters of ES

and RL baselines and run the experiments with the best-performing parameters. For

the Control Only baseline and our method, we use the default parameters provided

in the Scipy’s L-BFGS-B optimizer. While our method can solve the Assemble task

with a high success rate, we found that the loss objective can be further decreased by

127

Table 5.4: Normalized Metric Comparison. We design the task-related metrics to
measure how successful each method performs on the tasks. For Finger Reach task, the
metric is the time-averaged distance to the target tracking points. For Flip Box and Rotate
Rubik’s Cube, the metrics are the flipping/rotating angle error at the end of the task. For
Assemble, we measure the distance between the center of the small box and the center of
the hole on the movable mount. All the metrics are normalized.

Task Finger Reach Flip Box Rotate Rubik’s Cube Assemble

CMA-ES 0.39± 0.02 0.00± 0.00 0.02± 0.01 0.28± 0.03

(1+1)-ES 0.35± 0.04 0.69± 0.39 0.87± 0.15 0.39± 0.09

RL 0.61± 0.05 0.41± 0.48 0.79± 0.31 0.91± 0.11

L-BFGS-B (Control Only) 0.41± 0.00 1.00± 0.00 0.42± 0.39 0.77± 0.03

L-BFGS-B (Ours) 0.17± 0.01 0.00± 0.00 0.07± 0.09 0.12± 0.11

using a continuation method [133, 35]. Specifically, on the Assemble task, we scale

down the contact forces at the beginning of the optimization to provide a smoother

objective function space, and scale it up as the optimization proceeds. We set three

stages with contact force scale equal to 0.01, 0.1 and 1, and start the next optimiza-

tion stage once the previous stage converges. To apply the continuation method on

the baseline algorithms, we fix the number of simulations in each stage and proceed

to the next stage after the previous stage uses up the budget. We run all the baseline

algorithms with and without continuation method on Assemble task, and plot the

best performing one. We run all the methods on each task for five times with dif-

ferent random seeds and plot the average training curves in Figure 5-11. We further

measure the successfulness of the tasks for each method by task-related metrics, and

report in the Table 5.4.

Results The results show that our differentiable co-optimization framework is

able to find better morphology and control solutions with significant better sample

efficiency (10-30 times fewer simulated episode data) compared to the gradient-free

ES baselines and model-free RL baseline. On Finger Reach task, while most methods

(except Control Only) find a finger configuration that can reach the four target points,

our method can find a morphology and a control sequence that can track the target

points most accurately. On the most challenging and contact-rich task, Assemble, our

method is the only one that is able to solve the task successfully.

128

We also performed an ablation study on the importance of morphology design

by comparing the performance of our method and a Control Only baseline. The

significant performance gain of our method over Control Only baseline reveals that

incorporating the optimization of morphology design leads to easier optimization

and better solutions. We show some of the optimized morphology designs from our

method in Figure 5-12. On the Flip Box task, the optimized morphology has a hook-

like structure at the finger tip, so that it is able to hook on the back surface of the box

to flip over the box more easily. For the Assemble task, the optimized morphology

has fingers of different lengths, so that the long right finger is able to push the smaller

cube while the short left finger can hold the mount. Moreover, the design has flat

and larger fingers, which allows the manipulator to push the object much more stably

than a thin finger. More visual results can be found in our supplementary video.

5.2.3.3 Flexibility of the Morphology Parameterization

By adding more cage handles, we can easily increase the degrees of freedom for the

morphology design. We show such flexibility of our deformation-based morphology

parameterization in this section using a free-form gripper task motivated by Ha et al.

[24]. As shown in Figure 5-13, the algorithm needs to optimize the shape of a pair

of gripper fingers such that the gripper can grasp a diamond-like object using a

predefined control sequence. Each finger starts with a cube-like shape and is optimized

with free-form deformation.

To support deformation in higher degrees of freedom (DoF), we add more handles

on the cage around each gripper finger. To show the advantage of using a deformation

cage based parameterization, we compare it to a differentiable mesh-based parameter-

ization (similar to the Truncated Signed Distance Function (TSDF) parameterization

used in Ha et al. [24]) which directly optimize over the vertex positions of the mesh.

For both parameterization methods, we only optimize the handles/mesh vertices on

the inner side for each gripper finger as shown in Figure 5-13 (bottom row). We

test both parameterization methods in our differentiable framework, and conduct 30

129

(a) (b)

Figure 5-13: Free-form Gripper: The task is to pick up the object, as shown in the top row.
We compare deformation-based parameterization (ours) and mesh-based parameterization.
The optimization variables and optimized gripper morphology for the left gripper finger
using both methods are shown in the bottom row. (a) our parameterization method : all the
cage handles are shown on the left sub-figure and the ones used as optimization variables are
highlighted in red. (b) mesh-based parameterization: we allow the optimization to directly
optimize all the mesh vertices highlighted in red in the left sub-figure. In both cases, we do
not modify the areas near the top of the gripper. The gripper morphology generated by our
method is much smoother.

independent experiments for each method with different initial parameters.

Even though our deformation cage based parameterization has a much smaller

optimization space and DoFs (396 optimization variables in the grasping task) than

the mesh-based parameterization (8946 variables), our method is able to generate

comparable success rates on the grasping task than the mesh-based parameterization

(ours: 97%, mesh: 100%), and achieve better average loss (plot shown in Figure 5-14).

Moreover, as shown in the Figure 5-13, our method is able to generate much smoother

morphologies than the mesh parameterization which creates many reverted triangles

on the mesh. Such advantage comes from the smoothness and feature-preserving

properties of the cage-based deformation method.

130

0 50 100 150 200 250 300
Episodes

500

1000

1500

2000

2500

Lo
ss

Free-form Gripper
Ours
Mesh Parameterization

Figure 5-14: Optimization curve comparison for Free-form Gripper task. The
horizontal axis is the number of simulation episodes during optimization, and the vertical
axis is the loss value. The experiment results are averaged from 30 independent optimization
runs with different initial guesses.

5.2.3.4 Manufacturing of Optimized Designs

We manufactured two optimized finger models from our method, one generated by the

Flip Box task and the other generated by the Assemble task, as shown in Figure 5-9.

The finger components were 3D printed on a Markforged printer using Onyx, a micro

carbon fiber filled nylon, and assembled together after print. Minimal modification

was required to prepare the program-generated models for printing, demonstrating

a streamlined design process. This shows that our deformation-based morphology

paramterization successfully maintains design manufacturability.

We further tested the functionality of the manufactured finger for the Flip Box

task. Vectran cables were routed through the 3D printed finger and controlled by

dynamixel DC servos at the base of the finger. The tendon-driven finger system was

then mounted on a UR5 arm. We manually programmed a control sequence on the

dynamixel motors and the UR5 arm to follow a series of waypoints from the trajectory

optimized by the algorithm. The experiment shows that the manufactured finger can

effectively flip the cube in real world. We also test the robustness of the optimized

131

(a) (b) (c)

Figure 5-15: Test the optimized Flip Box manipulator design in real. We test the
robustness of the optimized design on the boxes of various sizes (a) 5 cm, (b) 5.5 cm, (c) 6
cm. Our manufactured design is able to successfully flip those boxes.

design on the cubes of various sizes and the experiment demonstrates that the finger

can also perform the flipping tasks successfully. Please see the supplementary video

of the associated paper for this real-world experiment.

5.2.4 Summary

In this work, we present an end-to-end differentiable framework for contact-aware

robot designs. We focus on co-optimizing an open-loop control sequence and the

continuous shape morphology parameters of the manipulator designs. At the core

of our contribution is a novel deformation-based morphology parameterization for

articulated robot designs, and a differentiable rigid body simulation carefully devel-

oped for contact-rich manipulation tasks. The experiments show that our innovative

morphology parameterization approach provides us with an effective and expressive

morphology design space. We also demonstrate that for a given manipulation task, by

applying gradient-based optimization algorithm in our fully differentiable framework,

our method is able to find a better morphology and control combination with sig-

nificantly fewer number of simulation episodes than the state-of-the-art approaches.

Furthermore, the optimized designs can be easily manufactured and are functional in

real world.

Our deformation-based parameterization allows us to reuse the cages and the

precomputed deformation weights for each individual component across different ma-

nipulator structures. By combining our discrete shape representation and the con-

132

tinuous shape representation, the hybrid shape representation (Seciton 3.3) enables

the potential research on manipulator structure optimization in the future. It is also

worth mentioning that while our examples only show the components with identical

connection surfaces, it is not a limitation of our proposed deformation-based pa-

rameterization. One can easily applies our method for components with connection

surfaces of different sizes by constructing proper cages for them.

133

134

Chapter 6

Multi-Objective Robot Optimization

The problems we have discussed so far are all defined as single-objective tasks, where

the solution are optimized to maximize/minimize one single-objective performance

metric. For example, in Section 4.1, we optimize the control policy for the manipulator

to maximize its box pushing performance, and similarly in Section 5.1, we construct

the algorithm that can find the optimal terrestrial robot structure to run as fast as

possible on one specific terrain. However, most physical tasks in the real world are

indeed evaluated by multiple metrics. In most cases, those different metrics/objectives

are even conflicting to each other. For example, when we evaluate the driving skill of

a driver, we will take into consideration both the speed and the safety of her driving.

Similar analogy exists in the robotic control problems. For example, when design-

ing a control policy for a running quadruped robot, we need to consider two conflicting

objectives: running speed and energy efficiency. In contrast to a single-objective envi-

ronment, which measures performance using a single scalar value and where a single

best solution exists, with a multi-objective problem, performance is measured using

multiple objectives, and multiple optimal solutions exist. One optimal policy may

prefer high speed at the cost of lower energy efficiency, whereas another optimal pol-

icy might prefer high energy efficiency at the cost of lower speed. In general, many

optimal policies exist depending on the chosen trade-off between these two metrics.

135

Therefore, in such a multi-objective control problems, we are interested in the Pareto

Optimal set of the control policies rather than a single optimal solution.

It is the same for the robot shape optimization problems. In general, we would

like to find the robot shape/structure that is able to complete multiple tasks. For

example, for a terrestrial robot, we may want it to have fast forward running speed, to

have energy efficient gaits, and to be able to climb rough terrains. However, because

form informs function and vice versa, it is natural that different robot designs will

be better at different tasks and rarely will a single design be best at all tasks. Thus,

an ideal co-design algorithm needs to extract robots with optimal trade-offs across

different design objectives; i.e. the Pareto set of robot designs for the tasks at hand.

In this chapter, we present two techniques towards solving the multi-objective op-

timization problems for robots. In Section 6.1, we tackle the multi-objective control

optimization problem where we efficiently find a set of Pareto Optimal control policies

trading off different performance objectives and further show how to construct a con-

tinuous Pareto set representation by conducting Pareto analysis. In Section 6.2, we

extend the Graph Heuristic Search algorithm in Section 5.1 to a multi-objective sce-

nario, where the extended algorithm is able to find a set of terrestrial robot structure

designs which are on the Pareto set of several different locomotion skills.

6.1 Prediction-Guided Multi-Objective Control Pol-

icy Learning

6.1.1 Motivation

Multi-objective problems have received significant attention because most real-world

scenarios involve making trade-offs with respect to different performance metrics.

This is especially true in robotic control, in which the notion of performance usually

involves different conflicting objectives. For example, when designing a control pol-

icy for a running quadruped robot, we need to consider two conflicting objectives:

136

RN

Parameter	Space Performance	Space
f1

f2

Figure 6-1: Parameter space and performance space of the Pareto policies. (Left)
The Pareto set is composed from a disjoint set of policy families in the 𝑁 dimensional
parameter space. (Right) The policies from each family map to a continuous segment on
the Pareto front in the performance space.

running speed and energy efficiency. In contrast to a single-objective environment,

which measures performance using a single scalar value and where a single best solu-

tion exists, with a multi-objective problem, performance is measured using multiple

objectives, and multiple optimal solutions exist. One optimal policy may prefer high

speed at the cost of lower energy efficiency, whereas another optimal policy might

prefer high energy efficiency at the cost of lower speed. In general, many optimal

policies exist depending on the chosen trade-off between these two metrics. In the

end, a human is responsible for selecting the preference among different metrics, and

this determines the corresponding optimal policy.

One popular way of solving multi-objective control problems is to compute a meta

policy [95]. A meta policy is a general policy that is not necessarily optimal but can

be relatively quickly adapted to different trade-offs between performance objectives.

Unfortunately, such adapted control policies are not necessarily optimal. For instance,

adapting a general meta control policy for a quadruped robot to run as fast as possible

will often result in a suboptimal policy for this metric.

In this work, we show that an effective representation for obtaining the best per-

formance trade-offs for multi-objective robot control is a Pareto set of control policies.

We empirically show that a Pareto set cannot be effectively represented using a single

continuous policy family. Rather, a Pareto set is composed from a set of disjoint

137

policy families, each occupying a continuous manifold in the parameter space and

being responsible for a segment on the Pareto front in the performance space (Figure

6-1).

To find such Pareto representations, we propose an efficient algorithm to compute

the Pareto set of policies. Our algorithm works in two steps. In the first step, we find

a dense and high-quality set of policies on the Pareto front using reinforcement learn-

ing strategies based on a novel prediction-guided evolutionary learning algorithm. In

each generation, an analytical model is fitted for each policy to predict the expected

improvement along each optimization direction. An optimization problem is then

solved to select the policies and the associated optimization directions that are ex-

pected to best improve the quality of the Pareto. In the second step, we conduct a

Pareto analysis on the computed Pareto-optimal policies to identify different policy

families and to compute a continuous representation for each of these policy families.

In order to benchmark our proposed algorithm, we design a set of multi-objective

robot control problems with a continuous action space. The performance of each

policy can be evaluated using a physics-based simulation system [27]. Our exper-

iments demonstrate that the proposed algorithm can efficiently find a significantly

higher-quality set of Pareto-optimal policies than existing methods. Moreover, based

on these policies it can reconstruct continuous policy families that span the whole

Pareto front.

In overall, we propose our main technical contributions: a prediction-guided evo-

lutionary learning algorithm for multi-objective control problems, and a Pareto anal-

ysis tool to construct a continuous Pareto representation. The preliminaries and

background is introduced in Section 6.1.2, an overview of the algorithm is provided

in Section 6.1.3, and the details of our main contributions are described in Sections

6.1.4-6.1.5. Extensive experiments are conducted and analyzed in Section 6.1.6.

138

6.1.2 Preliminaries

6.1.2.1 Multi-Objective Markov Decision Process

A multi-objective control problem can be formulated as a multi-objective Markov

Decision Process (MOMDP), which is defined by the tuple ⟨𝒮,𝒜,𝒫 ,𝑅,𝛾,𝒟⟩ with

state space 𝒮, action space 𝒜, state transition probability 𝒫(𝑠′ | 𝑠, 𝑎), vector of

reward functions 𝑅 = [𝑟1, ..., 𝑟𝑚]
⊤ with 𝑟𝑖 : 𝒮 × 𝒜 → R, vector of discount factors

𝛾 = [𝛾1, ..., 𝛾𝑚]
⊤ ∈ [0, 1]𝑚, initial state distribution 𝒟, and the number of objectives

𝑚.

In MOMDPs, a policy 𝜋𝜃 : 𝒮 → 𝒜 is associated with a vector of expected returns

𝐽𝜋 = [𝐽𝜋1 , ..., 𝐽
𝜋
𝑚]

𝑇 , where

𝐽𝜋𝑖 = E

[︃
𝑇∑︁
𝑡=0

𝛾𝑡𝑖𝑟𝑖(𝑠𝑡, 𝑎𝑡) | 𝑠0 ∼ 𝒟, 𝑎𝑡 ∼ 𝜋𝜃(𝑠𝑡)

]︃
.

The state 𝑠𝑡+1 is reached from state 𝑠𝑡 by action 𝑎𝑡, and 𝑇 is the horizon. We use 𝜋

for 𝜋𝜃 for brevity.

6.1.2.2 Multi-Objective Optimization

A multi-objective optimization problem is formulated as:

max
𝜋

F(𝜋) = max
𝜋

[𝑓1(𝜋), 𝑓2(𝜋), ..., 𝑓𝑚(𝜋)],

where 𝑚 is the number of objectives, 𝜋 is the policy, and in our problem 𝑓𝑖(𝜋) = 𝐽𝜋𝑖 .

In multi-objective optimization problems, no single optimal policy exists that

maximizes all the objectives. Instead a set of non-dominated solutions called the

Pareto set is desired:

Definition 6.1.1 (Pareto optimality) We say policy 𝜋 dominates policy 𝜋′ if 𝐹 (𝜋) ≥

𝐹 (𝜋′) and 𝐹 (𝜋) ̸= 𝐹 (𝜋′). A policy 𝜋 is Pareto optimal if and only if it is not

139

f1

f 2

Pareto front
reference point
Pareto approximation

(a) Hypervolume metric

f1

f 2

d0

d1

d2

Pareto front
Pareto approximation

(b) Sparsity metric

Figure 6-2: Pareto Metrics. (a) Hypervolume metric in 2-objective space is the area
(shaded) dominated by the Pareto front approximation and dominating the reference point.
(b) Sparsity metric in 2-objective space measures the average square distance between con-
secutive points in Pareto approximation. In this case, 𝒮 = 1

3(𝑑
2
0 + 𝑑21 + 𝑑22).

dominated by any other policies. The set of all such policies is called the Pareto set,

and the image of the Pareto set in the objective space is called the Pareto front.

Since the true (optimal) Pareto set is usually impossible to obtain in complex

problems, the goal of multi-objective optimization is to find the set of solutions that

best approximates the optimal Pareto set. To measure the quality of an approximated

Pareto front, two factors are usually considered [134]: the convergence towards the

true Pareto front and the uniformity of the solution distribution, which are best

measured by hypervolume metric [135] (illustrated in Figure 6-2(a)):

Definition 6.1.2 (Hypervolume metric) Let 𝑃 be a Pareto front approximation in

an 𝑚-dimensional objective space and 𝑟 ∈ R𝑚 be the reference point. Then the

hypervolume metric ℋ(𝑃) is

ℋ(𝑃) =
∫︁
R𝑚

1𝐻(𝑃)(𝑧)𝑑𝑧, (6.1)

where 𝐻(𝑃) = {𝑧 ∈ 𝑍 | ∃1 ≤ 𝑖 ≤ |𝑃 | : 𝑟 ⪯ 𝑧 ⪯ 𝑃 (𝑖)}. 𝑃 (𝑖) is the 𝑖-th solution in 𝑃 ,

140

f2 f2 f2 f2
c2A

f1 f1 f1 f1

0 b 1

Warm-up Stage Evolutionary Stage Pareto Analysis Stage

Previous Solution Current Population RLUnselected Predicted Offspring Selected Predicted Offspring Prediction

Continuous Pareto Frontt-SNE, k-means

Prediction Model

Figure 6-3: Overview of the algorithm. Warm-up stage: optimize 𝑛 initial policies
with different weights. Evolutionary stage: build an improvement prediction model for each
policy and solve a prediction-guided optimization to select 𝑛 best policy-weight pairs to
be processed. The resulting polices are used to update the population and the prediction
models. Pareto analysis stage: identify different policy families and construct a continuous
Pareto representation.

⪯ is the relation operator of objective dominance, and 1𝐻(𝑃) is a Dirac delta function

that equals 1 if 𝑧 ∈ 𝐻(𝑃) and 0 otherwise.

A dense policy set is always preferred for better Pareto approximation. Therefore,

a sparsity metric is also defined to measure that property (illustrated in Figure 6-2(b)):

Definition 6.1.3 (Sparsity metric) Let 𝑃 be a Pareto front approximation in an

𝑚-dimensional objective space. Then the Sparsity metric 𝒮(𝑃) is

𝒮(𝑃) = 1

|𝑃 | − 1

𝑚∑︁
𝑗=1

|𝑃 |−1∑︁
𝑖=1

(𝑃𝑗(𝑖)− 𝑃𝑗(𝑖+ 1))2, (6.2)

where 𝑃𝑗 is the sorted list for the 𝑗-th objective values in 𝑃 , and 𝑃𝑗(𝑖) is the 𝑖-th value

in this sorted list.

In a word, a desired Pareto set approximation is expected to have high hypervol-

ume metric and low sparsity metric.

6.1.3 Algorithm Overview

As shown in Figure 6-3 and Algorithm 3, we propose an efficient algorithm to compute

the Pareto set of policies. Our algorithm starts from a warm-up stage. In this stage,

141

𝑛 policies are randomly initialized, and each of them is optimized by multi-objective

policy gradient (MOPG) (Algorithm 4 and Section 6.1.4.1) with one of 𝑛 evenly

distributed non-negative weights {𝜔𝑖} (
∑︀

𝑗 𝜔𝑖,𝑗 = 1, 1 ≤ 𝑖 ≤ 𝑛) for a specified number

of iterations. The resulting policies form the first generation of the policy population.

The warm-up stage is crucial for the whole algorithm to get the initial policies out

of the low-performance region, where the learning process is usually highly noisy and

unpredictable.

Next, the algorithm proceeds with the evolutionary stage. In each generation, an

analytical model for each policy in the population is learned from past reinforcement

learning data to predict the expected improvement along each optimization weight

(Section 6.1.4.2). This prediction model is then used to guide a selection optimization

algorithm to select 𝑛 policy-weight pairs (we call RL tasks), which are expected to

improve the quality of the Pareto set the most (Section 6.1.4.3). Finally, the selected

tasks are optimized by multi-objective policy gradient algorithms for a fixed number

of iterations in parallel to produce the new offspring policies, which are used to

update the policy population. For the population update, we adopt the performance

buffer strategy [136] to maintain the performance and diversity of the solutions. The

evolutionary stage terminates when reaching the maximum number of generations.

Through the whole evolutionary stage, an external Pareto archive is maintained to

store all non-dominated intermediate policies and output as the approximated Pareto

set when the evolutionary stage ends.

Once a discrete set of Pareto policies has been found, the algorithm conducts a

Pareto analysis on the computed policies to identify different policy families, and then

a continuous representation of the Pareto set is extracted by intra-family interpolation

(Section 6.1.5).

142

Algorithm 3: Prediction-Guided MORL Algorithm
Input: #parallel tasks 𝑛, #warm-up iterations 𝑚𝑤, #task iterations 𝑚𝑡,
#generations 𝑀 .
Initialize population 𝒫 , external pareto archive EP, and RL history record ℛ.
▷ Warm-up Stage
Generate task set 𝒯 = {(𝜋𝑖,𝜔𝑖)}𝑛𝑖=1 by random initial policies and evenly
distributed weight vectors.
𝒫 ′ ← MOPG(𝒯 ,𝑚𝑤,ℛ) (Section 6.1.4.1)
Update 𝒫 and EP with 𝒫 ′.
▷ Evolutionary Stage
for 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛← 1, 2, ...,𝑀 do

Fit improvement prediction models {Δ𝑖} for each policy in 𝒫 from data in ℛ.
(Section 6.1.4.2)
𝒯 ←TaskSelection(𝑛,𝒫 , {Δ𝑖}, EP) (Section 6.1.4.3)
𝒫 ′ ← MOPG(𝒯 ,𝑚𝑡,ℛ) (Section 6.1.4.1)
Update 𝒫 and EP with 𝒫 ′.

end for
▷ Pareto Analysis Stage
Compute families in EP and construct a continuous Pareto representation.
(Section 6.1.5)
Output: The continuous Pareto representation.

6.1.4 Prediction-Guided MORL

6.1.4.1 Multi-Objective Policy Gradient

Given a policy 𝜋𝜃 and a weight vector 𝜔(
∑︀

𝑖 𝜔𝑖 = 1), our multi-objective policy

gradient worker aims to optimize the policy to maximize the weighted-sum reward

𝒥 (𝜃,𝜔):

𝒥 (𝜃,𝜔) = 𝜔⊤F(𝜋) =
𝑚∑︁
𝑖=1

𝜔𝑖𝑓𝑖(𝜋) =
𝑚∑︁
𝑖=1

𝜔𝑖𝐽
𝜋
𝑖 .

The most straight forward way is converting the environment from returning a

vector of rewards into a scalar weighted-sum reward, regarding it as a single-objective

control problem, and solving it with any single-objective policy gradient algorithm.

Most policy gradient algorithms simultaneously learn a value function 𝑉 (𝑠) and a

policy network 𝜋(𝑎|𝑠). The value function receives the current state 𝑠 and estimates

143

the expected return (expected weighted-sum return here) under following the current

policy and is used to lower the training variance.

However, with our evolutionary learning algorithm, a policy will be selected to be

optimized with different weights during the whole learning process. It is inefficient to

simply modify the environment to return a scalar weighted-sum reward and optimize

the policy by a single-objective policy gradient algorithm. With this naive approach,

the value network trained with previous weights would be invalid for the new weight

and would need to be trained from scratch. Therefore, we improve the single-objective

policy gradient algorithm by extending the value function to be vectorized, which

shares a similar strategy as applied in multi-objective Q-learning [97].

Specifically, the vectorized value function 𝑉 𝜋(𝑠) maps a state 𝑠 to the vector

of expected returns under the current policy 𝜋. In this way, the value function is

still valid when the optimization weight changes and can be directly used to train

the policy for the new weight and quickly adapt its output to the new policy. The

parameters of the value function are updated by Bellman Equation with a squared-

error loss ‖𝑉 𝜋(𝑠𝑡)− 𝑉 (𝑠𝑡)‖2. 𝑉 (𝑠𝑡) is the target value and computed by:

𝑉 𝜋(𝑠𝑡) = 𝑉 (𝑠𝑡) =
∑︁
𝑢

𝜋(𝑢|𝑠𝑡)(𝑅(𝑠𝑡) + 𝛾𝑉 𝜋(𝑠𝑡+1)),

where 𝑅(𝑠𝑡) is the multi-objective reward vector of state 𝑠𝑡, and 𝑠𝑡+1 is reached from

state 𝑠𝑡 by action 𝑢.

144

Algorithm 4: MOPG
Input: task set 𝒯 , #iterations 𝑚, RL history record ℛ.
Initialize offspring population 𝑃 ′.
for all task (𝜋𝑖,𝜔𝑖) ∈ 𝒯 do

Run multi-objective policy gradient for task (𝜋𝑖, 𝜔𝑖) for 𝑚 iterations by Eq.
6.3.
Collect the result policy 𝜋′

𝑖 in 𝑃 ′.
Store (F(𝜋𝑖),F(𝜋

′
𝑖),𝜔𝑖) in ℛ.

end for
Output: Offspring population 𝒫 ′.

To update the policy, the policy gradient is extended to be:

∇𝜃𝒥 (𝜃,𝜔) =
𝑚∑︁
𝑖=1

𝜔𝑖∇𝜃𝐽𝑖(𝜃)

=
𝑚∑︁
𝑖=1

𝜔𝑖E

[︃
𝑇∑︁
𝑡=0

𝐴𝜋𝑖 (𝑠𝑡, 𝑎𝑡)∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡)

]︃

= E

[︃
𝑇∑︁
𝑡=0

𝜔⊤𝐴𝜋(𝑠𝑡, 𝑎𝑡)∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡)

]︃

= E

[︃
𝑇∑︁
𝑡=0

𝐴𝜋𝜔(𝑠𝑡, 𝑎𝑡)∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡)

]︃
, (6.3)

where 𝐴𝜋(𝑠𝑡, 𝑎𝑡) is the vectorized advantage function. In our extension, the new

advantage function 𝐴𝜋𝜔(𝑠𝑡, 𝑎𝑡) is simply represented as a weighted-sum scalarization

of the advantage functions for individual objectives.

Such value network and policy gradient extension can be easily applied to most

existing policy gradient methods. In our implementation, we choose to adapt the

Proximal Policy Optimization (PPO) [60] into our multi-objective weighted-sum ver-

sion, where the clipped surrogate objective is applied to update the policy parameters,

and the Generalized Advantage Estimation [137] is used to compute the advantage

function and the target values.

145

6.1.4.2 Policy Improvement Prediction Model

In this section, we present our prediction model for policy improvement. Given a

policy 𝜋 and a weight 𝜔, the prediction model aims to predict the improvement of

the objectives after applying the policy gradient on the policy 𝜋 with the weight 𝜔

for 𝑚𝑡 iterations. However it is challenging due to the small amount of reinforcement

learning history data we can collect during the learning process. Therefore, a concise

analytical model with few parameters needs to be considered.

We propose a monotonic hyperbolic model based on an intuitive observation that

the more weight put on one objective, the better that objective can be optimized.

Formally speaking, if we run multi-objective policy gradient for a policy 𝜋 with ob-

jectives F(𝜋) = [𝑓1(𝜋), 𝑓2(𝜋), ..., 𝑓𝑚(𝜋)] with weights 𝜔1 and 𝜔2 separately (where

𝜔1,1 > 𝜔2,1), the resulting policies 𝜋1 and 𝜋2 should satisfy the monotonic property

that ∆𝑓1(𝜋1) = 𝑓1(𝜋1) − 𝑓1(𝜋) ≥ 𝑓1(𝜋2) − 𝑓1(𝜋) = ∆𝑓1(𝜋2). Furthermore, the im-

provement function should be bounded on two sides. Based on these observations,

we construct the following four-parameter hyperbolic model ∆𝑖
𝑗(𝜔𝑗) for each policy 𝜋𝑖

and each objective 𝑓𝑗:

∆𝑖
𝑗(𝜔𝑗) = 𝐴 · 𝑒

𝑎(𝜔𝑗−𝑏) − 1

𝑒𝑎(𝜔𝑗−𝑏) + 1
+ 𝑐. (6.4)

The function is illustrated in Figure 6-3 (middle left), where 𝜉 = {𝐴, 𝑎, 𝑏, 𝑐} are

the four parameters that need to be determined for each model. In order to fit the

parameters, we record the objective improvements of reinforcement learning every 𝑚𝑡

iterations in a record data structure ℛ. Each entry in ℛ is a triplet (F(𝜋),F(𝜋′),𝜔),

where F(𝜋) and F(𝜋′) are the objectives for the policy before and after being optimized

by reinforcement learning for 𝑚𝑡 iterations, and 𝜔 is the optimizing weight. As shown

in Figure 6-3, ℛ is a directed graph (precisely a directed rooted forest) storing the

full RL optimization history for each policy.

In each generation, for each policy 𝜋𝑖, the data {(𝜔,∆F)} = {(𝜔,F(𝜋′)−F(𝜋))}

in the neighborhood of the policy 𝜋𝑖 (i.e., ‖F(𝜋) − F(𝜋𝑖)‖ < 𝛿‖F(𝜋𝑖)‖) is collected,

and the following nonlinear least-square regression is applied to fit the parameters of

146

the hyperbolic model:

min
𝜉

𝑛∑︁
𝑘=1

𝜌((∆𝑖
𝑗(𝜔

𝑖
𝑗; 𝜉)−∆F𝑖

𝑗)
2),

where 𝑛 is the size of the dataset and 𝜌(𝑧) = 2(
√
1 + 𝑧 − 1) is the soft-𝑙1 loss. For

the threshold 𝛿, we set it as 0.1 in all experiments. In the rare cases that there is not

enough data around the policy 𝜋𝑖 (< 4 data points), we iteratively relax the threshold

𝛿 until enough data points are collected.

6.1.4.3 Prediction-Guided Optimization for Task Selection

Taking into account the hypervolume (Eq. 6.1) and sparsity (Eq. 6.2) metrics, we

propose a prediction-guided algorithm for task selection from first principles.

In each generation, our algorithm aims to select the most important tasks (pairs

of policy and weight) that can best improve the Pareto metrics. Specifically, the

algorithm needs to select 𝑛 tasks 𝒯𝑖 to be processed by multi-objective policy gradient

for 𝑚𝑡 iterations. Here each task 𝒯𝑖 is composed by a pair of policy 𝜋𝑖 from current

population 𝒫 and an optimization weight 𝜔𝑖. The selected tasks seek to maximize a

weighted mixture metric ℋ(𝐹 (EP*))+𝛼𝒮(𝐹 (EP*)) (𝛼 < 0 for minimizing the sparsity

metric), where EP* is the new Pareto set after inserting the offspring policies from

those tasks. Guided by the prediction models trained for each policy, we can predict

the expected objectives of the new offspring policy for each task as F(𝜋𝑖) +Δ𝑖(𝜔𝑖),

and can formulate this optimization problem as:

max
𝒯 ={(𝜋𝑖,𝜔𝑖)}𝑛𝑖=1

𝒬(EP, 𝒯) = ℋ(𝑃) + 𝛼𝒮(𝑃) (6.5)

with 𝑃 = F(EP*)

= Pareto(F(EP) ∪ {F(𝜋𝑖) +Δ𝑖(𝜔𝑖)}),

where EP is the current Pareto archive, and Pareto is the function computing the

Pareto front from a set of objectives.

The optimization problem in Eq. 6.5 is a mixed-integer programming problem,

147

Algorithm 5: Prediction-Guided Task Selection
Input: #tasks 𝑛, population 𝒫 , improvement prediction models {Δ𝑖}, Pareto
archive EP.
Initialize task set 𝒯 and virtual Pareto archive EP* = EP.
for 𝑖← 1, 2, ..., 𝑛 do

Initialize task 𝒯𝑖 ← None
for all 𝜋𝑖 ∈ 𝒫 and 𝜔 ∈ candidate weights do

if (𝜋𝑖,𝜔) has not been selected and
𝒬(EP*, (𝜋𝑖,𝜔)) > 𝒬(EP*, 𝒯𝑖) then
𝒯𝑖 ← (𝜋𝑖,𝜔)

end if
end for
Append task 𝒯𝑖 into 𝒯 .
Update EP* by inserting the predicted offspring of 𝒯𝑖.

end for
Output: Selected task set 𝒯 .

which is difficult to solve directly. Therefore, we approximate it by discretizing the

continuous weight to 𝐾 candidate sample weights (Figure 6-3 middle left) and instead

solve a knapsack problem: given 𝐾 × |𝒫| candidate points in the objective space,

we want to select 𝑛 of them to maximize the mixture metric after inserting them

into the current Pareto archive EP. Although in the two objective case, it can be

solved by dynamic programming in polynomial time complexity, exactly solving the

knapsack problem in general is an NP-hard problem. Therefore, in order to improve

the generalizability of the algorithm, we adopt a greedy algorithm (Algorithm 5). Our

greedy algorithm maintains a virtual policy set EP* for the predicted Pareto archive.

It then iteratively selects the task that best improves the Pareto metric of EP* and

then updates EP* by inserting the predicted offspring policy of the selected task.

6.1.5 Pareto Analysis and Continuous Pareto Representation

Once a set of Pareto optimal policies is computed from the evolutionary stage, we

conduct a Pareto analysis to analyze the structure of policy parameters on the Pareto

front.

Since the deep neural network policies are not linearly co-related, we use t-SNE

148

[138], which is a standard nonlinear dimensionality reduction method, to embed the

high dimensional policy parameter space into a lower dimensional space for better

visualization. In our case, we found mapping to two dimensional space to work well.

For the purpose of dimensionality reduction, there are also other available methods

(e.g., LLE, PCA, Isomap). We choose t-SNE due to its better visualization effect.

We provide a comparison with other dimensionality reduction methods in Appendix

E.5.

Once the embedding is generated, we use 𝑘-means to cluster the reduced policies

into several families as illustrated in Figure 6-3 (right). As expected, the whole

Pareto-optimal set is composed from several disjoint policy families, and each family

is responsible for a continuous segment on the Pareto front. A continuous Pareto

representation is then constructed by linearly interpolating the policies inside the

same family. For any target objectives on the continuous Pareto front approximation,

we first identify which policy family can cover those target objectives and then linearly

interpolate the parameters of the nearby policies. Although the deep neural networks

are not linearly co-related, we surprisingly find that by computing a dense Pareto

approximation set and conducting the Pareto analysis, such intra-family interpolation

works successfully, which is demonstrated by the results in Section 6.1.6.3.

6.1.6 Experiments

6.1.6.1 Benchmark Problems

In order to benchmark our proposed algorithm, we design seven multi-objective RL

environments with continuous action space based on Mujoco [27]. We keep the same

state spaces 𝒮 and action spaces 𝒜 as used in Mujoco for most problems. We make

several modifications to the physical parameters of some robots (e.g. mass, friction,

actuator limit) for working better on the multiple objectives, which can be found in

our provided code. The description of each environment is illustrated as follows, where

𝑅𝑖 means the reward for the 𝑖-th objective, and the reward function are designed so

that the values are in similar scale.

149

1) HalfCheetah-v2 : (two objectives) Observation and action space dimensionality:

𝒮 ∈ R17,𝒜 ∈ R6, and the environment runs for 500 steps.

The first objective is forward speed:

𝑅1 = min(𝑣𝑥, 4) + 𝐶

The second objective is energy efficiency:

𝑅2 = 4−
∑︁
𝑖

𝑎2𝑖 + 𝐶

where 𝐶 = 1 is the alive bonus, 𝑣𝑥 is the speed in 𝑥 direction, 𝑎𝑖 is the action

of each actuator.

2) Hopper-v2 : (two objectives) Observation and action space dimensionality: 𝒮 ∈

R11,𝒜 ∈ R3, and the environment runs for 500 steps.

The first objective is forward speed:

𝑅1 = 1.5𝑣𝑥 + 𝐶

The second objective is jumping height:

𝑅2 = 12(ℎ− ℎ𝑖𝑛𝑖𝑡) + 𝐶

where 𝐶 = 1 − 0.0002
∑︀

𝑖 𝑎
2
𝑖 is composed of alive bonus and energy efficiency,

𝑣𝑥 is the speed in 𝑥 direction, ℎ is the current height, ℎ𝑖𝑛𝑖𝑡 is the initial height,

𝑎𝑖 is the action of each actuator.

3) Swimmer-v2 : (two objectives) Observation and action space dimensionality:

𝒮 ∈ R8,𝒜 ∈ R2, and the environment runs for 500 steps.

The first objective is forward speed:

𝑅1 = 𝑣𝑥

150

The second objective is energy efficiency:

𝑅2 = 0.3− 0.15
∑︁
𝑖

𝑎2𝑖

where 𝑣𝑥 is the speed in 𝑥 direction, 𝑎𝑖 is the action of each actuator.

4) Ant-v2 : (two objectives) Observation and action space dimensionality: 𝒮 ∈

R27,𝒜 ∈ R8, and the environment runs for 500 steps.

The first objective is x-axis speed:

𝑅1 = 𝑣𝑥 + 𝐶

The second objective is y-axis speed:

𝑅2 = 𝑣𝑦 + 𝐶

where 𝐶 = 1− 0.5
∑︀

𝑖 𝑎
2
𝑖 is composed of alive bonus and energy efficiency, 𝑣𝑥 is

x-axis speed, 𝑣𝑦 is y-axis speed, 𝑎𝑖 is the action of each actuator.

5) Walker2d-v2 : (two objectives) Observation and action space dimensionality:

𝒮 ∈ R17,𝒜 ∈ R6, and the environment runs for 500 steps.

The first objective is forward speed:

𝑅1 = 𝑣𝑥 + 𝐶

The second objective is energy efficiency:

𝑅2 = 4−
∑︁
𝑖

𝑎2𝑖 + 𝐶

where 𝐶 = 1 is the alive bonus, 𝑣𝑥 is the speed in 𝑥 direction, 𝑎𝑖 is the action

of each actuator.

6) Humanoid-v2 : (two objectives) Observation and action space dimensionality:

151

𝒮 ∈ R376,𝒜 ∈ R17, and the environment runs for 1000 steps.

The first objective is forward speed:

𝑅1 = 1.25𝑣𝑥 + 𝐶

The second objective is energy efficiency:

𝑅2 = 3− 4
∑︁
𝑖

𝑎2𝑖 + 𝐶

where 𝐶 = 3 is the alive bonus, 𝑣𝑥 is the speed in 𝑥 direction, 𝑎𝑖 is the action

of each actuator.

7) Hopper-v3 : (three objectives) Observation and action space dimensionality:

𝒮 ∈ R11,𝒜 ∈ R3, and the environment runs for 500 steps.

The first objective is forward speed:

𝑅1 = 1.5𝑣𝑥 + 𝐶

The second objective is jumping height:

𝑅2 = 12(ℎ− ℎ𝑖𝑛𝑖𝑡) + 𝐶

The third objective is energy efficiency:

𝑅3 = 4−
∑︁
𝑖

𝑎2𝑖 + 𝐶

where 𝐶 = 1 is the alive bonus, 𝑣𝑥 is the speed in 𝑥 direction, ℎ is the current

height, ℎ𝑖𝑛𝑖𝑡 is the initial height, 𝑎𝑖 is the action of each actuator.

152

6.1.6.2 Experiment Setup

We implement our prediction-guided evolutionary learning algorithm as described in

Section 6.1.4 and Section 6.1.5, and implement five baseline algorithms for compari-

son. 1

1) RA: The Radial Algorithm assigns a set of weights and runs reinforcement

learning to optimize the policies for each weight separately [92].

2) PFA: In the evolutionary stage, we gradually fine tune the weight of the RL to

cover the whole Pareto front, which is an adaptation of original PFA algorithm

[92] to DRL setting.

3) MOEA/D : Multi-Objective Evolutionary Algorithm based on Decomposition

[87] decomposes the problem into subproblems by different weights and solves

them in a collaborative way.

4) RANDOM : A random selection strategy is designed to uniformly sample RL

task in each generation.

5) META: A meta-learning based MORL method [95] trains a meta policy and

then adapts the meta policy to the policies for different preferences in a few

iterations.

To fairly compare the baseline algorithms to ours, we implement the first four

baselines in a common framework with our proposed algorithm and apply the same

population strategy and external Pareto archive to them. For the META, our imple-

mentation is based on the codebase [139] which implements Model-Agnostic Meta-

Learning [140] and generates the Pareto approximation by adapting the meta-policy

to 𝑁 uniformly sampled weights (we set 𝑁 as a large number compared to the number

of solutions in other methods). Furthermore, we set all the shared hyperparameters

to be the same and run all algorithms with same amount of simulation steps.

1The code can be found at https://github.com/mit-gfx/PGMORL

153

https://github.com/mit-gfx/PGMORL

Table 6.1: Evaluation of our algorithm and baseline algorithms on the proposed
benchmark problems. We run all algorithms on each problem for 6 runs and report the
average Hypervolume (Hv) and Sparsity (Sp) metrics. Bold number is the best in each row.

Example Metric Ours RA PFA MOEA/D RANDOM META

HalfCheetah-v2
Hv (×106) 5.77 5.66 5.75 5.61 5.69 5.18

Sp (×103) 0.44 15.87 3.81 16.96 1.09 2.13

Hopper-v2
Hv (×107) 2.02 1.96 1.90 2.03 1.88 1.25

Sp (×104) 0.50 5.99 3.96 2.73 1.20 4.84

Swimmer-v2
Hv (×104) 2.57 2.33 2.35 2.42 2.38 1.23

Sp (×101) 0.99 4.43 2.49 5.64 1.94 2.44

Ant-v2
Hv (×106) 6.35 5.98 6.23 6.28 5.54 2.40

Sp (×104) 0.37 5.50 1.56 1.97 1.13 1.56

Walker2d-v2
Hv (×106) 4.82 4.15 4.16 4.44 4.11 2.10

Sp (×104) 0.04 0.74 0.37 1.28 0.07 2.10

Humanoid-v2
Hv (×107) 4.64 3.53 3.70 4.65 3.21 -

Sp (×104) 0.19 4.50 0.38 3.82 0.42 -

Hopper-v3
Hv (×1010) 3.74 3.50 - 3.64 3.36 2.15

Sp (×103) 0.03 0.61 - 0.58 0.27 12.48

6.1.6.3 Results

We test the performance of our algorithm and all the baselines on the proposed

benchmark problems. The training details and parameters are reported in Appendix

D.2. We provide more visual results in the supplementary video. 2

Pareto Quality Comparison We first use the hypervolume metric (Eq. 6.1) and

the sparsity metric (Eq. 6.2) to compare the quality of the computed Pareto set

approximations. We run each algorithm on each problem for six times and report the

average metrics in Table 6.1. The training curves on Walker2d-v2 problem are shown

in Figure 6-4. We provide the learning curve and Pareto front comparison results on

other problems in Figure 6-8, Figure 6-9 and Figure 6-10.

The results in Table 6.1 demonstrate that our proposed algorithm outperforms all

2https://people.csail.mit.edu/jiex/papers/PGMORL/video.mp4

154

https://people.csail.mit.edu/jiex/papers/PGMORL/video.mp4

0 5 10 15 20 25
Generation

3.0

3.5

4.0

4.5

5.0
Hy

pe
rv
ol
um

e

1e6

Ours
RA
PFA
MOEA/D
RANDOM

(a) Hypervolume

0 5 10 15 20 25
Generation

0

1

2

3

4

5

Sp
ar
sit
y

1e4
Ours
RA
PFA
MOEA/D
RANDOM

(b) Sparsity

Figure 6-4: The learning curves of our algorithm and baseline algorithms on
Walker2d-v2. The x-axis is the generation, the y-axis is the metric and the shadow area
is the standard deviation. The Hypervolume at generation 0 is measured after the warm-up
stage. The learning curve of META is not plotted as its metrics can only be measured during
the final adaptation stage. (a) Hypervolume metric (higher is better). (b) Sparsity metric
(lower is better).

the baselines on most benchmark problems in both metrics. The training curves show

that our prediction-guided algorithm is able to select the important reinforcement

learning tasks to improve the Pareto quality much more efficiently than the baseline

methods.

RA archives high-performance solutions in some regions on the Pareto but the

solutions are spread sparsely in the performance space because RA assigns all com-

puting resources into optimizing for those pre-selected weights.

PFA generates denser Pareto approximations than RA because it finetunes the

optimization weights to cover the whole weight range. However, because it blindly

changes a weight to its neighboring weight, a good policy is unable to transfer its

knowledge to wider range of weights. Therefore, it can only recover some pieces of

the Pareto front. In our algorithm, a policy can be optimized along the whole Pareto

front as long as it can improve the Pareto quality. Moreover, PFA is hard to extend

155

to the three-objective case as the sequence of weights in three dimension is undefined.

MOEA/D is the most competitive baseline on hypervolume metric as it period-

ically shares the better solutions across subproblems. However, it also suffers from

high sparsity.

RANDOM computes the densest Pareto approximation in all baselines as it dis-

tributes the RL tasks evenly onto every weight and policy. However, the random task

selection strategy leads to the low-performance of the computed Pareto front, which

is reflected by the low hypervolume metric.

META computes a compromise policy family that can perform well for every

preference but not achieve the optimal control. In contrast, the multi-family repre-

sentation in our method allows a much better Pareto set approximation. We discuss

it more in Section 6.1.6.3. The META results on Humanoid-v2 are not reported, since

in our experiments, META is not able to generate a Pareto front in the first quadrant.

In summary, none of the baseline algorithms distribute the computing resource to

the RL tasks that best improve the Pareto quality. In contrast, by using the policy

improvement prediction model, our algorithm is able to identify which regions on the

Pareto are already near optimal and which regions can still be improved. Therefore

the best tasks can be selected and a high-quality Pareto can be generated efficiently

and effectively.

Pareto Analysis Results For each Pareto set solution computed by our evolu-

tionary learning algorithm, we conduct the Pareto set analysis described in Section

6.1.5 to identify different families in the solution set. The family identification for

Walker2d-v2 problem is illustrated in Figure 6-5. For Walker2d-v2, the whole Pareto

set is split into four families in the parameter space. The Pareto front corresponding

to each policy family comprise a continuous segment in the performance space.

We further construct a continuous Pareto representation for each family as de-

scribed in Section 6.1.5. The constructed continuous Pareto front for Walker-v2 prob-

156

−20 −10 0 10
−15

−10

−5

0

5

10

15

20

500 1000 1500 2000
Forward Speed

1600

1800

2000

2200

2400

En
er

gy
 E

ffi
cie

nc
y

Family 0
Family 1
Family 2
Family 3

Figure 6-5: Pareto analysis for Walker2d-v2 problem. (Left) The policy families
identified by t-SNE and 𝑘-means. (Right) Visualization of the families in objective space.
The curve going through each family is the continuous Pareto approximation.

lem is shown in Figure 6-5 (right), and the continuous Pareto fronts for all benchmark

problems is shown in Figure 6-11 and Figure 6-12.

To test the accuracy of the constructed continuous Pareto representation, we sam-

ple points on the continuous Pareto front for each family, and evaluate the relative

error between the desired objectives and the objectives of the interpolated policy.

For three-objective problem (Hopper-v3), we build a triangle mesh from the Pareto

policies and then sample the testing points on the surfaces. The errors are reported

in the first row of Table 6.2. The results show that the objectives of the interpolated

policy is close enough to the desired objectives on the constructed Pareto front, which

means by intra-family interpolation we can potentially get infinite number of policies

on the Pareto front. We further test the necessity of the multi-family representation

for the Pareto front. We sample points on the boundary of different families in perfor-

mance space, and interpolate the policies from the different families and evaluate the

relative error between the desired objectives and the objectives of the interpolated

policy. The errors are reported in the second row of Table 6.2. The results show

that it is impossible to get a policy with the desired objectives by interpolating the

policies from different families, which further validate that the different families are

157

disjoint in the parameter space. The illustration of the tests is shown in Figure 6-6.

We also demonstrate in the supplementary video that the policies in different

families show different behaviors (e.g., gait patterns), and such different behaviors

help achieve the optimal control under the different objective preferences.

�1

�2

Policy in family 1
Policy in family 2
Continuous Pareto front for family 1
Continuous Pareto front for family 2
Testing objectives for intra-family interpolation
Testing objectives for inter-family interpolation

Figure 6-6: Illustration for continuous Pareto front accuracy evaluation. We sample
testing objectives on the continuous Pareto front to test intra-family interpolation and on
the boundary between families to test inter-family interpolation.

Table 6.2: Intra-family and Inter-family interpolation errors. We evaluate the rel-
ative error for intra-family and inter-family interpolation respectively. For two objective
cases, we sample 1000 testing objectives for intra-family interpolation and 100 testing ob-
jectives for inter-family interpolation. For the three objective case the number of samples
are 20000 and 5000 for intra-family and inter-family respectively. The average errors are
reported below.

Example HalfCheetah-v2 Hopper-v2 Swimmer-v2 Ant-v2 Walker2d-v2 Hopper-v3

Intra-Family 0.39% 0.85% 0.47% 3.94% 0.52% 0.87%

Inter-Family 6.71% 88.62% 2.81% 67.84% 7.95% 17.34%

Meta Policy or Multi-Family? By comparing META and our algorithm on

Walker2d-v2 (Figure 6-7(a)), we empirically show that a typical Pareto set is com-

posed from a set of disjoint policy families. Therefore, it is natural to compare this

representation to meta policy. Meta policy method provides generalizability and

represents the Pareto solutions by a single policy family. However, it sacrifices the

optimality of the control. On the contrary, the multi-family representation can help

achieve optimal control, but a hard switch between policy families is required while

changing the preference on the boundary of each family.

158

500 1000 1500 2000
Forward Speed

1600

1800

2000

2200

2400
En

er
gy

 E
ffi

cie
nc

y
Family 0
Family 1
Family 2
Family 3
META

(a) META v.s. Ours

500 1000 1500 2000
Forward Speed

1400

1600

1800

2000

2200

2400

En
er

gy
 E

ffi
cie

nc
y

Ours
MOEAD

(b) MOEA/D v.s. Ours

Figure 6-7: Pareto front comparison on Walker2d-v2 problem. (a) META v.s. Ours.
The multi-family representation in our method helps achieve better control for different
preferences. (b) MOEA/D v.s. Ours. Our algorithm is unable to recover the Pareto on
the bottom right corner due to the long-term local minima problem.

Failure Case As shown in Figure 6-7(b), in Walker2d-v2, although our algorithm

can generate a much denser and higher-quality Pareto set than MOEA/D, we are

unable to recover the bottom right corner of the Pareto front.

This problem is caused by the fact that in order to reach the bottom right corner

of the Pareto front, the policy can be trapped in local minima for an extended time

before moving towards a better solution. We call this the long-term local minima

problem. Furthermore, as our algorithm predicts potential improvements based on

the RL history data, it can fail to predict potential improvements for such policies.

This is, indeed, a trade-off in our algorithm design: spending more time on the local

minima area in order to reach better performance, or spending time on optimizing

the other regions of the Pareto front.

159

0 10 20

5.2

5.4

5.6

5.8

Hy
pe

rv
ol

um
e

1e6 HalfCheetah-v2

0 5 10 15 20

1.5

1.6

1.7

1.8

1.9

2.0

1e7 Hopper-v2

0 5 10 15 20

1.50

1.75

2.00

2.25

2.50

2.75

1e4 Swimmer-v2

0 5 10 15 20

3

4

5

6

1e6 Ant-v2

0 10 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ar

sit
y

1e4

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

1e5

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

2.5

1e2

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

1e5

0 10 20

3.0

3.5

4.0

4.5

5.0

Hy
pe

rv
ol

um
e

1e6 Walker2d-v2

0 10 20

2.0

2.5

3.0

3.5

4.0

4.5

1e7 Humanoid-v2

0 5 10 15 20

3.0

3.2

3.4

3.6

3.8
1e10 Hopper-v3

0 10 20
Generation

0

1

2

3

4

5

Sp
ar

sit
y

1e4

0 10 20
Generation

0

1

2

3

4

5

6
1e5

0 5 10 15 20
Generation

0.0

0.5

1.0

1.5

2.0

2.5
1e3

Ours RA PFA MOEA/D RANDOM

Figure 6-8: The learning curves of hypervolume and sparsity metrics of different
algorithms on all benchmark problems. The x-axis is the generation, the y-axis is the
metric and the shadow area is the standard deviation. We do not plot the learning curve of
META because it can be measured only during the final adaptation stage. For Hopper-v3,
we do not run PFA as the sequence of the weights in three dimensional space is undefined.

6.1.7 Summary

In this work, we show that an effective representation for obtaining the best perfor-

mance trade-offs for multi-objective robot control is a Pareto set, which is composed

from different policy families. We present an efficient algorithm to compute such

160

500 1000 1500 2000 2500
H = 5.80e+6, S = 3.72e+2

500

1000

1500

2000

2500

Ou
rs

HalfCheetah-v2

2500 3000 3500 4000
H = 2.09e+7, S = 2.41e+3

2000

3000

4000

5000

Hopper-v2

0 100 200
H = 3.26e+4, S = 1.08e+1

20

40

60

80

100

120

140

Swimmer-v2

1000 2000 3000
H = 6.38e+6, S = 2.47e+3

0

500

1000

1500

2000

2500

Ant-v2

500 1000 1500 2000
H = 4.44e+6, S = 1.13e+2

750

1000

1250

1500

1750

2000

2250

2500
Walker2d-v2

4000 6000 8000 10000
H = 5.03e+7, S = 2.92e+3

2500

3000

3500

4000

4500

5000

5500

6000
Humanoid-v2

500 1000 1500 2000 2500
H = 5.66e+6, S = 1.69e+4

500

1000

1500

2000

2500

RA

2500 3000 3500 4000
H = 2.03e+7, S = 2.24e+4

2000

3000

4000

5000

0 100 200
H = 2.82e+4, S = 5.57e+1

20

40

60

80

100

120

140

1000 2000 3000
H = 5.59e+6, S = 4.51e+4

0

500

1000

1500

2000

2500

500 1000 1500 2000
H = 3.65e+6, S = 1.48e+4

750

1000

1250

1500

1750

2000

2250

2500

4000 6000 8000 10000
H = 3.90e+7, S = 6.92e+4

2500

3000

3500

4000

4500

5000

5500

6000

500 1000 1500 2000 2500
H = 5.80e+6, S = 1.03e+3

500

1000

1500

2000

2500

PF
A

2500 3000 3500 4000
H = 1.99e+7, S = 6.91e+4

2000

3000

4000

5000

0 100 200
H = 2.84e+4, S = 5.27e+1

20

40

60

80

100

120

140

1000 2000 3000
H = 5.73e+6, S = 1.42e+4

0

500

1000

1500

2000

2500

500 1000 1500 2000
H = 3.60e+6, S = 7.53e+3

750

1000

1250

1500

1750

2000

2250

2500

4000 6000 8000 10000
H = 3.29e+7, S = 3.38e+3

2500

3000

3500

4000

4500

5000

5500

6000

500 1000 1500 2000 2500
H = 5.63e+6, S = 1.23e+4

500

1000

1500

2000

2500

M
OE

A/
D

2500 3000 3500 4000
H = 2.10e+7, S = 2.70e+4

2000

3000

4000

5000

0 100 200
H = 2.67e+4, S = 1.13e+2

20

40

60

80

100

120

140

1000 2000 3000
H = 6.26e+6, S = 3.37e+4

0

500

1000

1500

2000

2500

500 1000 1500 2000
H = 4.09e+6, S = 2.10e+4

750

1000

1250

1500

1750

2000

2250

2500

4000 6000 8000 10000
H = 4.88e+7, S = 1.31e+5

2500

3000

3500

4000

4500

5000

5500

6000

500 1000 1500 2000 2500
H = 5.70e+6, S = 7.86e+2

500

1000

1500

2000

2500

RA
ND

OM

2500 3000 3500 4000
H = 1.95e+7, S = 7.35e+3

2000

3000

4000

5000

0 100 200
H = 3.12e+4, S = 2.21e+1

20

40

60

80

100

120

140

1000 2000 3000
H = 5.19e+6, S = 1.57e+4

0

500

1000

1500

2000

2500

500 1000 1500 2000
H = 3.70e+6, S = 7.84e+2

750

1000

1250

1500

1750

2000

2250

2500

4000 6000 8000 10000
H = 3.35e+7, S = 5.71e+3

2500

3000

3500

4000

4500

5000

5500

6000

500 1000 1500 2000 2500
H = 5.29e+6, S = 1.09e+3

500

1000

1500

2000

2500

M
ET

A

2500 3000 3500 4000
H = 7.70e+6, S = 2.49e+4

2000

3000

4000

5000

0 100 200
H = 8.29e+3, S = 1.06e+0

20

40

60

80

100

120

140

1000 2000 3000
H = 2.97e+6, S = 3.16e+4

0

500

1000

1500

2000

2500

500 1000 1500 2000
H = 3.03e+6, S = 5.78e+3

750

1000

1250

1500

1750

2000

2250

2500

500 1000 1500 2000 2500

500

1000

1500

2000

2500

Al
l

2500 3000 3500 4000

2000

3000

4000

5000

0 100 200

20

40

60

80

100

120

140

1000 2000 3000

0

500

1000

1500

2000

2500

500 1000 1500 2000

750

1000

1250

1500

1750

2000

2250

2500

4000 6000 8000 10000

2500

3000

3500

4000

4500

5000

5500

6000

Figure 6-9: The Pareto front approximation comparison for all 2-objective bench-
mark problems. For each problem, we show the result for each algorithm with the same
random seed. The Pareto of META on Humanoid-v2 problem is not plotted, since in our
experiments, META is not able to generate a Pareto front in the first quadrant.

Pareto representations. A prediction-guided evolutionary learning algorithm is first

employed to find a high-quality set of policies on the Pareto set. Then we conduct

a Pareto analysis on the computed Pareto-optimal policies to construct a continuous

161

1000200030004000

0
2000

4000
6000

750
1000
1250
1500
1750
2000
2250
2500

Ours

1000200030004000

0
2000

4000
6000

750
1000
1250
1500
1750
2000
2250
2500

RA

1000200030004000

0
2000

4000
6000

750
1000
1250
1500
1750
2000
2250
2500

MOEA/D

1000200030004000

0
2000

4000
6000

750
1000
1250
1500
1750
2000
2250
2500

RANDOM

1000200030004000

0
2000

4000
6000

750
1000
1250
1500
1750
2000
2250
2500

META

Figure 6-10: The Pareto front approximation comparison for Hopper-v3.

20 10 0 10 20
20

10

0

10

20

HalfCheetah-v2

5.0 2.5 0.0 2.5 5.0

4

3

2

1

0

1

2

Hopper-v2

2 0 2 4 6

8

6

4

2

0

2

Swimmer-v2

1.5 1.0 0.5 0.0 0.5
4.5

4.0

3.5

3.0

2.5

2.0

1.5

Ant-v2

20 10 0 10
15

10

5

0

5

10

15

20 Walker2d-v2

20 0 20
20

10

0

10

20

Humanoid-v2

500 1000 1500 2000 2500
Forward Speed

1600

1800

2000

2200

2400

En
er

gy
 E

ffi
cie

nc
y

Family 0
Family 1
Family 2
Family 3

2500 3000 3500 4000
Running Speed

3500

4000

4500

5000

Ju
m

pi
ng

 H
ei

gh
t

Family 0
Family 1

50 100 150 200 250
Forward Speed

40

60

80

100

120

140

En
er

gy
 E

ffi
cie

nc
y

Family 0
Family 1
Family 2

1000 1500 2000 2500
X-axis Speed

1250

1500

1750

2000

2250

2500

2750

Y-
ax

is
Sp

ee
d

Family 0
Family 1

500 1000 1500 2000
Forward Speed

1600

1800

2000

2200

2400

En
er

gy
 E

ffi
cie

nc
y

Family 0
Family 1
Family 2
Family 3

4000 6000 8000 10000
Forward Speed

3500

4000

4500

5000

5500

En
er

gy
 E

ffi
cie

nc
y

Family 0
Family 1

500 1000 1500 2000 2500
Forward Speed

1600

1800

2000

2200

2400

En
er

gy
 E

ffi
cie

nc
y

Family 0
Family 1
Family 2
Family 3

2500 3000 3500 4000
Running Speed

3500

4000

4500

5000

Ju
m

pi
ng

 H
ei

gh
t

Family 0
Family 1

50 100 150 200 250
Forward Speed

40

60

80

100

120

140

En
er

gy
 E

ffi
cie

nc
y

Family 0
Family 1
Family 2

1000 1500 2000 2500
X-axis Speed

1250

1500

1750

2000

2250

2500

2750

Y-
ax

is
Sp

ee
d

Family 0
Family 1

500 1000 1500 2000
Forward Speed

1600

1800

2000

2200

2400

En
er

gy
 E

ffi
cie

nc
y

Family 0
Family 1
Family 2
Family 3

4000 6000 8000 10000
Forward Speed

3500

4000

4500

5000

5500

En
er

gy
 E

ffi
cie

nc
y

Family 0
Family 1

Figure 6-11: Pareto analysis results for 2-objective benchmark problems. The first
row is the family identification in the parameter space by t-SNE and 𝑘-means. The second
row is the corresponding objectives of those families in the performance space. The third
row is the constructed continuous Pareto front approximation.

Jumping Height Running Speed

En
er

gy
 E
ffi

ci
en

cy

Energy Efficiency

Ju
m

pi
ng

 H
eig

ht Running Speed

Figure 6-12: Pareto analysis results for Hopper-v3. (left) The family identification in
the parameter space by t-SNE and 𝑘-means. (middle) The constructed continuous Pareto
front approximation in the performance space. (right) Embedding the continuous Pareto
front approximation in barycentric coordinates for better visualization.

Pareto representation. Furthermore, we design a set of multi-objective RL environ-

ments with continuous action space, and conduct extensive experiments to validate

the effectiveness of our algorithm.

162

There are several directions which can be explored in the future. First, we believe

that the learning efficiency could be further improved by sharing the sampled trajec-

tories through the whole learning process. Second, it is desired to develop a more

robust model to solve the long-term local minima problem. Finally, it is worthwhile to

apply this method to solve multi-objective control problems for real-world robots.

6.2 MOGHS: Multi-Objective Robot Control and Shape

Topology Co-Design

6.2.1 Motivation

Most physical tasks in the world, performed by humans or other animals, require

being adept at multiple skills. For example, a lizard hunting prey may need to be

proficient at climbing trees and running; a duck in migration needs to be able to both

fly and swim; a human hurdler must be fast at running along bends and straightaways

as well as jumping. If such animals were only capable of single motions, we would

not expect them to be very successful.

We similarly should expect diverse adroitness from our robots. Yet, recent suc-

cesses in algorithms which can co-design robots over morphology and control have

been typically catered to singlular task specifications. For example, an algorithm

may be able to co-design robots for forward running speed, energy efficient gaits, or

climbing rough terrains, but not all three skills at once. In order to computationally

develop robots capable of composite tasks rather than single repetitious motions, we

require algorithms that simultaneously optimize over collections of requisite skills.

This work presents a method for multi-objective rigid robot co-design over both

control and morphology (including discrete topology). Unlike much previous work on

multi-objective co-design which only examined continuous parameters, we consider

discrete topology as well as continuous control parameters. Because form informs

function and vice versa, it is natural that different robot designs will be better at

163

different tasks. But, as in nature, rarely will a single design be best at all tasks.

Thus, our goal is to extract robots with optimal trade-offs across different design

objectives; i.e. the Pareto set of robot designs for the tasks at hand.

Our method builds upon RoboGrammar [6], a method that proposes a bio-inspired

grammar for robot topological design and employs a learning-based morphological

search over that design space. Robots are co-designed over topology and control;

specifically, it employs a model predictive control (MPC) scheme. Complex grammars

like that of RoboGrammar can be very expressive but typically yield large search

spaces that are intractable to optimize over via naïve methods; the problem only

becomes more difficult when multiple objectives are considered. The algorithm we

present here is the only proposed method for solving this difficult and important

multi-objective, topology/control co-design problem; thus making it novel in both

problem scope and solution.

In this work, we contribute: 1) Multi-objective co-design algorithms for find-

ing Pareto-optimal robot topologies and controllers over challenging objective trade-

offs, 2) Demonstrations on combinations of terrestrial robot locomotion tasks, some

with design restrictions, and 3) Comparisons of our proposed methods benchmarked

against baselines, demonstrating the power and importance of our techniques.

6.2.2 Overview

Our method builds upon Graph Heuristic Search algorithm introduced in Section 5.1.

Graph Heuristic Search (GHS) chooses a grammar as a search space enables one to

search over discrete operations that define robot topology; this provides for much

more expressive designs than afforded by purely continuous parameters. We refer the

reader to Section 5.1 for details regarding the GHS algorithm.

The remainder of this part is structured as follows. First, we introduce the scalar-

ization approach to multi-objective optimization, and present two approaches to robot

co-design which leverage this approach: a simple method based on solving a set

164

of standalone subproblems, and a more sophisticated and efficient Multi-Objective

Graph Heuristic Search (MOGHS) that uses GHS to iteratively expand the Pareto

front along different sampled directions in objective space, while learning a heuris-

tic function shared across these directions. This shared heuristic is key to making

our search efficient. Then, we present experiments demonstrating the efficacy of our

methods compared to baselines, and conclude with possible extensions to this work.

6.2.3 A Naive Linear Scalarization Approach

Let 𝒟𝒟𝒟 define the space of valid designs (morphology and control sequence). We

define a multi-objective function F : 𝒟𝒟𝒟 → R𝑚, such that for 𝑑 ∈ 𝒟𝒟𝒟, F(𝑑) =(︀
𝑓1(𝑑), 𝑓2(𝑑), ..., 𝑓𝑚(𝑑)

)︀
. Our goal is to generate designs which are Pareto optimal in

the objective space; in other words, designs which are non-dominated by any other dis-

covered design for any objective trade-off. In our maximization problem setting, a de-

sign 𝑑 is said to be Pareto optimal if 𝑑′ ∈ 𝒟𝒟𝒟 s.t. : ∀𝑖 𝑓𝑖(𝑑
′) ≥ 𝑓𝑖(𝑑) ∧ ∃𝑖 s.t. 𝑓𝑖(𝑑′) >

𝑓𝑖(𝑑). In layman’s terms, a design is considered Pareto optimal if there does not exist

another design that is strictly better than this design at all objectives. We call the

set of objective values of Pareto optimal designs the Pareto front.

In practice, computing the exact Pareto set/front is intractable for most hard

problems; thus, we seek an algorithm which can find a Pareto approximation set that

is as “good” as possible. We discuss quantitative metrics for evaluating the quality of

a Pareto front in Sec. 6.2.7.5. However, we describe a qualitative way of determining

the goodness of Pareto fronts here. Consider weight vectors 𝜔 ∈ R𝑚 s.t. ∀𝑖 𝜔𝑖 ≥

0 and ‖𝜔‖𝑝 = 1 for some norm 𝑝. This can be thought of as the space of rays that

sweep out radially in the first orthant. We wish to find a Pareto set such that, for

every valid 𝜔, there exists a point 𝑑 in the Pareto set for which 𝜔 · F(𝑑) is large. In

other words, for each (scalarization direction) ray 𝜔 we want to find points whose

objectives are far away from the origin along that ray.

Given this, an obvious strategy for multi-objective optimization arises, termed

scalarization methods. For a large collection of weight vectors {𝜔𝑖}𝑛𝑖=1, a Pareto

165

Figure 6-13: A cartoon depicting the scalarization method. Weight pairs form rays
that project radially outward from the origin. Each circle represents a point that might
be found during a single objective optimization using the weights defined by the ray of its
color. Circles with black borders are the optimal solutions to the corresponding weights,
which form a convex Pareto approximation front.

approximation set can be extracted by solving the set of optimization subproblems,

where subproblem 𝒫𝑖 is argmax𝑑∈𝒟𝒟𝒟 𝜔
𝑖 ·F(𝑑) (Fig. 6-13). This approach leads to two

challenges. The first challenge is to find (as close to) the global maximum of each

optimization subproblem. The second challenge is to have an efficient optimization

scheme such that a dense set of weight vectors can be optimized.

As a first attempt at solving this problem, we propose the following (naïve) “dis-

crete weights” strategy. Given a budget 𝑛, sample a uniformly spaced set {𝜔𝑖}𝑛𝑖=1 a

priori. Then, for each weight vector 𝜔𝑖, solve the 𝑛 corresponding 𝒫𝑖 independently,

using the approach presented in [6] as a black box with reward 𝜔𝑖 · F. Such an ap-

proach can unfortunately have poor sample efficiency, especially in high-dimensional

objective spaces, and treats problems with shared structure as decoupled. Thus, here

we propose an alternative algorithm that is more effective at extracting good Pareto

fronts.

6.2.4 Multi-objective Graph Heuristic Search

The discrete weights strategy has two shortcomings. The first is its decision to fix

weights a priori. This makes it harder to find Pareto optimal points that do not lie

166

Sample
preference weight

)

#

"-greedy

I. Design Phase

III. Learning Phase

GNN

universal heuristic function

Training

Design buffer

{(#!,)", *+!,")}

…
rule 1

ru
le

2

1, 0, … , 1.2

updateMPC

II. Evaluation Phase

non-terminal part

graph
representation

Figure 6-14: Overview of the Multi-Objective Graph Heuristic Search (MOGHS).
In each episode, the algorithm conducts three phases (similar to GHS). Design Phase: A
robot design is selected using a learned universal graph heuristic function along with a
randomly picked preference weight 𝜔. Evaluation Phase: The selected robot design is
evaluated by MPC for each objective. Learning Phase: All the designs seen so far are
leveraged to improve the heuristic.

along the sampled scalarization directions. The second shortcoming is the decision to

treat each subproblem independently, despite the clear shared structure between the

subproblems.

We thus improve the approach presented in RoboGrammar to efficiently search

in multi-objective spaces. Our multi-objective optimization strategy makes the fol-

lowing two core changes. First, we sample weight vectors uniformly randomly at

each episode of the algorithm both to search over the entire space of weight vectors

in a single invocation of search algorithm, as well as to have a dense set of scalar-

ization directions. Our second core innovation is to modify our learning model to

be multi-objective and universal (named after its similarity in structure to universal

control evaluators [98]), which we describe shortly. This improves search efficiency

because the representations learned by the heuristic function can be shared by all

weight combinations.

167

The process of MOGHS is visualized in Fig. 6-14, and the full algorithm can be

found in Algorithm 6. Here, the original GHS is presented in black and teal as in Zhao

et al. [6], with our new modifications highlighted in red. We now describe the major

changes to the three phases of RoboGrammar’s GHS to formulate our MOGHS.

6.2.4.1 Design Phase

In GHS, a designs is sampled in each episode according to a “double 𝜖-greedy” ap-

proach in order to balance exploration and exploitation. First, 𝐾 designs are sampled

by 𝜖-greedily choosing the next rule to apply at each step of the generation process,

where the greedy choice is chosen by the one with the best heuristic function value.

The final design can then be chosen greedily or rejected for a random one at an 𝜖

rate. In MOGHS, we instead first sample an 𝜔 vector uniformly at random, a search

direction for this episode of the design search. Using this, the greedy selection scheme

is generalized to multiple objectives by the linear scalarization 𝜔 ·V(𝑑,𝜔).

Readers may note that the new greedy selection criterion requires two changes

to the structure of the heuristic function. First, the heuristic must accept a weight

vector 𝜔 in addition to a design 𝑑 as input, thus making it a universal predictor

among all possible 𝜔. Second, it outputs a vector of the predicted value of each

objective function when evaluated by MPC, thus making it multi-objective. Thus, we

design such a heuristic function V : 𝒟𝒟𝒟 ×R𝑚 → R𝑚.

6.2.4.2 Evaluation Phase

A candidate design is evaluated 𝑚 times, in 𝑚 separate invocations of MPC. The 𝑖𝑡ℎ

invocation is run optimizing reward (objective) 𝑓𝑖. This returns 𝑚 different optimized

control sequences for the sampled design3.

3If 𝑓𝑖 does not depend on the robot’s motion (e.g. the design complexity objective in section ??),
this process can be skipped for that objective.

168

Algorithm 6: Multi-Objective Graph Heuristic Search
Inputs: Number of iterations 𝑁 , number of candidate designs 𝐾, Adam optimization
steps opt_iter and batch size 𝑀 , number of sampled weights 𝑁𝑤.
Output: A set of Pareto-Optimal designs 𝑃 .
Initialize the universal graph neural network V𝜃(𝑑,𝜔).
Initialize the Pareto-Optimal design set 𝑃 ← {}.
for episode 𝑗 ← 1 to 𝑁 do

▷ Design Phase: Generate a candidate design
Sample a preference weight 𝜔.
𝐶 ← {} ▷ Initialize possible design candidates
▷ Sample 𝐾 designs by 𝜖-greedy approach
for 𝑘 ← 1 to 𝐾 do
𝑑← initial design graph
while 𝑑 has non-terminals do

With probability 𝜖 select a random rule 𝑎, otherwise select
𝑎 = argmax𝑎𝜔 ·V𝜃(𝑑

′,𝜔), where 𝑑′ is the robot design after applying rule 𝑎 on
design 𝑑.
𝑑← 𝑑′

end while
Add possible candidate 𝑑 to 𝐶.

end for
▷ Choose one to be the candidate
With probability 𝜖 select a random sampled design 𝑑 from 𝐶, otherwise select
𝑑 = argmax𝑑∈𝐶 𝜔 ·V𝜃(𝑑,𝜔).
▷ Evaluation Phase: Compute the rewards for the design
Run MPC in parallel for each task to evaluate the rewards vector �⃗� of design 𝑑.
▷ Update the design Pareto set
Update 𝑃 by 𝑑 and �⃗�.
▷ Learning Phase: train heuristic value function V𝜃

for 𝑖 ← 1 to opt_iter do
Sample a minibatch 𝑆𝑏 of seen designs (partial or complete) of size 𝑀 .
Sample 𝑁𝑤 preference weights 𝑊 = {𝜔𝑗}.
Compute target values for each 𝑠 ∈ 𝑆𝑏 and 𝜔 ∈𝑊 ,

V̂(𝑠,𝜔) = argmax
𝑑∈descendant(𝑠)

𝜔 · �⃗�(𝑑)

Update V𝜃(𝑠,𝜔) one step by Adam with the loss:∑︁
𝑠∈𝑆𝑏,𝜔∈𝑊

‖V𝜃(𝑠,𝜔)− V̂(𝑠,𝜔)‖2

end for
end for

169

6.2.4.3 Learning Phase

Given sampled batch of designs 𝑆𝑏 = {𝑑𝑖} and weights 𝑊 = {𝜔𝑗}, we first compute

the target heuristic value V̂𝑖𝑗 for each design-weight combination. Then we train

our universal heuristic function by using Adam [119] to minimize the following loss

function: ∑︁
𝑖,𝑗

‖V(𝑑𝑖, 𝜔
𝑗)− V̂𝑖𝑗‖22 (6.6)

The target heuristic value V̂ is computed by maintaining a Pareto front of rewards

for each partial design to keep track of the optimal terminal designs can be induced

from it.

6.2.5 Universal Multi-Objective Heuristic Function

Our heuristic function is a graph neural network which maps robot morphologies to

output vectors of predicted rewards. The morphology is represented as a graph, where

each node corresponds to a link of the robot (and whose corresponding feature vectors

describe their geometric and inertial properties), and each edge corresponds to a joint,

thus encoding the topology. The architecture used is based on the differentiable

pooling architecture presented by [120].

We wish for this network to operate on both a robot morphology as well as a

weight vector as input; however, this architecture only handles graphs. In order to

learn latent representations in the network which include the effects of the objective

weights, we include 𝜔 as additional features to each node in the graph. Finally, we

modify the final linear operator of the network to output 𝑚 channels instead of one,

thus providing a multi-objective output space of the heuristic.

6.2.6 Other Improvements

We include the following further modifications which improve sample efficiency:

170

6.2.6.1 DAG-Based Target Updates

In [6], when a design is evaluated, its value is propagated up the derivation path

to update the target value of the partial designs that generated it. Realizing the

design rules actually form a directed acyclic graph (DAG) — each partial or complete

design can have many rule sequences that generate it — we now perform the upward

propagation procedure even on non-evaluated designs, which provides an opportunity

to merge previously visited partial designs up newly discovered branches of the DAG.

This simple refinement vastly improves sample efficiency by improving the accuracy

of the computed target values.

6.2.6.2 Invalid Design Marking

Although the grammar is designed to avoid invalid designs, they still can occur. Once

we know a design is invalid, however, we need not visit it again. We mark all invalid

designs as such, and remove them from the pool of candidates to generate. If all

designs that could be generated by a partial design are invalid, we further mark that

partial design as invalid in an upward propagation scheme similar to the DAG-based

update.

6.2.7 Experiments

6.2.7.1 Implementation

Despite MOGHS requiring many samples over design and control, the algorithm pro-

vides many opportunities for parallelization over CPU cores, thus keeping it practical.

First, MOGHS samples many designs in parallel, which can be parallelized over many

CPU cores. Second, the main bottleneck of MOGHS is the evaluation phase; fortu-

nately, our MPC algorithm is sampling-based; this sampling procedure can also be

parallelized over CPU cores to improve efficiency. Finally, the learning procedure

can be accelerated by batching 𝑀𝑁𝑊 samples in parallel. Running 2000 episodes of

171

MOGHS takes approximately 20 hours on a 64-core Google Cloud machine, and the

breakdown for each phase is around 3 hours (using 16 cores) for the design phase, 11

hours (using 64 cores) for the MPC evaluation phase, and 6 hours (using 1 core) for

the learning phase.

6.2.7.2 Baseline Algorithms

We compare the Pareto fronts discovered by three algorithms: 1) a random baseline,

in which designs are sampled by randomly selecting rules until a terminal design is

generated , 2) The discrete weights method proposed in ??, which is a discrete version

of our MOGHS algorithm, and 3) our MOGHS algorithm. We use the same total

MPC evaluation budget (i.e. number of evaluated designs) for all three algorithms.

6.2.7.3 Task Specifications

We demonstrate our algorithm on six combinations of seven tasks, and compare each

solution set qualitatively and quantitatively; please see the video for demonstrations

of robots along the discovered Pareto fronts.

1) Flat Terrain Locomotion: In this task, the robot is rewarded for the forward

running speed, and we assign additional reward to encourage stability in the

forward direction.

2) Low Power Flat Terrain Locomotion: The same as the Flat Terrain task, except

the maximum impulse of the motors is set to 20% of that normally available.

This task highlights locomotion in scenarios when power must be conserved.

3) Wall Terrain Locomotion: Also the same as the Flat Terrain task, however,

slalom-like walls are added to the terrain. Successful robots must run forward

with the ability to move somewhat laterally to navigate terrain.

4) Jumping : In this task, the robot must jump as high as possible. The reward

is set proportional to the height of the lowest part of the robot. As before, an

additional reward is added to discourage the robot from falling over.

172

5) Spin-In-Place: This task tests the agility of the robot around the vertical axis.

The reward is set proportional to the angular velocity of the robot around the

vertical axis.

6) Design Complexity : The first of two tasks that is purely design-dependent (does

not involve control), the reward is set inversely proportional to the number of

links in the robot.

7) Robot Height : The second pure design task, the reward is set proportional to

the height of the robot, with a penalty for changes in pitch, promoting tall,

upright robots.

6.2.7.4 Experimental Setup

We run each experiment for 2000 episodes. For each task combination, we run each

algorithm three times. In comparing metrics in Table 6.3, we compute the metric by

averaging over all runs for that algorithm. For metrics that require a reference set,

we take the union of all sampled designs of all runs of all algorithms, and compute

its Pareto front. Hyperparameters used for the MOGHS algorithm are the same as

GHS [6], with the preference weight minibatch size 𝑁𝑊 set to 10. For the discrete

weights algorithm, we sample 11 uniform weights in the two-objective cases (we did

not consider this baseline in the three-objective case).

6.2.7.5 Results

We numerically evaluate the optimized Pareto fronts on three metrics, commonly

used in the multi-objective optimization literature [141]: Hypervolume, Generational

Distance, and Inverse Generational Distance. We present some Pareto fronts in Fig.

6-15, along with some selected designs. We encourage the reader to watch the video

for more renderings of optimized Pareto fronts, and animations of the designs that

populate them.

a) Hypervolume [142]: The hypervolume metric (HV) measures the hypervolume

of the polytope defined by the space enclosed by the hyperplanes created by the axes

173

(2.9, 7.8) (4.7,6.6)

(5.5, 6.0) (7.1, 4.2)

(5.0, 9.4) (5.4, 6.3)

(6.3, 4.9) (6.4, 3.6)

(5.4, 4.9) (5.8, 4.6)

(6.2, 4.3) (6.6, 4.1)

(4.1, 9.9) (5.2, 6.5)

(5.3, 5.9) (7.3, 4.4)

Figure 6-15: Pareto front comparison of four of our two-objective experiments,
and example designs from the Pareto front. MOGHS produces more diverse and
better performing results than discrete weights or the random baseline.

along the first orthant and the hull of the sampled points. As is visually evident, a

larger HV is better.

b) Generational Distance [143]: The generational distance (GD) of a Pareto front

𝑃 is defined as:

𝐺𝐷(𝑃) =
1

|𝑃 |
(
∑︁
p∈𝑃

min
r∈𝑅

𝑑(p, r)𝑝)
1
𝑝 (6.7)

where 𝑝 is a norm (we choose 1), 𝑑 is the Euclidean distance function, each p𝑖 is a

point in 𝑃 , and the set 𝑅 is a reference set generated by combining results from all

optimization experiments. A smaller GD is better.

c) Inverse Generational Distance [144]: The inverse generational distance (IGD)

is defined as:

𝐼𝐺𝐷(𝑃) =
1

|𝑅|
∑︁
r∈𝑅

min
p∈𝑃

𝑑(r,p) (6.8)

Again, a smaller IGD is better. Roughly speaking, GD measures the distance of

all points on the captured Pareto front to the best known Pareto front, while IGD

measures the distance of all points on the best known Pareto front to the captured

Pareto front.

174

Numerical results are presented in Table 6.3. As can be seen in MOGHS domi-

nates discrete weights in all task combinations across all metrics, often by significant

margins. Discrete weights, in turn tends to beat the random baseline, but not as

consistently. The consistency and quality of results returned by MOGHS emphasizes

the importance of this method. Qualitatively, MOGHS’s Pareto fronts, as seen in

Fig. 6-15 tend to yield better performing objective trade-offs than other methods,

while maintaining dense coverage.

The morphologies and motions of the designs found on the Pareto fronts of each

problem are physically principled, but still interesting and exciting. We consider four

of the two-objective trade-offs here. We leave the Design-Height problem, which serves

as a benchmarking example, and the complex three-objective Flat-Jump-Spin task,

which is better visualized animated, for the video. For example, in the Flat-Design

task, a wide spectrum of robots from a single link (simplest design but no motion)

to long, complex, fast, walkers are recovered. Along the way, various slower walkers

with fewer links are found along the front, with increasingly dynamic motions. The

Flat-LowPower task measures robots in various stages of power consumption. In the

low power configuration, the robot is unable to balance if the legs are too wide, due to

the increase gravitational torque on the torso. This leads to poor forward locomotion.

However, longer legs lead to faster strides for the normal power state robots. The

trade-off provides a spectrum of robots of varying width and compactness, trading off

the importance of being effective at forward locomotion in the two power states. The

Flat-Spin trade-off produces a very exciting and surprising result, as faster spinners

trade off forward locomotion skill for an ability to spin in a top-like fashion. The

fastest spinners possess motions that resemble breakdancing. The Wall-Jump robots

meanwhile transition from maneuverable walkers to increasingly frog-like morphology

with increased capacity to hop.

175

Table 6.3: A comparison of the three numerical metrics among all three algo-
rithms presented. For each problem, metrics are presented in the following order: HV,
GD, IGD. Bolded numbers mean that column’s algorithm performed best for that algo-
rithm/problem combination. MOGHS outperforms other methods in all metrics across all
problems

Problem Moghs D. Weights Random

Design-Height
Hv 64.70 52.43 51.60
GD 0.04 0.45 0.29
IGD 0.28 1.02 0.96

Flat-Design
Hv 46.30 42.25 39.11
GD 0.10 0.29 0.31
IGD 0.19 0.41 0.56

Flat-Spin
Hv 49.94 46.90 29.88
GD 0.34 0.40 1.35
IGD 0.37 0.50 1.79

Flat-LowPower
Hv 29.94 28.03 22.25
GD 0.04 0.26 0.92
IGD 0.08 0.28 1.07

Wall-Jump
Hv 57.95 54.09 44.11
GD 0.37 0.73 1.23
IGD 0.36 0.64 1.15

Flat-Jump-Spin
Hv 307.68 - 166.71
GD 0.22 - 1.09
IGD 0.38 - 1.69

6.2.8 Conclusion

We have demonstrated methods for co-designing robots over morphology and control

over multiple objectives. Our multi-objective graph heuristic search is first of its kind,

and extracts far superior Pareto fronts with higher efficiency than more naïve meth-

ods. The tasks demonstrated, including running, jumping, spinning, and obstacle

navigation have direct practical value in real-world terrestrial agile robots.

There remain important avenues for future research. First, all examples demon-

strated in this paper were tested in simulation. A study fabricating these designs and

demonstrating their physical accuracy would be valuable. Second, all examples pre-

sented in this paper were for two or three objective trade-offs. It would be interesting

to see if this algorithm would scale to higher objective spaces. Finally, although we

have demonstrated our algorithm for robotics, most of our method should be general

176

to any grammar-defined domain, excepting the evaluation (control) procedure and

choice of heuristic architecture. Extensions of our algorithm to other domains would

demonstrate further value of our approach.

177

178

Chapter 7

Conclusion and Outlook

Hardware design (body) and software control (brain) play equally important roles on

a robot’s task performance. However, co-designing the body and brain of a robot

in the real world is still a challenging problem due to the complicated coupling of

robot hardware design, control algorithm, and manufacturing constraints. Today,

the process of improving robots for the given tasks still requires tons of slow and

labor-intensive iterations. A fully automated computational robot design pipeline can

revolutionize this procedure via largely speeding up the iteration speed and potentially

discovering novel and better robot designs beyond human prior.

We envision that in the future, an ultimate computational robot design pipeline

is supposed to optimize all the robot hardware-related parameters and control policy

simultaneously for physically realizable robots and be able to find a set of Pareto-

optimal solutions for multiple objectives. The difficulties of constructing a feature-

complete computational robot design pipeline come from several key problems, in-

cluding but not limited to robot design and design space representation, performance

evaluation, and robot optimization. In this thesis, we argue:

1) Having good robot design and design space representation is crucial.

A good robot representation should be able to express tons of designs with a

compact set of parameters, to produce valid and manufacturable designs only,

and to be easy to be optimized. To achieve so, in Chapter 3, we present a graph

179

grammar representation for discrete robot topology design and a deformation-

based representation for continuous robot morphology design. Our graph gram-

mar representation converts the robot topology design problem into a sequential

decision making problem, while our deformation-based representation enables

numerical optimization with box constraints only for the robot morphology and

control co-optimization.

2) Having an efficient and effective simulator is important. We argue that

a good simulator should be fast and differentiable. This is because the simula-

tion serves as the most inner loop of a computational robot design framework

and is usually the bottle neck of the whole algorithm’s running time. On the

other hand, the differentiability of the simulator can offer the optimizer the

ability to actively exploit the underlining dynamics phyiscs model of the robot

and the task. Therefore, in Chapter 4 and Chapter 5, we develop differen-

tiable articulate rigid body simulator to offer the analytical gradients of the task

execution, and also leverage the GPU-parallelization to speed up the simulator.

3) The way to optimize a robot design is critical. A lesson from this thesis

is that while numerical gradient-based optimizer can improve the optimiza-

tion efficiency of continuous robot variables, learning-based approaches might

be necessary when more complex or discrete variables are involved. Specifi-

cally, in Chapter 5, we present our numerical optimization based approach

to co-optimize the robot continuous morphology and control, and present a

learning-based algorithm to co-optimize the robot discrete topology along with

the control strategy.

4) Multi-objective optimization is necessary when considering more re-

alistic problems. Motivated by this, in Chapter 6, we introduce our efforts on

multi-objective control policy optimization and multi-objective robot co-design

problems.

We hope that this thesis can contribute a significant step towards this ultimate

goal of a feature-complete computational robot design pipeline and provide useful

180

guidance to future research. To conclude this thesis, below, we discuss the limitations

of this thesis, and point out a few future research directions.

Joint optimization of all shape parameters and control policy Each of

the technique we introduced in this thesis solves a subsystem of the whole pipeline

while sacrificing the other aspects. For terrestrial robots, we optimize the discrete

shape topology and compute the Pareto-Optimal solutions for multiple objectives,

while keeping the continuous morphology parameters unchangeable and parameter-

izing the control as an open-loop trajectory. For manipulator robots, we propose a

manufacturing-aware representation for the continuous shape morphology and opti-

mize the continuous shape parameters, while assuming the discrete topology to be

fixed, and the control to be open-loop sequence. Although we present a viable and

hybrid representation for both continuous and discrete shape parameters, we have just

demonstrate its effectiveness through a user interface instead of integrating it into an

automatic co-design optimization. For the tactile control algorithm, we optimize for

a neural network control policy while not considering any modifications on the robot

shape variables. A very first future step towards the envisioned ideal system is to

jointly optimize all the shape parameters including both the continuous ones and the

discrete ones, as well as a sophisticated control policy such as a neural network. We

have some preliminary exploration of jointly optimizing both the continuous shape

parameters and discrete shape parameters for Unmanned Aerial Vehicle [145] and

Unmanned Underwater Vehicle [146] by leveraging the hybrid shape representation

we introduced in Section 3.3. However, the robots in those preliminary attempts are

just relatively simple single rigid bodies with no contact to the environment, and the

control strategy are just classical LQR controls around a stationary trim state. Ex-

ploring more sophisticated control representations and more complicated contact-rich

robot tasks is an important and immediate future step.

Many-objective robot design We have discussed some optimization algorithms

for multi-objective control problems in Chapter 6. However, so far in this thesis,

181

we have only solved the problems with two or three objectives. Many problems in

real life can indeed evaluated by more than three objectives, which we call it many-

objective problems. The size of the solution set increases incredibly as the number of

objectives increases. For single-objective problem, there is a single optimal solution

exists. When the number of objectives are two, the Pareto front is a 1-D frontier

curve. In the work discussed in Section 6.1, the number of policies on Pareto front

we computed for two-objective problems are typically three to four hundreds. When

the number of objectives increases to three, the Pareto front becomes a 2d surface.

As an illustration, for the three-objective task Hopper-v3 in Section 6.1, the number

of Pareto policies is thousands. The size of the Pareto set scales exponentially if we

further increase the number of the objectives thus naively computing every single

solution in the Pareto set as we have done so far becomes infeasible in terms of both

memory cost and computation cost. Therefore, it requires a more effective Pareto

solution set representation and a more efficient computational algorithm for many-

objective robot problems.

Sensor and actuator optimization In our discussed works, we assume we have

full access to the robot dynamics state, such as positions and velocities. However,

that is rarely the case in a robotic system in real since the real observation input

to a robotic system highly depends on its sensor types and placements. When we

design the hardware of a robot, not only should we design the robot’s shape, but

the sensor design is also a critical component of robot hardware design. For different

tasks, we may prefer different types of sensors such as tactile sensors, vision sensors

or accelerometers, and different choices of sensors may have difference task-optimal

placements for the sensors. For examples, for a manipulation task, we may want

a vision sensor which is mounted at the head of a robot while we may also want

some tactile sensors installed at the manipulator fingertips to sense its contact to

the environment. Furthermore, the sensor design also has sophisticated effect on the

optimal design of the robot shape and control. Thus how to jointly optimize the

shape, control as well as sensor can be an interesting direction to explore.

182

While the sensors are responsible for sensing the surroundings and providing the

observation input to the robotics system, actuator plays the role to process the control

output of the robotic system and convert the control signal to its real effect into the

environment. So far throughout this thesis, we use simple rigid joint actuators to

control the robots. However, adopting and optimizing the structure of other actuator

types such as soft compliant joint and tendon-driven actuators can have its potential

to further improve the task performance on real robot.

Sim-to-real transfer Eventually, we would like to put the optimized robot hard-

ware into the real via a manufacturing process and deploy the optimized control

algorithm on the real system. To achieve so, we have two sim-to-real requirements to

be satisfied. First, the hardware sim-to-real, which requires us to constrain the opti-

mization search space to be always manufacturing valid. We have demonstrated this

part in our work. We apply graph grammar to constrain the search space of discrete

shape topology within valid designs, and propose deformation-based representation

with connectivity constraints and fabrication constraints for the continuous morphol-

ogy parameters. Second, the control sim-to-real, which may come from the dynamics

mismatch between real physics and simulation physics, some intricate dynamics ef-

fects that cannot be easily modeled in simulation, as well as the robot modeling

mismatch between the robots in real and in simulation. Although there has been a

lot of effort in the robotics field to narrow down this control sim-to-real gap, and

we also have some preliminary attempts on sim-to-real for stationary tactile-based

control [4] and for hybrid UAV control [52], the current techniques are still highly

problem specific, far from satisfying the needs of a general-purpose computational

robot design pipeline.

183

184

Bibliography

[1] Seunghwan Lee, Moonseok Park, Kyoungmin Lee, and Jehee Lee. Scalable
muscle-actuated human simulation and control. ACM Trans. Graph., 38(4),
July 2019.

[2] Jie Xu, Tao Chen, Lara Zlokapa, Michael Foshey, Wojciech Matusik, Shin-
jiro Sueda, and Pulkit Agrawal. An End-to-End Differentiable Framework for
Contact-Aware Robot Design. In Proceedings of Robotics: Science and Systems,
Virtual, July 2021. doi: 10.15607/RSS.2021.XVII.008.

[3] Lara Zlokapa, Yiyue Luo, Jie Xu, Michael Foshey, Kui Wu, Pulkit Agrawal, and
Wojciech Matusik. An Integrated Design Pipeline for Tactile Sensing Robotic
Manipulators. In IEEE International Conference on Robotics and Automation,
Philadelphia, PA, May 2022.

[4] Jie Xu, Sangwoon Kim, Tao Chen, Alberto Rodriguez Garcia, Pulkit Agrawal,
Wojciech Matusik, and Shinjiro Sueda. Efficient Tactile Simulation with Dif-
ferentiability for Robotic Manipulation. In Submission to CoRL 2022.

[5] Jie Xu, Viktor Makoviychuk, Yashraj Narang, Fabio Ramos, Wojciech Matusik,
Animesh Garg, and Miles Macklin. Accelerated policy learning with parallel
differentiable simulation. In International Conference on Learning Representa-
tions, 2021.

[6] Allan Zhao, Jie Xu, Mina Konaković-Luković, Josephine Hughes, Andrew Spiel-
berg, Daniela Rus, and Wojciech Matusik. Robogrammar: graph grammar for
terrain-optimized robot design. ACM Transactions on Graphics (TOG), 39(6):
1–16, 2020.

[7] Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela Rus, Shinjiro Sueda, and Wo-
jciech Matusik. Prediction-guided multi-objective reinforcement learning for
continuous robot control. In Proceedings of the 37th International Conference
on Machine Learning, 2020.

[8] Jie Xu, Andrew Speilberg, Allan Zhao, Daniela Rus, and Wojciech Matusik.
Multi-objective graph heuristic search for terrestrial robot design. IEEE, 2021.

[9] Agrim Gupta, Silvio Savarese, Surya Ganguli, and Li Fei-Fei. Embodied intel-
ligence via learning and evolution. arXiv preprint arXiv:2102.02202, 2021.

185

[10] Karl Sims. Evolving virtual creatures. In Proceedings of the 21st annual con-
ference on Computer graphics and interactive techniques, pages 15–22. ACM,
1994.

[11] Tingwu Wang, Yuhao Zhou, Sanja Fidler, and Jimmy Ba. Neural
graph evolution: Towards efficient automatic robot design. arXiv preprint
arXiv:1906.05370, 2019.

[12] Sehoon Ha, Stelian Coros, Alexander Alspach, Joohyung Kim, and Katsu Ya-
mane. Joint optimization of robot design and motion parameters using the
implicit function theorem. In Robotics: Science and systems, volume 8, 2017.

[13] Christopher Hazard, Nancy Pollard, and Stelian Coros. Automated design of
manipulators for in-hand tasks. In 2018 IEEE-RAS 18th International Confer-
ence on Humanoid Robots (Humanoids), pages 1–8. IEEE, 2018.

[14] Raphael Deimel, Patrick Irmisch, Vincent Wall, and Oliver Brock. Automated
co-design of soft hand morphology and control strategy for grasping. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 1213–1218, 2017. doi: 10.1109/IROS.2017.8202294.

[15] KM Digumarti, C Gehring, S Coros, J Hwangbo, and R Siegwart. Concurrent
optimization of mechanical design and locomotion control of a legged robot. In
17th International Conference on Climbing and Walking Robots (CLAWAR),
pages 315–+. WORLD SCIENTIFIC PUBL CO PTE LTD, 2014.

[16] Andre Meixner, Christopher Hazard, and Nancy Pollard. Automated design of
simple and robust manipulators for dexterous in-hand manipulation tasks using
evolutionary strategies. In 2019 IEEE-RAS 19th International Conference on
Humanoid Robots (Humanoids), pages 281–288. IEEE, 2019.

[17] Xinlei Pan, Animesh Garg, Animashree Anandkumar, and Yuke Zhu. Emergent
hand morphology and control from optimizing robust grasps of diverse objects.
arXiv preprint arXiv:2012.12209, 2020.

[18] Kevin Wampler and Zoran Popović. Optimal gait and form for animal locomo-
tion. ACM Transactions on Graphics (TOG), 28(3):1–8, 2009.

[19] Tianjian Chen, Zhanpeng He, and Matei Ciocarlie. Hardware as policy: Me-
chanical and computational co-optimization using deep reinforcement learning.
arXiv preprint arXiv:2008.04460, 2020.

[20] Kevin Sebastian Luck, Heni Ben Amor, and Roberto Calandra. Data-efficient
co-adaptation of morphology and behaviour with deep reinforcement learning.
In Conference on Robot Learning, pages 854–869. PMLR, 2020.

[21] Charles Schaff, David Yunis, Ayan Chakrabarti, and Matthew R Walter. Jointly
learning to construct and control agents using deep reinforcement learning.

186

In 2019 International Conference on Robotics and Automation (ICRA), pages
9798–9805. IEEE, 2019.

[22] Adriana Schulz, Jie Xu, Bo Zhu, Changxi Zheng, Eitan Grinspun, and Wojciech
Matusik. Interactive design space exploration and optimization for cad models.
ACM Transactions on Graphics (TOG), 36(4):1–14, 2017.

[23] Christian Hafner, Christian Schumacher, Espen Knoop, Thomas Auzinger,
Bernd Bickel, and Moritz Bächer. X-cad: Optimizing cad models with ex-
tended finite elements. ACM Trans. Graph., 38(6), November 2019. ISSN
0730-0301. doi: 10.1145/3355089.3356576. URL https://doi.org/10.1145/
3355089.3356576.

[24] Huy Ha, Shubham Agrawal, and Shuran Song. Fit2form: 3d generative model
for robot gripper form design. arXiv preprint arXiv:2011.06498, 2020.

[25] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[26] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simu-
lation for games, robotics and machine learning. 2016.

[27] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for
model-based control. In 2012 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 5026–5033. IEEE, 2012.

[28] Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and
Koray kavukcuoglu. Interaction networks for learning about objects, relations
and physics. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, pages 4509–4517, 2016.

[29] Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum.
A compositional object-based approach to learning physical dynamics. arXiv
preprint arXiv:1612.00341, 2016.

[30] Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Tor-
ralba. Learning particle dynamics for manipulating rigid bodies, deformable
objects, and fluids. arXiv preprint arXiv:1810.01566, 2018.

[31] Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei,
Joshua B Tenenbaum, and Daniel LK Yamins. Flexible neural representation
for physics prediction. arXiv preprint arXiv:1806.08047, 2018.

[32] Brandon Amos and J. Zico Kolter. Optnet: Differentiable optimization as a
layer in neural networks, 2019.

187

https://doi.org/10.1145/3355089.3356576
https://doi.org/10.1145/3355089.3356576

[33] Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum,
and J Zico Kolter. End-to-end differentiable physics for learning and control.
Advances in neural information processing systems, 31:7178–7189, 2018.

[34] Jonas Degrave, Michiel Hermans, Joni Dambre, et al. A differentiable physics
engine for deep learning in robotics. Frontiers in neurorobotics, 13:6, 2019.

[35] Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard
Thomaszewski, and Stelian Coros. Add: analytically differentiable dynamics
for multi-body systems with frictional contact. ACM Transactions on Graphics
(TOG), 39(6):1–15, 2020.

[36] Eric Heiden, David Millard, Hejia Zhang, and Gaurav S Sukhatme. Interactive
differentiable simulation. arXiv preprint arXiv:1905.10706, 2019.

[37] Ying Wang, Nicholas J. Weidner, Margaret A. Baxter, Yura Hwang, Danny M.
Kaufman, and Shinjiro Sueda. RedMax: Efficient & flexible approach for ar-
ticulated dynamics. ACM Trans. Graph., 38(4), July 2019. ISSN 0730-0301.
doi: 10.1145/3306346.3322952. URL https://doi.org/10.1145/3306346.
3322952.

[38] Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela
Rus, and Wojciech Matusik. Diffpd: Differentiable projective dynamics with
contact. arXiv preprint arXiv:2101.05917, 2021.

[39] David Hahn, Pol Banzet, James M Bern, and Stelian Coros. Real2sim: Visco-
elastic parameter estimation from dynamic motion. ACM Transactions on
Graphics (TOG), 38(6):1–13, 2019.

[40] Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B Tenenbaum,
William T Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. Chain-
queen: A real-time differentiable physical simulator for soft robotics. In 2019
International conference on robotics and automation (ICRA), pages 6265–6271.
IEEE, 2019.

[41] Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan
Ragan-Kelley, and Frédo Durand. Difftaichi: Differentiable programming for
physical simulation. In International Conference on Learning Representations,
2020.

[42] Zhiao Huang, Yuanming Hu, Tao Du, Siyuan Zhou, Hao Su, Joshua B. Tenen-
baum, and Chuang Gan. Plasticinelab: A soft-body manipulation benchmark
with differentiable physics. In International Conference on Learning Represen-
tations, 2021. URL https://openreview.net/forum?id=xCcdBRQEDW.

[43] Krishna Murthy Jatavallabhula, Miles Macklin, Florian Golemo, Vikram Voleti,
Linda Petrini, Martin Weiss, Breandan Considine, Jerome Parent-Levesque,
Kevin Xie, Kenny Erleben, et al. gradsim: Differentiable simulation for system
identification and visuomotor control. arXiv preprint arXiv:2104.02646, 2021.

188

https://doi.org/10.1145/3306346.3322952
https://doi.org/10.1145/3306346.3322952
https://openreview.net/forum?id=xCcdBRQEDW

[44] Junbang Liang, Ming Lin, and Vladlen Koltun. Differentiable cloth sim-
ulation for inverse problems. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
28f0b864598a1291557bed248a998d4e-Paper.pdf.

[45] Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming Lin. Scalable differen-
tiable physics for learning and control. In International Conference on Machine
Learning, pages 7847–7856. PMLR, 2020.

[46] Stelian Coros, Andrej Karpathy, Ben Jones, Lionel Reveret, and Michiel van de
Panne. Locomotion skills for simulated quadrupeds. ACM Trans. Graph., 30
(4), jul 2011. ISSN 0730-0301. doi: 10.1145/2010324.1964954. URL https:
//doi.org/10.1145/2010324.1964954.

[47] Igor Mordatch, Emanuel Todorov, and Zoran Popović. Discovery of complex be-
haviors through contact-invariant optimization. ACM Transactions on Graphics
(TOG), 31(4):1–8, 2012.

[48] Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct method for trajectory
optimization of rigid bodies through contact. The International Journal of
Robotics Research, 33(1):69–81, 2014.

[49] John T Betts. Survey of numerical methods for trajectory optimization. Journal
of guidance, control, and dynamics, 21(2):193–207, 1998.

[50] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios
Tsounis, Vladlen Koltun, and Marco Hutter. Learning agile and dynamic motor
skills for legged robots. Science Robotics, 4(26), 2019.

[51] OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin,
Bob McGrew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell,
Raphael Ribas, Jonas Schneider, Nikolas Tezak, Jerry Tworek, Peter Welinder,
Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei Zhang. Solving rubik’s
cube with a robot hand, 2019.

[52] Jie Xu, Tao Du, Michael Foshey, Beichen Li, Bo Zhu, Adriana Schulz, and
Wojciech Matusik. Learning to fly: computational controller design for hybrid
uavs with reinforcement learning. ACM Transactions on Graphics (TOG), 38
(4):1–12, 2019.

[53] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco
Hutter. Learning quadrupedal locomotion over challenging terrain. Science
robotics, 5(47), 2020.

[54] OpenAI : Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefow-
icz, Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn

189

https://proceedings.neurips.cc/paper/2019/file/28f0b864598a1291557bed248a998d4e-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/28f0b864598a1291557bed248a998d4e-Paper.pdf
https://doi.org/10.1145/2010324.1964954
https://doi.org/10.1145/2010324.1964954

Powell, Alex Ray, Jonas Schneider, Szymon Sidor, Josh Tobin, Peter Welinder,
Lilian Weng, and Wojciech Zaremba. Learning dexterous in-hand manipulation.
The International Journal of Robotics Research, 39(1):3–20, 2020.

[55] Tao Chen, Jie Xu, and Pulkit Agrawal. A system for general in-hand object
re-orientation. In 5th Annual Conference on Robot Learning, 2021.

[56] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. Deep-
mimic: Example-guided deep reinforcement learning of physics-based character
skills. ACM Trans. Graph., 37(4):143:1–143:14, July 2018. ISSN 0730-0301.

[57] Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa.
Amp: Adversarial motion priors for stylized physics-based character control.
ACM Trans. Graph., 40(4), July 2021.

[58] Libin Liu and Jessica Hodgins. Learning basketball dribbling skills using tra-
jectory optimization and deep reinforcement learning. ACM Trans. Graph., 37
(4), July 2018.

[59] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International conference on ma-
chine learning, pages 1889–1897. PMLR, 2015.

[60] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[61] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. In ICLR (Poster), 2016.

[62] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In Maria Florina Balcan
and Kilian Q. Weinberger, editors, Proceedings of The 33rd International Con-
ference on Machine Learning, volume 48 of Proceedings of Machine Learning
Research, pages 1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR.

[63] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approxi-
mation error in actor-critic methods. In International Conference on Machine
Learning, pages 1587–1596. PMLR, 2018.

[64] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a stochas-
tic actor. In International conference on machine learning, pages 1861–1870.
PMLR, 2018.

190

[65] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel.
Model-ensemble trust-region policy optimization. In International Conference
on Learning Representations, 2018.

[66] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust
your model: Model-based policy optimization. Advances in Neural Information
Processing Systems, 32:12519–12530, 2019.

[67] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream
to control: Learning behaviors by latent imagination. In International Confer-
ence on Learning Representations, 2019.

[68] Ignasi Clavera, Yao Fu, and Pieter Abbeel. Model-augmented actor-critic:
Backpropagating through paths. In International Conference on Learning Rep-
resentations, 2020.

[69] Michael Mozer. A focused backpropagation algorithm for temporal pattern
recognition. Complex Systems, 3, 01 1995.

[70] Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming C. Lin. Efficient
differentiable simulation of articulated bodies. In ICML, 2021.

[71] Miguel Angel Zamora Mora, Momchil Peychev, Sehoon Ha, Martin Vechev,
and Stelian Coros. Pods: Policy optimization via differentiable simulation. In
Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learn-
ing Research, pages 7805–7817. PMLR, 18–24 Jul 2021.

[72] Gregory S Hornby, Hod Lipson, and Jordan B Pollack. Generative representa-
tions for the automated design of modular physical robots. IEEE transactions
on Robotics and Automation, 19(4):703–719, 2003.

[73] Nick Cheney, Robert MacCurdy, Jeff Clune, and Hod Lipson. Unshackling
evolution: evolving soft robots with multiple materials and a powerful gener-
ative encoding. In Proceedings of the 15th annual conference on Genetic and
evolutionary computation, pages 167–174, 2013.

[74] Nicholas Cheney, Jeff Clune, and Hod Lipson. Evolved electrophysiological soft
robots. In Artificial Life Conference Proceedings 14, pages 222–229. MIT Press,
2014.

[75] Francesco Corucci, Nick Cheney, Hod Lipson, Cecilia Laschi, and Josh Bon-
gard. Evolving swimming soft-bodied creatures. In ALIFE XV, The Fifteenth
International Conference on the Synthesis and Simulation of Living Systems,
Late Breaking Proceedings, volume 6, 2016.

[76] Sehoon Ha, Stelian Coros, Alexander Alspach, James M Bern, Joohyung Kim,
and Katsu Yamane. Computational design of robotic devices from high-level
motion specifications. IEEE Transactions on Robotics, 34(5):1240–1251, 2018.

191

[77] Andrew Spielberg, Brandon Araki, Cynthia Sung, Russ Tedrake, and Daniela
Rus. Functional co-optimization of articulated robots. In 2017 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 5035–5042.
IEEE, 2017.

[78] Moritz Geilinger, Roi Poranne, Ruta Desai, Bernhard Thomaszewski, and
Stelian Coros. Skaterbots: Optimization-based design and motion synthesis
for robotic creatures with legs and wheels. ACM Transactions on Graphics
(TOG), 37(4):1–12, 2018.

[79] MF Ashby. Multi-objective optimization in material design and selection. Acta
materialia, 48(1):359–369, 2000.

[80] Xingtao Liao, Qing Li, Xujing Yang, Weigang Zhang, and Wei Li. Multiobjec-
tive optimization for crash safety design of vehicles using stepwise regression
model. Structural and multidisciplinary optimization, 35(6):561–569, 2008.

[81] Salim Fettaka, Jules Thibault, and Yash Gupta. Design of shell-and-tube heat
exchangers using multiobjective optimization. International Journal of Heat
and Mass Transfer, 60:343–354, 2013.

[82] Christos A Nicolaou and Nathan Brown. Multi-objective optimization methods
in drug design. Drug Discovery Today: Technologies, 10(3):e427–e435, 2013.

[83] Kalyanmoy Deb. Multi-objective optimization using evolutionary algorithms,
volume 16. John Wiley & Sons, 2001.

[84] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and Tanaka Meyarivan. A
fast elitist non-dominated sorting genetic algorithm for multi-objective opti-
mization: Nsga-ii. In International conference on parallel problem solving from
nature, pages 849–858. Springer, 2000.

[85] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through
augmenting topologies. Evolutionary computation, 10(2):99–127, 2002.

[86] Christian Igel, Nikolaus Hansen, and Stefan Roth. Covariance matrix adap-
tation for multi-objective optimization. Evolutionary computation, 15(1):1–28,
2007.

[87] Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm
based on decomposition. IEEE Transactions on evolutionary computation, 11
(6):712–731, 2007.

[88] Gabriele Eichfelder. An adaptive scalarization method in multiobjective opti-
mization. SIAM Journal on Optimization, 19(4):1694–1718, 2009.

[89] Adriana Schulz, Harrison Wang, Eitan Grinspun, Justin Solomon, and Wojciech
Matusik. Interactive exploration of design trade-offs. ACM Transactions on
Graphics (TOG), 37(4):1–14, 2018.

192

[90] Zoltán Gábor, Zsolt Kalmár, and Csaba Szepesvári. Multi-criteria reinforce-
ment learning. In Proceedings of the Fifteenth International Conference on
Machine Learning, pages 197–205. Morgan Kaufmann Publishers Inc., 1998.

[91] Shie Mannor and Nahum Shimkin. The steering approach for multi-criteria
reinforcement learning. In Advances in Neural Information Processing Systems,
pages 1563–1570, 2002.

[92] S. Parisi, M. Pirotta, N. Smacchia, L. Bascetta, and M. Restelli. Policy gradient
approaches for multi-objective sequential decision making. In 2014 International
Joint Conference on Neural Networks (IJCNN), pages 2323–2330, July 2014.
doi: 10.1109/IJCNN.2014.6889738.

[93] Sriraam Natarajan and Prasad Tadepalli. Dynamic preferences in multi-criteria
reinforcement learning. In Proceedings of the 22nd international conference on
Machine learning, pages 601–608, 2005.

[94] Kaiwen Li, Tao Zhang, and Rui Wang. Deep reinforcement learning for multi-
objective optimization. arXiv preprint arXiv:1906.02386, 2019.

[95] Xi Chen, Ali Ghadirzadeh, Mårten Björkman, and Patric Jensfelt.
Meta-learning for multi-objective reinforcement learning. arXiv preprint
arXiv:1811.03376, 2018.

[96] Andrea Castelletti, Francesca Pianosi, and Marcello Restelli. Multi-objective
fitted q-iteration: Pareto frontier approximation in one single run. In 2011
International Conference on Networking, Sensing and Control, pages 260–265.
IEEE, 2011.

[97] Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algo-
rithm for multi-objective reinforcement learning and policy adaptation. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 32, pages
14610–14621. Curran Associates, Inc., 2019.

[98] Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckel-
macher. Dynamic weights in multi-objective deep reinforcement learning. In
International Conference on Machine Learning, pages 11–20, 2019.

[99] Alec Jacobson, Ilya Baran, Jovan Popovic, and Olga Sorkine. Bounded bihar-
monic weights for real-time deformation. ACM Trans. Graph., 30(4):78, 2011.

[100] Tao Ju, Scott Schaefer, and Joe Warren. Mean value coordinates for closed
triangular meshes. In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, page
561–566, New York, NY, USA, 2005. Association for Computing Machinery.
ISBN 9781450378253. doi: 10.1145/1186822.1073229. URL https://doi.org/
10.1145/1186822.1073229.

193

https://doi.org/10.1145/1186822.1073229
https://doi.org/10.1145/1186822.1073229

[101] Yiyue Luo, Yunzhu Li, Pratyusha Sharma, Wan Shou, Kui Wu, Michael Foshey,
Beichen Li, Tomás Palacios, Antonio Torralba, and Wojciech Matusik. Learn-
ing human–environment interactions using conformal tactile textiles. Nature
Electronics, 4(3):193–201, 2021.

[102] Daolin Ma, Elliott Donlon, Siyuan Dong, and Alberto Rodriguez. Dense tactile
force estimation using gelslim and inverse fem. In 2019 International Conference
on Robotics and Automation (ICRA), pages 5418–5424. IEEE, 2019.

[103] Ernst Hairer, Christian Lubich, and Gerhard Wanner. Geometric numerical
integration: structure-preserving algorithms for ordinary differential equations,
volume 31. Springer Science & Business Media, 2006.

[104] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014.

[105] Alex Church, John Lloyd, Raia Hadsell, and Nathan F Lepora. Optical tac-
tile sim-to-real policy transfer via real-to-sim tactile image translation. arXiv
preprint arXiv:2106.08796, 2021.

[106] C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch,
and Olivier Bachem. Brax - a differentiable physics engine for large scale rigid
body simulation. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 1), 2021.

[107] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in
neural information processing systems, pages 1008–1014, 2000.

[108] Jacky Liang, Viktor Makoviychuk, Ankur Handa, Nuttapong Chentanez, Miles
Macklin, and Dieter Fox. Gpu-accelerated robotic simulation for distributed re-
inforcement learning. In Conference on Robot Learning, pages 270–282. PMLR,
2018.

[109] Arthur Allshire, Mayank Mittal, Varun Lodaya, Viktor Makoviychuk, Denys
Makoviichuk, Felix Widmaier, Manuel Wüthrich, Stefan Bauer, Ankur Handa,
and Animesh Garg. Transferring Dexterous Manipulation from GPU Simulation
to a Remote Real-World TriFinger. arXiv preprint arXiv:2108.09779, 2021.

[110] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. Pytorch: An imperative style, high-performance deep learning library.
Advances in Neural Information Processing Systems, 32, 2019.

[111] Andreas Griewank and Andrea Walther. Introduction to automatic differenti-
ation. PAMM, 2(1):45–49, 2003.

[112] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

194

[113] Paavo Parmas, Carl Edward Rasmussen, Jan Peters, and Kenji Doya. Pipps:
Flexible model-based policy search robust to the curse of chaos. In International
Conference on Machine Learning, pages 4065–4074. PMLR, 2018.

[114] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learn-
ing, volume 135. MIT press Cambridge, 1998.

[115] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,
Georg Ostrovski, et al. Human-level control through deep reinforcement learn-
ing. nature, 518(7540):529–533, 2015.

[116] Denys Makoviichuk and Viktor Makoviychuk. RL Games, 2021. URL https:
//github.com/Denys88/rl_games/.

[117] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier
Storey, Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur
Handa, et al. Isaac gym: High performance gpu based physics simulation for
robot learning. In Thirty-fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2), 2021.

[118] Peter Norvig and Stuart Russell. Artificial Intelligence: A modern approach.
Prentice Hall, 3rd edition, 2002.

[119] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

[120] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and
Jure Leskovec. Hierarchical graph representation learning with differentiable
pooling. In Advances in neural information processing systems, pages 4800–
4810, 2018.

[121] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learn-
ing on large graphs. In Advances in neural information processing systems, pages
1024–1034, 2017.

[122] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[123] Raphael Deimel and Oliver Brock. A novel type of compliant and underactuated
robotic hand for dexterous grasping. The International Journal of Robotics
Research, 35(1-3):161–185, 2016.

[124] Daniela Rus and Michael T Tolley. Design, fabrication and control of soft
robots. Nature, 521(7553):467–475, 2015.

195

https://github.com/Denys88/rl_games/
https://github.com/Denys88/rl_games/
http://arxiv.org/abs/1412.6980

[125] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob Mc-
Grew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael
Ribas, et al. Solving rubik’s cube with a robot hand. arXiv preprint
arXiv:1910.07113, 2019.

[126] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefow-
icz, Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn
Powell, Alex Ray, et al. Learning dexterous in-hand manipulation. The Inter-
national Journal of Robotics Research, 39(1):3–20, 2020.

[127] Anusha Nagabandi, Kurt Konolige, Sergey Levine, and Vikash Kumar. Deep
dynamics models for learning dexterous manipulation. In Conference on Robot
Learning, pages 1101–1112. PMLR, 2020.

[128] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science
& Business Media, 2006.

[129] J. Rapin and O. Teytaud. Nevergrad - A gradient-free optimization platform.
https://GitHub.com/FacebookResearch/Nevergrad, 2018.

[130] Anne Auger. Benchmarking the (1+ 1) evolution strategy with one-fifth success
rule on the bbob-2009 function testbed. In Proceedings of the 11th Annual
Conference Companion on Genetic and Evolutionary Computation Conference:
Late Breaking Papers, pages 2447–2452, 2009.

[131] Ingo Rechenberg. Evolutionsstrategien. In Simulationsmethoden in der Medizin
und Biologie, pages 83–114. Springer, 1978.

[132] Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-
adaptation in evolution strategies. Evolutionary computation, 9(2):159–195,
2001.

[133] Eugene L Allgower and Kurt Georg. Introduction to numerical continuation
methods. SIAM, 2003.

[134] N. Riquelme, C. Von Lücken, and B. Baran. Performance metrics in multi-
objective optimization. In 2015 Latin American Computing Conference (CLEI),
pages 1–11, Oct 2015. doi: 10.1109/CLEI.2015.7360024.

[135] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a compar-
ative case study and the strength pareto approach. IEEE Transactions on
Evolutionary Computation, 3(4):257–271, Nov 1999. ISSN 1941-0026. doi:
10.1109/4235.797969.

[136] Adriana Schulz, Harrison Wang, Eitan Grinspun, Justin Solomon, and Wojciech
Matusik. Interactive exploration of design trade-offs. ACM Trans. Graph., 37
(4), July 2018. ISSN 0730-0301. doi: 10.1145/3197517.3201385. URL https:
//doi.org/10.1145/3197517.3201385.

196

https://GitHub.com/FacebookResearch/Nevergrad
https://doi.org/10.1145/3197517.3201385
https://doi.org/10.1145/3197517.3201385

[137] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter
Abbeel. High-dimensional continuous control using generalized advantage esti-
mation. arXiv preprint arXiv:1506.02438, 2015.

[138] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of machine learning research, 9(Nov):2579–2605, 2008.

[139] Tristan Deleu. Model-Agnostic Meta-Learning for Reinforcement Learning in
PyTorch, 2018. Available at: https://github.com/tristandeleu/pytorch-maml-
rl.

[140] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. International Conference on
Machine Learning (ICML), 2017. URL http://arxiv.org/abs/1703.03400.

[141] Tao Chen, Miqing Li, and Xin Yao. How to evaluate solutions in pareto-based
search-based software engineering? a critical review and methodological guid-
ance. arXiv preprint arXiv:2002.09040, 2020.

[142] Eckart Zitzler and Lothar Thiele. Multiobjective evolutionary algorithms: a
comparative case study and the strength pareto approach. IEEE transactions
on Evolutionary Computation, 3(4):257–271, 1999.

[143] David A Van Veldhuizen. Multiobjective evolutionary algorithms: classifica-
tions, analyses, and new innovations. Technical report, AIR FORCE INST
OF TECH WRIGHT-PATTERSONAFB OH SCHOOL OF ENGINEERING,
1999.

[144] Carlos A. Coello Coello and Margarita Reyes Sierra. A study of the paral-
lelization of a coevolutionary multi-objective evolutionary algorithm. In Raúl
Monroy, Gustavo Arroyo-Figueroa, Luis Enrique Sucar, and Humberto Sossa,
editors, MICAI 2004: Advances in Artificial Intelligence, pages 688–697, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-24694-7.

[145] Allan Zhao, Tao Du, Jie Xu, Josie Hughes, Juan Salazar, Pingchuan Ma, Wei
Wang, Daniela Rus, and Wojciech Matusik. Automatic co-design of aerial robots
using a graph grammar. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2022. IEEE, 2022.

[146] Allan Zhao, Jie Xu, Juan Salazar, Wei Wang, Pingchuan Ma, Daniela Rus, and
Wojciech Matusik. Graph grammar-based automatic design for heterogeneous
fleets of underwater robots. In 2022 International Conference on Robotics and
Automation (ICRA), pages 3143–3149, 2022. doi: 10.1109/ICRA46639.2022.
9811808.

197

http://arxiv.org/abs/1703.03400

	Introduction
	Key Challenges in Computational Robot Design
	Hardware Shape Representation
	Control Representations
	Robot Performance Evaluation
	Single-Objective Robot Optimization
	Multi-Objective Robot Optimization

	Thesis Overview

	Related Work
	Robot Shape Representation and Parameterization
	Differentiable Physics-Based Simulation
	Computational Robot Design for Single Objective
	Control Optimization and Learning
	Control and Shape Co-Design

	Computational Robot Design for Multiple Objectives
	Multi-Objective Optimization
	Multi-Objective Control Policy Optimization

	Robot Shape Representation
	Graph Grammar Representation for Discrete Robot Shape Topology
	Deformation-Based Representation for Continuous Robot Morphology
	Motivation
	Hierarchical Morphology Parameterization
	Results

	Hybrid Shape Representation for Robot Designs

	Computational Robot Control Design via Differentiable Physics
	Differentiable Articulated Rigid Body Simulation with Tactile Feedback
	Tactile Sensor Representation
	Penalty-based Frictional Contact and Tactile Model
	Forward Dynamics
	Backward Gradient Computation
	Experiments
	Summary

	Accelerated Policy Learning with Parallel Differentiable Simulation
	Motivation
	GPU-Based Differentiable Dynamics Simulation
	Optimization Landscape Analysis
	Short-Horizon Actor-Critic (SHAC)
	Experiments
	Summary

	Computational Robot Shape and Control Co-Design
	Co-Optimizing Robot Control and Discrete Shape Topology: Graph Heuristic Search
	Motivation
	System Overview
	Graph Grammar for Terrestrial Robot Topology Design
	Graph Heuristic Search
	Experiments
	Summary

	Co-Optimizing Robot Control and Continuous Shape Morphology: An End-to-End Differentiable Framework
	Motivation
	Method
	Experiments
	Summary

	Multi-Objective Robot Optimization
	Prediction-Guided Multi-Objective Control Policy Learning
	Motivation
	Preliminaries
	Algorithm Overview
	Prediction-Guided MORL
	Pareto Analysis and Continuous Pareto Representation
	Experiments
	Summary

	MOGHS: Multi-Objective Robot Control and Shape Topology Co-Design
	Motivation
	Overview
	A Naive Linear Scalarization Approach
	Multi-objective Graph Heuristic Search
	Universal Multi-Objective Heuristic Function
	Other Improvements
	Experiments
	Conclusion

	Conclusion and Outlook

