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We investigate computational and mechanism design aspects of allocating medical treatments at hospitals of different costs to
patients who each value these hospitals differently. The payer wants to ensure that the total cost of all treatments is at most
the budget, B. Access to overdemanded hospitals is rationed through waiting times.

We first show that optimizing social welfare in equilibrium is NP-hard. But if the number of hospitals is small and the
budget can be relaxed to 41 + �5B for arbitrarily small �, the optimum under budget B can be achieved efficiently. Next,
we show waiting times emerge endogenously from the dynamics between hospitals and patients and the payer doesn’t have
to explicitly enforce them; all it needs to do is enforce the amount of money paid to each hospital, and the dynamics will
converge to the desired waiting times in finite time. Going beyond equilibrium solutions, we investigate the optimization
problem over a much larger class of mechanisms. With two hospitals and concave preference profiles of the patients, optimal
welfare is actually attained by the randomized assignment, which allocates patients at random and avoids waiting times.
Finally, we discuss potential policy implications of our results, followup directions, and open problems.
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1. Introduction. In this paper, we study computational and mechanism design issues in the context of
optimal healthcare provision. Specifically, we consider the setting where waiting times, and not payments, are
used to allocate scarce care resources among patients. Waiting times in healthcare provision is an important topic
of public debate worldwide. For example, it has a central role in the ongoing debate surrounding the Patient
Protection and Affordable Care Act (“Obamacare”) in the United States. In a large number of countries with
public health coverage financing, including Australia, Canada, Spain, and the United Kingdom, procedures such
as elective surgery are rationed by waiting; see Siciliani and Hurst [27] and Gravelle and Siciliani [11]. While
in the public perception waiting times are often associated with poor resource management, in the economics
literature, it is well understood that queues of consumers will form whenever a good is priced below the good’s
perceived value, as long as supply is scarce independently of the ultimate distribution mechanism; see Barzel [4],
Lindsay and Feigenbaum [21], and Iversen [16]. In particular, waiting times in this context are dictated by
economic incentive constraints and not by stochastic fluctuations as in classical queuing theory. Therefore,
whenever “correct” monetary pricing is impossible or undesirable, waiting times should be incorporated explicitly
into the allocation models.

We focus on providing a single nonurgent healthcare service (such as a particular surgery) to a population of
patients, and define the Provision-after-Wait problem for this scenario. In our model, a population of patients
arrives in each time unit (say, one month), seeking the desired service at some hospital. There are k hospitals
providing the service under different costs. The patients have different preferences about the hospitals, and the
composition of the patient population in each time unit is the same. Each patient needs to be served exactly
once. The service is fully financed by a third party—a “payer,” e.g., the government or an insurer. Therefore the
patients’ choices of hospitals are not affected by the (monetary) costs. But the payer, taken to be the government
in the rest of this paper for concreteness, has a fixed budget B that it is willing to spend on providing the
service to the entire patient population in each time unit, and it is unaffordable to let every patient go to his or
her favorite hospital (otherwise the provision problem is already solved at the very beginning). Without loss of
generality, we assume that the government has enough budget to treat all patients in the cheapest hospital. This
can always be achieved by adding a dummy hospital, which has cost 0 and is the least preferred by all patients,
representing the option of not getting the service.

The government rations the patients’ demand subject to its budget by setting for each hospital Hi a waiting
time wi, measured using the same time unit. Every patient going to Hi has to wait for wi before being served.
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There are no copays, and thus the waiting time is the only cost directly incurred by the patients.1 We assume that
waiting times are known to the patients before they make decisions.2 Each patient Pj has value vij for hospital Hi,
representing the individual’s utility for being treated in Hi right away. Similar to Gravelle and Siciliani [10],
we assume that the patients have quasi-linear utilities with respect to waiting time, that is, patient Pj ’s utility
for being treated at Hi with waiting time wi is uij

4

= vij − wi. The primary reason for this choice is that it is
the most natural way to ensure that patients are treated equally by welfare-optimizing mechanisms. Since, as
mechanism designers, we do not have full access to the uij ’s of individual patients but can observe waiting
times, our welfare loss due to waiting will just be the sum of all the waiting times in the system.3

The patients are unrestricted in their choices of hospitals. Thus, at equilibrium, a patient is assigned to a
hospital that maximizes his or her utility given the waiting times. The social welfare of an equilibrium is defined
as the total utility of the patients in each time unit. The government’s goal in solving the Provision-after-Wait
problem is to find the optimal equilibrium waiting times and assignments of patients to hospitals that maximize
social welfare, subject to the budget constraint.

Our model is formally defined in §2. Below, we emphasize three main features of it.
Two noninterchangeable “currencies.” Firstly, as money is still involved, the setting leads to two noninter-

changeable “currencies” of money and waiting time. This complicates the design problem, conceptually and
computationally. We shall see from the first part of our main results, even though money and waiting time are
kept separate and only the latter affects the demand, the fact that they cannot be “traded” for each other (thus
reducing the setting to one currency) makes the problem much more difficult.

Indirect control of waiting times. Secondly, although waiting time is modeled as a parameter whose optimal
value is decided by the government, there is no need for the government to enforce it explicitly. Instead, as we
shall show in the second part of our main results, the government can simply decide the amount of money it is
willing to pay to each hospital in each time unit, and the desired waiting times at different hospitals will emerge
endogenously among the hospitals and the patients. The role of waiting time in our model is similar to that of
price in markets. In a market, the price ultimately drives consumers to different purchases, but the producers do
not get to dictate it. They can only control the price indirectly by adjusting their supply levels, and the “correct”
price will emerge endogenously from the market. This analogy makes it more reasonable to adopt our model
in reality: it is more natural for the government to control the amount of money it pays and tell a hospital “I’ll
only pay you $5,000 each month for this service,” than for it to control waiting times and tell a hospital “you
have to make each patient using this service wait for three months.”

Welfare-burning effect of waiting times. Finally, unlike monetary transfers, nobody benefits from one’s wait-
ing time, and thus waiting times represent a net loss in welfare. That is why in our model, the social welfare
is defined as the total utility of the patients—that is, total value minus total waiting time—differently from
auctions, where social welfare is the total value of the buyers. The welfare-burning phenomenon is common in
the study of resource allocation with waiting times, and is similar to the money-burning mechanisms by Hartline
and Roughgarden [14], subject to the important caveat that, in our model, time and money are used and time
burnt is not interchangeable with money.

Given the general welfare-burning effect of waiting times, it is very natural to ask whether they can be
avoided or reduced via a different allocation mechanism altogether. If monetary payments are not allowed, and
patients are free to choose their hospitals, then the (deterministic) equilibrium solution of the Provision-after-
Wait problem is the only one possible. What if the government has sufficient control over the patients that it can
tell them where to receive their treatment, or can otherwise restrict their options?4 The simplest such mechanism
would be a randomized assignment of patients to available slots, with the probabilities decided by the budget
constraint. In such an assignment, we benefit from zero waiting time. On the downside, we incur an efficiency
loss: patients may not end up in the hospitals they prefer. How does this randomized assignment mechanism
compare to the mechanism where patients are given a free choice and waiting times are used as a rationing

1 Adding copays to the model would be interesting followup work, but the space of possible models is far vaster with copays. Issues in
introducing copays include dealing with different people having different time/money trade-offs, and defining the patients’ utility properly
(with the usual ethical question: Do people with higher utility for money have lower utility for health, a.k.a. “should poor people count
for less”?). In this paper we avoid these problems, since time is fair to everybody and our patients’ utility is measured in waiting time
equivalents.
2 For example, the patients can observe the length of the lines before deciding which one to join, or they can be informed explicitly when
trying to make an appointment.
3 We can relax this assumption to allow utility functions of the form uij = vij −U4wi5, where U4w5 is a function (common to all patients)
that maps waiting time w to utility loss caused by waiting w time units.
4 Possible “soft” mechanisms for doing this are discussed below.
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tool? The answer to this question depends on the preference profiles of the patients. Informally speaking, if
patients have strong and diverse preferences on where to be treated, then the free-choice equilibrium mechanism
is better, since efficiency gains due to better allocation offset the inefficiency caused by waiting. At the other
extreme, if all patients have similar preferences, then no efficiencies are to be gained from patients’ choice,
and randomized assignment mechanisms are superior. We further investigate this question in the case of two
hospitals, in the third part of our main results.

1.1. Main results.

Finding optimal equilibrium waiting times and assignments. We first study the computational issues in
our model, assuming that the government is fully informed about the hospitals’ costs and the patients’ valuations.
The following theorem shows that the Provision-after-Wait problem is hard to solve in general.

Theorem 1. Finding optimal equilibrium waiting times and assignments is NP-hard.

The hardness result motivates one to ask whether one can efficiently approximate the welfare of the optimal
solution. Interestingly, we show that if we relax the budget constraint to 41 + �5B with an arbitrarily small
constant �, we can achieve at least as much welfare as the best B-budget equilibrium solution, using an algorithm
whose running time depends on 4logm5k, where m is the number of patients in one time unit and k is, as already
mentioned, the number of hospitals.

Theorem 2 (Rephrased). There is an algorithm that runs in time O44log1+�m5k ·m45 and outputs an equi-
librium solution such that the total cost is at most 41 + �5B and the social welfare is at least as high as that of
the optimal equilibrium solution with budget B.

It remains an interesting open problem whether there is a welfare approximation algorithm that does not
exceed the budget. Also, it is unknown whether there is an approximation algorithm that is polynomial in k.

Our results are formally presented in §§3 and 4. As will become clear there, our optimization problem
resembles the classic knapsack problem in that we try to maximize the total utility subject to a budget constraint,
but our problem has an incentive component, which does not exist in knapsack. Also, our problem shares
features with classic assignment problems such as unit demand auctions (see, e.g., Demange et al. [7] and
Aggarwal et al. [1]), which helps us to derive our approximation result. However, our problem differs from
classic assignments in that it is not a priori clear how many patients will be sent to each hospital (or, in the
language of auctions, how many items are available for sale).

Letting waiting times emerge endogenously. Next, we show how the desired waiting times and the cor-
responding optimal social welfare can emerge endogenously as the patients arrive and choose their favorite
hospitals. Say the government has decided how to spend its budget for the desired service, by using our approx-
imation algorithm above or other methods. The way of spending the budget can be enforced by setting the quota
for each hospital, namely, how many patients the government is willing to pay in one time unit (of course, the
total quota must be at least the number of patients).

It is natural to assume that the hospitals want to keep waiting times as low as possible, and at time 0, all
hospitals have waiting time 0. When the patients arrive along time, they choose which hospital to go according
to their own valuations and the current waiting times. If a hospital gets overdemanded, namely, the number of
patients going there per time unit exceeds the quota paid by the government, then the line there gets longer
and this hospital’s waiting time increases accordingly. If the waiting time becomes too high due to previous
demand, patients arriving later may choose not to go there and the hospital may become underdemanded, causing
its waiting time to decrease. As there may be many waiting time vectors of the hospitals that correspond to
equilibrium assignment given the quotas, it is not immediately clear which one the dynamics will converge to
(if it converges), and how much social welfare the government can generate from the dynamics.

Assuming the patients’ valuations are in a generic position (defined in §5), our following theorem characterizes
the structure of the optimal equilibrium given any quotas of the hospitals.

Theorem 3 (Rephrased). For any quotas of the hospitals, there is a unique optimal equilibrium maximizing
social welfare. It has the minimum waiting time vector among all equilibria, and any hospital whose quota is
not fully used has waiting time 0.
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Here, we start with the classic result of Shapley and Shubik [26] and Demange et al. [7] on the existence of a
unique optimal waiting time vector given the quotas, and arrive at our result via a characterization the patients’
demand graph under this waiting time vector.

By Theorem 3, it is reasonable to hope that the optimal equilibrium is the one implemented by the dynamics.
Our following theorems show this is indeed the case.

Theorems 4 and 5 (Rephrased). At any point of time, the waiting time of any hospital will never exceed
its waiting time in the optimal equilibrium, and thus the social welfare generated in any time unit will be at
least the optimal social welfare given the quotas. The dynamics will always converge to the optimal equilibrium,
in time proportional to the number of hospitals, the maximum social welfare of the patients, and the maximum
quota of the hospitals.

Similar to the Hungarian method for classic assignments (see, e.g., Easley and Kleinberg [8]), we analyze the
dynamics using a potential function. However, a crucial difference is that in the classic method, the prices never
go down (unless all of them are shifted down simultaneously and by the same amount, which does not change
the buyers’ relative preferences), whereas in our dynamics, the waiting times of different hospitals may change
in both directions and in an unsynchronized way.

These results are formally presented in §5.

When is the randomized assignment optimal? Finally, we turn our attention to the enlarged setting where
we are not limited to mechanisms that produce equilibrium solutions. The two “extreme” mechanisms are the
equilibrium mechanism discussed above that gives the patients free choices, and the randomized assignment
mechanism that assigns patients at random to available slots and does not give them any choice. In addition,
there are infinitely many lotteries in between these extremes. In a lottery, the patients are presented with a set
of distributions over hospitals, with an expected waiting time associated with each distribution. Instead of free
choices among all possible (distributions of) hospitals, the patients can only choose from the available ones in
the lottery, and they make choices to maximize their expected utilities.

Intuitively, if there are no extreme variations among the patients’ preferences, the randomized assignment
should outperform other mechanisms, since it avoids the deadweight loss of waiting times. We give further
evidence suggesting that randomized assignment may be superior in terms of social welfare, by analyzing the
case when there are two hospitals.

Let the hospitals be H0 and H1 with costs c0 and c1, respectively, such that c0 < c1. We assume without loss
of generality that patients going to hospital H0 face no waiting time.5 Thus patients who prefer H0 over H1

will always choose H0. We can therefore exclude them from consideration, and focus on patients who prefer H1

over H0.
We assume a continuous population of such patients, indexed by the 60117 interval. Each patient x is associated

with a value v4x5, representing how much time he or she is willing to wait to be treated in H1 instead of H0.
That is, v4x5 is the difference between x’s utility for being treated at H1 immediately and x’s utility for being
treated at H0 immediately. We rename the patients so that v4x5 is a nondecreasing function on 60117. Thus, for
example, v40055 represents the median time that patients preferring H1 are willing to wait to be treated there.
We prove the following theorem in §6.

Theorem 6 (Rephrased). If v4x5 is concave, then no lottery can generate more social welfare than the
randomized assignment.

Roughly speaking, to prove Theorem 6, we proceed by deriving the patients’ utilities in terms of their values
and the probability distributions only, so that the waiting times disappear from the analysis.

This result shows that for a broad class of preferences, the randomized assignment is welfare maximizing even
when waiting times are an option available to the government. As a special case, this shows that randomized
assignment has better welfare than the optimal equilibrium solution. It would be interesting to find an analogous
sufficient condition for three or more hospitals.

1.2. Discussion and open problems. In this paper, we consider two separate issues. The first one is how
to optimally allocate treatments in equilibrium, when the government faces budget constraints and waiting times
are used to ration patients’ behavior. The second one is whether it may be beneficial to do away with the
equilibrium requirements by limiting available options of the patients.

5 Indeed, positive waiting time at H0 will give patients incentives to go to the more expensive hospital H1, and thus increase the total cost
while burning more social welfare.
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Equilibrium solutions. While finding the optimal equilibrium solution in the Provision-after-Wait problem is
NP-hard, our approximation result suggests that this problem might not be as difficult in practice. In many cases,
the number of treatment facilities involved is fairly small, making an exponential running time in k feasible.
Moreover, in some cases, the “hospitals” are actually treatment alternatives that vary in costs (e.g., physiotherapy
is cheaper than knee replacement), in which case k may be as low as 2. For the general case where k can be big,
it would be interesting to explore restrictions on the patients’ valuations that would make the exact optimization
efficient, such as when the valuations are highly correlated, so that the valuation matrix 4vij5 has low rank. There
are many questions one can ask about the general complexity of the Provision-after-Wait problem, for example,
whether it is strongly NP-hard, whether it has a fully polynomial time approximation scheme (FPTAS), whether
it is fixed-parameter tractable in the number of hospitals, etc.

Furthermore, as already mentioned, the connection between our optimization problem with unit demand auc-
tions leads to our approximation result. One might also be able to use this connection to answer other questions
about the Provision-after-Wait problem. For example, whether in dynamic settings the system will remain in
the patient-optimal equilibrium as the population’s preferences slowly shift over time, whether it is possible
to approximate optimal welfare in equilibrium if the government only knows the approximate distribution of
patient types in the population, or whether one can design mechanisms such that the patients have incentives to
truthfully reveal their valuations and the government does not need to know these valuations to begin with. The
last question can also be asked about hospitals: namely, whether the government can elicit the hospitals’ true
costs via some mechanisms. This question is particularly interesting given the existence of rents in healthcare
(see Newhouse [23] for discussion about rents). That is, current prices of certain medical services are substan-
tially higher than providers’ true costs, and thus providers are collecting rents from the government (and other
insurers). Rents exist because of the government’s incapability in learning the true costs of medical services
and because of its need to meet the reservation prices of providers. Finding true costs and paying hospitals
accordingly would thus be helpful in reducing the government’s expenses.

The study of waiting times as a rationing mechanism is closely related to the study of ordeal mechanisms by
Alatas et al. [2], where other tools (e.g., excessive bureaucracy) are used in place of waiting times to reduce
demand to the supply level.6 These may be used in settings where queues are not an option, such as school
choice. Developing computational mechanism design tools for these settings is a very interesting direction of
study.

Beyond equilibria. Our third result looks beyond equilibrium solutions. We give evidence that equilibrium
solutions are, in fact, dominated in many cases. One immediate implication is that giving the government
power to restrict choice may, in fact, improve overall welfare. Although this is perhaps not surprising, choice
restriction may be very difficult or politically infeasible to implement in practice, because patients have an
inherent preference for choice, as pointed out by Rosén et al. [24].

There are important indirect ways, however, in which the government may influence choice. One of them
is through release (or nonrelease) of quality of care information about providers. The topic of quality of care
information is important in theory and in practice. In the United States, for example, Medicare has started to
publicly release hospital performance information as part of its pay-for-performance push; see Kahn et al. [17].
The effect that performance reporting has on provider incentives has been the subject of much study and
discussion; see, e.g., Rosenthal et al. [25], Lindenauer et al. [20], and Gravelle and Sivey [13]. It has even been
suggested by Ma and Mak [22] that it would be possible to manipulate reported quality metrics in a way that
would force the provider to exert first best quality and cost effort. To the best of our knowledge, there has been
no work on the effect of quality reporting on patient behaviors.7

Inasmuch as quality information influences patients’ choices, it may actually cause harm in the context of
allocation using waiting times. Consider a scenario where there are two hospitals, a good one H1 and a bad
one H0. All patients prefer the good hospital over the bad by the same amount, but they have no a priori
knowledge about which is which. As a result, both hospitals will receive half the patients, and waiting time
will be zero. If the government reveals that H1 is the good hospital through its quality of care disclosure, then
all patients will prefer H1 over H0 by the same amount ã. Unless H1 has enough slots for everybody, the
waiting time there will have to be ã, which completely burns social welfare and makes all patients worse off

6 Note that, in medicine, not all ordeals are necessarily dead weight loss. For example, the famous (and highly demanded) Shouldice hernia
clinic in Ontario, Canada requires its patients to lose weight before being admitted for a surgery; see Heskett [15]. Most clinics do not place
such a requirement.
7 da Graça and Masson [5] show that, in special market structures, the consumers may benefit from their uncertainty about the product
valuation. But the model is very different.
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than when they were ignorant. In effect, before the quality disclosure, uninformed patients implemented the
randomized assignment—through free choice. Once the quality information was disclosed, the game moved to
the equilibrium solution.

Our results and the discussion above suggest that, in some cases, a population of more informed patients will
experience higher waiting times and lower overall utility than uninformed patients. This suggests an unfortunate
potential side effect of information disclosure in cases where allocation is done by waiting times. Such a side
effect deserves further study since, at the moment, quality information release is regarded as an absolute good.
Understanding the optimal structure of information released to the patients in terms of overall welfare (as well
as provider-side incentives) is an important and interesting direction of study.

Money-burning mechanisms. In our third result, since there are only two hospitals, each patient’s valuation is
described by one number and we are considering a single parameter setting. With discrete patients, the capacity
of the more expensive hospital H1 is exactly � = B/c1, and the game becomes a unit demand auction with �
copies of the same item.

In this context, Hartline and Roughgarden [14] aim to maximize the same social welfare as ours using money-
burning mechanisms, and their results apply to our two-hospital case under their settings. But their results have
a very different flavor from ours: the performance of various prior-free money-burning mechanisms considered
by Hartline and Roughgarden [14] is analyzed relative to a benchmark G arising from the collection of i.i.d.
distributions of valuations, and G does not look at the properties of the given valuation profile, such as its
concavity.

However, for any fixed valuation profile, a �-unit p-lottery defined by Hartline and Roughgarden [14] is
equivalent to a lottery in our sense (and the randomized assignment is equivalent to the �-lottery defined there).
Thus our result implies that, when the valuation profile is concave, the randomized assignment achieves the
best expected social welfare among all �-unit p-lotteries. This, combined with Corollary 3.6 of Hartline and
Roughgarden [14], further implies that for any concave valuation profile, the expected social welfare of the ran-
domized assignment is at least G/2. The relative performance of the randomized assignment and the Random
Sampling Optimal Lottery mechanism defined by Hartline and Roughgarden [14] remains unclear, because the
latter does not necessarily induce a lottery in our sense, and it is only known that it O415-approximates G.
As commented by Hartline and Roughgarden [14], proving an approximation factor less than 10, say, for their
mechanism requires a different approach from the current one. It would be interesting to know, for concave valu-
ation profiles, whether the approximation factor of their mechanism can be improved and how the performances
of the two mechanisms compare with each other.

1.3. Additional related work. The role of waiting time in healthcare can be studied from either the supply
side, namely, how waiting times interact with the hospitals’ incentives, or the demand side, namely, how they
interact with the patients’ incentives. Siciliani and Hurst [27] give a thorough analysis of existing policies on
reducing waiting times by affecting the incentives of either side. Our model focuses on the demand side, and
below, we discuss some other works that also focus on this side.

Gravelle and Siciliani [11] study quality and waiting times with the existence of ex post moral hazard. They
assume that the patients are ex ante identical, and that the treatment has objective quality levels with which the
valuations and the costs are monotonically increasing. But notice that if the patients are identical, rationing by
waiting times is bounded to burn a lot of social welfare since at equilibrium every patient has to be treated in
the same way—as elaborated in our results. In our model, the patients’ valuations can be arbitrarily associated
with different hospitals, reflecting subjective views they may have, and the hospitals’ costs can also be arbitrary
and do not necessarily reflect their real quality.

Gravelle and Siciliani [10, 12] also study the effect of waiting time prioritization on social welfare. They
consider a single waiting list (or in our language, a single hospital), and the patients are prioritized and may face
different waiting times in the same list. In our model, different hospitals may have different waiting times, but
we do not discriminate the patients, and at the same hospital, everybody faces the same waiting time. Dawson
et al. [6] give experimental evidence on the effect of expanding patient choice of providers on waiting times.
In their theoretical model, there are two hospitals and the patients can freely go to the one with shorter waiting
time. Thus the patients do not have subjective preferences over hospitals, and waiting time is the only parameter
affecting their choices. Moreover, Felder [9] studies the relationship between waiting times and coinsurance,
with a single hospital and a single representative consumer.

Leshno [19] studies resource allocation in a domain different from healthcare, where the consumers wait for
the stochastic arrival of the items. In contrast to our model and the models discussed above, in this work, waiting
time does not burn social welfare, as the total waiting time of the consumers is always the time for enough items
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to arrive. There are two different types of items to be allocated, and also two types of consumers, respectively,
preferring one type of items. A consumer can decide whether to take the arriving item or to continue waiting for
the preferred type. The social welfare of the system is measured by the probability that a consumer is matched
to the preferred type. Although this is a very different model from ours, it is worth mentioning that the author
provides a truthful queuing policy, which is optimal. As we discuss in §1.2, it would be interesting to design a
truthful mechanism in our model from which the government can elicit the patients’ valuations.

Finally, none of the works mentioned above considers the constraint on the budget of the insurance/resource
provider as a parameter affecting waiting times and social welfare.

2. The Provision-after-Wait problem. Now, we define our model formally. The Provision-after-Wait prob-
lem studies how to provide a single healthcare service to a population of patients arriving in each time unit, and
is specified by the following parameters:

• The set of hospitals is 8H11 : : : 1Hk9.
• For each i ∈ 6k7, the cost of Hi per patient is ci ∈�+, where �+ is the set of nonnegative integers.
• The number of patients arriving in each time unit is m.
• The distribution of arriving patients does not change over time, and we denote the set of patients arriving

in each time unit by 8P11 : : : 1 Pm9.
• For each i ∈ 6k7 and j ∈ 6m7, the value of patient Pj for hospital Hi is vij ∈�+.
• An assignment of the patients to the hospitals is a triple 4w1h1�5, where w = 4w11 : : : 1wk5 ∈ 4�+5k is

the waiting time vector of the hospitals, h2 6m7 → 6k7 is the assignment function, and � = 4�11 : : : 1 �k5 ∈

811 : : : 1m9k with
∑

i∈6k7 �i =m is the quota vector, such that �h−14i5� = �i for each i ∈ 6k7.
According to such an assignment, patient Pj will receive the service at hospital Hh4j5 after waiting time wh4j5.
• A patient Pj ’s utility under assignment 4w1h1�5 is uj4w1h1�5

4

= vh4j5j −wh4j5, that is, quasi-linear in the
waiting time.

The social welfare of this assignment is SW4w1h1�5
4

=
∑

j∈6m7 uj4w1h1�5.
• The government has budget B ∈�+ per time unit, and an assignment 4w1h1�5 is feasible if

∑

i∈6k7 �i ·ci ≤ B.
For the problem to be interesting, we assume that mcmin ≤ B <mcmax, where cmin and cmax are, respectively,

the minimum and the maximum cost of the hospitals.

Remark 1. The hospitals’ costs, the patients’ valuations, and the waiting times are assumed to be integers
without loss of generality. As long as they have finite description, we can always choose proper units so that all
of them are integers.

Remark 2. The quota vector of an assignment can be inferred from the assignment function, and thus is
redundant. We define it explicitly to ease the discussion of our results.

Since in reality, the government may not be able or willing to force a patient to go to the assigned hospital,
it must ensure that wherever it wants that patient to go is indeed the best hospital for the individual, given the
waiting times. Accordingly, we have the following definition.

Definition 1. Assignment 4w1h1�5 is an equilibrium assignment if: (1) it is feasible, (2) for each j ∈ 6m7
we have uj4w1h1�5≥ 0, and (3) for each j ∈ 6m7 and i ∈ 6k7, we have

uj4w1h1�5≥ vij −wi0

Assignment 4w1h1�5 is an optimal equilibrium assignment if (1) it is an equilibrium assignment and (2) for
any other equilibrium assignment 4�′1w′1 h′5,

SW4w1h1�5≥ SW4w′1 h′1�′50

The social welfare of optimal equilibrium assignments is denoted by SWOEA.

We would like to emphasize that, in the healthcare literature, waiting time is recognized as a tool to ration
supply by driving down demand. As such, the waiting times at equilibrium do not depend on the congestion at
the hospitals, but rather on the budget and the patients’ “willingness to wait.” It is possible that at equilibrium,
the number of patients going to a hospital per time unit is smaller than its real capacity,8 and yet waiting time

8 That is, the maximum number of patients it is able to handle in one time unit. It is easy to introduce real capacities as additional parameters
into our model, and explicitly require that a hospital’s quota in an assignment does not exceed its real capacity. But doing so does not make
the problem any more interesting: the optimization problem is even harder, and all our results remain true. Thus we simply assume that the
real capacities are large enough.
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there is nonzero. This is because any shorter waiting time will result in more patients demanding that hospital
than allowed by the payer, causing its waiting time to increase. This is demonstrated by the following example.

Assume there are two hospitals, H0 and H1, with costs $500 and $3,000, respectively.9 There are the same
three types of patients arriving in each month, valuing H1 for 5, 3, 2, respectively, and all valuing H0 for 0. The
government has budget $6,000 per month. Both hospitals are capable of handling all three patients immediately.
However, if the government lets H1 be saturated and sends all three patients there, the total cost will be $9,000,
which is unaffordable. It is clear that the government can afford only one patient per month at H1. Thus at the
optimal equilibrium, the waiting time at H1 must be 3, and only the patient who is willing to wait for 5 will
actually be served there. Notice that this patient has to wait even though there is no congestion at all, because
of the budget constraint. Notice also that, once the government sets the quota of H1 to 1, there is no need to
enforce the waiting time, since it will automatically increase to 3 as patients arrive. Indeed, with both hospitals’
waiting times starting at 0, the first patient arriving in month one will be served at H1 immediately, the second
will wait for one month and be served at H1 in month two, the third will wait for two months and be served
at H1 in month three (or the patient may go to H2 immediately if the value of H1 is 2, but the example will
not be too different in that case); and so on. When the waiting time at H1 is smaller than 3, at least two newly
arriving patients (with values 5 and 3) will want to wait there, causing its waiting time to increase by 1. This
phenomenon is better explained under continuous time and patient population than discrete cases, and we will
formally model and analyze it in §5.

As we are interested in the (existence and) computation of optimal equilibrium assignments, we assume that
the government has precise knowledge about the cost of each hospital. We may also assume that the government
knows each patient’s valuation for each hospital, but we do not need it. In fact, it is enough for the government
to know the “distribution” of the k-dimensional valuation vectors of the patients, namely, the fraction of the
patients having each particular valuation vector. (How to obtain such information is an interesting mechanism
design as well as learning problem.) Once it computes w in the optimal solution, the assignment function h will
be automatically implemented by the patients going to their favorite hospitals,10 and the government need not
know where each patient is going.

Notice that it is not enough for the government to know the distribution of the valuations for each single
hospital, since the correlations between patients’ valuations for different hospitals will affect the optimal outcome.
For example, say there are two hospitals H1 and H2 with costs B − 1 and 1, respectively, (B � 1), and two
patients P1 and P2. The valuation vector 4v111 v211 v121 v225 is either 4101014165 or 4101614105. For each single
hospital, the distribution of valuations is the same in the two cases. However, in the former case, the optimal
waiting time vector is 40105 whereas in the latter it’s 44105. Thus the optimal solution can’t be computed given
only the valuation distributions of individual hospitals.

3. The computational complexity of optimal equilibrium assignments. We begin with two easy obser-
vations about our model, as a warm-up.

The first observation is that, if the patients have unanimous preferences, namely, vij = vij ′ for each i ∈ 6k7 and
each j1 j ′ ∈ 6m7, then no equilibrium assignment can improve the social welfare of the following trivial one:
order the hospitals according to the patients’ valuations decreasingly, find the first hospital Hi such that mci ≤ B,
and assign all patients to Hi with wi = 0 and wi′ = maxi′′∈6k7 vi′′1 for any i′ 6= i. Indeed, for any equilibrium
assignment 4w1h1�5, we have vh4j5j −wh4j5 = vh4j ′5j −wh4j ′5 for each j1 j ′ ∈ 6m7. Letting i∗ = arg mini2 h−14i5 6=� ci,
�′ be such that �′

i∗ =m and �′
i = 0 for all other i, h′ be such that h′4j5= i∗ for all j , we have that 4w1h′1�′5 is

another equilibrium assignment with the same social welfare as 4w1h1�5. Thus it suffices to look for an optimal
equilibrium assignment that sends all patients to the same hospital. This is also intuitive: if the patients are all
the same, then at equilibrium, the government must make them equally happy, and it can do so by treating them
in the same way.

Another observation is that, even if the government only cares about meeting the budget constraint in expec-
tation, is allowed to assign each patient to several hospitals probabilistically (with the total probability summing
up to 1), and the patients only care about maximizing their expected utilities, the optimal social welfare in
expectation will just be the same as the optimal one obtained by deterministic assignments. This is so because,

9 In reality, the cheap “hospital” may, in fact, be a cheap service such as a CT scan, while the expensive one may, in fact, be an expensive
service such as an MRI. A patient is willing to get either one of them, with different values.
10 Patients can easily compute which hospitals maximize their utilities, given that they know the hospitals’ waiting times and their own
valuations. If there is more than one favorite hospital for a patient, we assume that this person goes to the cheapest one, so that the budget
constraint is satisfied.
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at equilibrium, all the hospitals to which a patient Pj is assigned with positive probability must yield maxi-
mum utility for Pj (otherwise, Pj ’s expected utility can be improved by only going to hospitals that maximize
this utility). Thus assigning Pj deterministically to the one with the smallest cost leads to another equilibrium
assignment with the same social welfare and still meeting the budget constraint. Accordingly, to maximize social
welfare, it suffices to consider only deterministic assignments.

The following theorem shows that even the optimal deterministic assignments are hard to find in general.

Theorem 1. Finding optimal equilibrium assignments is NP -hard.

Proof. The reduction is from the knapsack problem, which is well known to be NP -hard. In this problem,
there are k items, a11 : : : 1 ak, and each ai has value vi and cost ci. We are also given a budget B, and the goal
is to select a subset of items to maximize their total value, while keeping their total cost less than or equal to B.

We can transform this problem to a Provision-after-Wait problem with k + 1 hospitals and k patients. Each
hospital Hi with 1 ≤ i ≤ k has cost ci, and each patient Pi has value vi for Hi and 0 for all others. Hospital Hk+1

has cost 0 and is valued 0 by all patients. The government has budget B.
Given an equilibrium assignment 4w1h1�5 to the Provision-after-Wait problem, we can construct a solution to

the knapsack problem with total value equal to SW4w1h1�5—the set A= 8i2 h4i5= i9 is such a solution. Indeed,
without loss of generality, we can assume h4i5 = k + 1 whenever h4i5 6= i. By the definition of equilibrium
assignments, we can also assume wk+1 = 0, wi = vi if h4i5= k+ 1, and wi = 0 otherwise. Thus SW4w1h1�5=
∑

i∈A vi, which is the total value of A in the knapsack problem. As the total cost of 4w1h1�5 is
∑

i∈A ci ≤ B, the
set A meets the budget constraint in the knapsack problem.

It is easy to see that the other direction is also true, that is, given a solution A⊆ 6k7 to the knapsack problem,
we can construct an equilibrium assignment 4w1h1�5 for the Provision-after-Wait problem whose social welfare
equals the total value of A.

Accordingly, an optimal equilibrium assignment to Provision-after-Wait corresponds to an optimal solution to
knapsack. �

Remark 3. The NP-hardness of the knapsack problem comes from the need for integrality. Its fractional
version can be easily solved using a greedy bang-per-buck approach. But this is not the case in our problem.
Indeed, as we have noted, given a fractional equilibrium assignment, we can construct a deterministic one with
the same social welfare. Thus for our problem, the fractional version is as hard as the integral version.

Moreover, notice that the knapsack problem is reduced to a very special case of our problem: that is, each
patient has positive value for a single hospital and 0 for all others. Thus we believe that the complexity of our
problem is not fully captured by knapsack, and that it deserves more investigation in the future. We are tempted
to conjecture that our problem is actually strongly NP-hard (and thus does not have an FPTAS), but we do not
have a conclusive answer right now.

4. Approximating optimal equilibrium assignments with arbitrarily small deficit. Although the opti-
mization problem is hard when the numbers of patients and hospitals are large, in practice, we expect the number
of hospitals to be small, and it makes sense to solve the problem efficiently in this case.

An easy observation is that optimal equilibrium assignments can be found in time O4mkpoly4m1k55. Indeed,
there are at most mk possible assignment functions h2 6m7 → 6k7. For each h and the corresponding quota
vector � satisfying

∑

i∈6k7 ci�i ≤ B, the total value of the patients is fixed, and thus maximizing social welfare is
equivalent to minimizing total waiting time. Accordingly, the best equilibrium waiting time vector given h and
� can be found using the linear program below (or one can prove that no feasible waiting time vector exists at
equilibrium).

min
w

∑

i∈6k7

wi�i

s.t. ∀ j ∈ 6m71 i ∈ 6k71 vh4j5j −wh4j5 ≥ vij −wi

We then choose h such that the corresponding equilibrium assignment 4w1h1�5 maximizes social welfare.
Given the above observation, we are interested in replacing the mk part with a better bound. As we shall

illustrate, if the government is willing to violate its budget constraint by an arbitrarily small fraction, then the
problem can be solved much more efficiently.

Definition 2. Let � be a positive constant. An assignment 4w1h1�5 is an equilibrium assignment with
�-deficit if it is an equilibrium assignment with the feasibility condition replaced by the following condition:

∑

i∈6k7

�ici ≤ 41 + �5B0
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We shall construct an algorithm that, in time O4logk
1+�m · 41 + �53m45, finds an equilibrium assignment with

�-deficit whose social welfare is at least SWOEA, the social welfare of the optimal equilibrium assignments
with budget B. To do so, we first establish a strong connection between the Provision-after-Wait problem and
the well-studied problem of unit demand auctions (see, e.g., Demange et al. [7], Aggarwal et al. [1], Ashlagi
et al. [3], Easley and Kleinberg [8]).

4.1. A connection between the Provision-after-Wait problem and unit demand auctions. A unit demand
auction is specified by n goods (perhaps, including identical ones), m buyers, and the values vij of each buyer
j ∈ 6m7 for each good i ∈ 6n7. The goal is to find an equilibrium allocation and prices, where buyers get the
goods that maximize their utilities given the prices.

If we consider the patients in the Provision-after-Wait problem as buyers who want to buy hospital services
using waiting times, our setting looks a lot like a unit demand auction. Except one thing: in our setting the set
of goods for sale is unknown. It is natural to consider the k hospitals as k goods, but each one of them has to
have a certain number of identical copies, because each hospital may serve more than one patient. One cannot
simply model the hospitals as k goods with m copies each, because then the resulted auction will give each
patient his or her favorite hospital with zero waiting time, and the budget constraint may be broken.

Notice that, if we were given the quota vector � in the optimal equilibrium solution of the Provision-after-Wait
problem, then we can consider each hospital Hi as �i copies of identical goods, and we have a well-defined
unit demand auction. Every equilibrium solution to this auction leads to an assignment function h and a waiting
time vector w, such that 4w1h1�5 is an equilibrium assignment to the original Provision-after-Wait problem. In
particular, the budget constraint is satisfied automatically, since we started with a quota vector that meets the
budget constraint.

In general, for any quota vector � such that
∑

i �i ≥m, the problem of finding equilibrium assignments with
respect to � reduces to finding equilibrium prices and allocations in unit demand auctions where each hospital
Hi corresponds to �i identical goods. If � meets the budget constraint, namely,

∑

i ci�i ≤ B, then the resulting
equilibrium assignment meets the budget constraint.

It is well known that a unit demand auction always has equilibrium prices and allocations, which can be
found by the Hungarian method; see Kuhn [18]. The only caution is that, for a hospital to have a well-defined
waiting time, the prices of its corresponding goods in the unit demand auction must be all the same. Fortunately,
it will become clear in §4.2, at equilibrium identical goods must always have the same price, although this is
not explicitly required.

Therefore for each quota vector �, whether it meets the budget constraint or not, there exists an equilibrium
assignment with respect to �. Following the result of Aggarwal et al. [1], the optimal equilibrium assignment
with respect to � can be computed efficiently, and this will lead to our algorithm for approximating the optimal
equilibrium solution of the Provision-after-Wait problem.11

4.2. A useful result in multiunit auctions. Our algorithm uses that of Aggarwal et al. [1] for unit demand
auctions as a black box, therefore we first recall their result (while using our notation to help establish the
connection with our results).

Definition 3. A unit demand auction, or simply an auction in this paper, is a triple 4g1m1v5, where the
set of goods is 81121 : : : 1 g9, the set of bidders is 81121 : : : 1m9, and v is the valuation matrix, that is, a g ×m
matrix of nonnegative integers. Each vij denotes the valuation of bidder j for good i.

Given an auction 4g1m1v5, a matching is a triple 4u1p1�5, where u = 4u11 : : : 1 um5 ∈ 4�+5m is the utility
vector, p = 4p11 : : : 1 pg5 ∈ 4�+5g is the price vector, and �⊆ 6g7× 6m7 is a set of (good, bidder) pairs such that
no bidder and no good occur in more than one pair. Bidders and goods that do not appear in any pair in � are
unmatched.

Definition 4. Given an auction 4g1m1v5, a matching 4u1p1�5 is weakly feasible if for each 4i1 j5 ∈�, we
have uj = vij −pi, and for each unmatched bidder j , we have uj = 0.

A matching 4u1p1�5 is feasible if it is weakly feasible and for each unmatched good i, we have pi = 0.
A matching 4u1p1�5 is stable if for each 4i1 j5 ∈ 6g7× 6m7, we have uj ≥ vij −pi.
A matching 4u∗1 p∗1�∗5 is bidder optimal if (1) it is stable and feasible and (2) for every matching 4u1p1�5

that is stable and weakly feasible, and for every bidder j , we have u∗
j ≥ uj .

11 Although equilibrium assignments can be efficiently computed given �, the problem of deciding the “correct” � makes the Provision-
after-Wait problem hard, even in very special cases, as shown in §3.
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Aggarwal et al. [1] construct an algorithm, StableMatch, which, given an auction 4g1m1v5, outputs a
bidder-optimal matching 4u∗1 p∗1�∗5 in time O4mg35.

Notice that the original definitions in Aggarwal et al. [1] have for each good-bidder pair a reserve price and a
maximum price. In our model, we do not need them, so the definitions above are more succinct than the original
ones. In fact, as pointed out by Aggarwal et al. [1], with maximum prices, there may be no bidder-optimal
matching. But without them, such a matching always exists, as shown by Demange et al. [7].

Notice also that Aggarwal et al. [1] do not distinguish between weak feasibility and feasibility. But it is easy
to see that their algorithm and its analysis still apply under our definitions. We shall use these two notions when
analyzing our algorithm.

Next, we establish two properties for the matching 4u∗1 p∗1�∗5 output by StableMatch.
• Property 1. If g ≥ m, then without loss of generality, we can assume that 4u∗1 p∗1�∗5 has no unmatched

bidder.
Indeed, if there exists an unmatched bidder j , then there must exist an unmatched good i (since g ≥m). Since

4u∗1 p∗1�∗5 is bidder optimal, we have u∗
j = 0, p∗

i = 0, and u∗
j ≥ vij −p∗

i . Thus we have vij = 0, and the matching
4u∗1 p∗1�∗ ∪ 84i1 j595 is another bidder-optimal matching.

• Property 2. If two goods i1 i′ are identical, namely, vij = vi′j for each bidder j , then p∗
i = p∗

i′ .
Indeed, if both goods are unmatched, then p∗

i = p∗
i′ = 0. Otherwise, say, 4i1 j5 ∈ �∗. By definition, u∗

j =

vij −p∗
i ≥ vi′j −p∗

i′ . As vij = vi′j , we have p∗
i ≤ p∗

i′ . If i′ is unmatched, then p∗
i′ = 0, implying p∗

i = 0. If 4i′1 j ′5 ∈�∗,
then similarly we have p∗

i′ ≤ p∗
i , and thus p∗

i = p∗
i′ again.

4.3. Our algorithm for approximating optimal equilibrium assignments. Now, we are ready to construct
our algorithm for approximating optimal equilibrium assignments. The algorithm takes as input the number
of patients m, the number of hospitals k, the hospitals’ costs c11 : : : 1 ck, the patients’ valuations vij ’s for the
hospitals, the budget B, and a small constant � > 0. Letting 4w1h1�5 be an optimal equilibrium assignment,
the algorithm works by guessing �, constructing a multiunit auction based on the guessed vector, computing
the bidder-optimal matching using StableMatch, and extracting the waiting time vector and the assignment
function from the matching.

More precisely, let L 4

= �log1+�m�, C0
4

= 0, and Cl
4

= �41+�5l� for each l = 11 : : : 1L. The algorithm examines
all the vectors �̂= 4�̂11 : : : 1 �̂k5 ∈ 8C01C11 : : : 1CL9

k one by one, say, lexicographically.
If
∑

i∈6k7 �̂i y 6m1 41 + �5m7 or if
∑

i∈6k7 �̂ici > 41 + �5B, the algorithm disregards this vector and moves to
the next. Otherwise, it constructs an auction 4g1m1 v̂5 as follows. The set of patients corresponds to the set
of bidders; each hospital Hi corresponds to �̂i copies of identical goods Hi11 : : : 1Hi�̂i

, thus g =
∑

i∈6k7 �̂i; the
valuation matrix v̂ has rows indexed by 8ir2 i ∈ 6k71 r ∈ 6�̂i79, columns indexed by 6m7, and for each j ∈ 6m7,
i ∈ 6k7, and r ∈ 6�̂i7, v̂ir1 j = vij .

The algorithm then runs StableMatch with input 4g1m1 v̂5 to generate the bidder-optimal matching
4u∗1 p∗1�∗5, and extracts the waiting time vector ŵ and the assignment function ĥ as follows. For each hos-
pital Hi, let ŵi = p∗

i1. For each patient Pj , let Hir be the unique good to which Pj is matched (by Property 1
in §4.2 such a good always exists) according to �∗, and let ĥ4j5 = i. The triple 4ŵ1 ĥ1 �̂5 may not be an
assignment as

∑

i∈6k7 �̂i may be larger than m, but there is a unique quota vector �̂′ such that 4ŵ1 ĥ1 �̂′5 is an
assignment.

The algorithm computes the social welfare of the assignment 4ŵ1 ĥ1 �̂′5 for each �̂ that is not disregarded,
and output the assignment 4w∗1 h∗1�∗5 with the maximum social welfare.

We prove the following theorem.

Theorem 2. Our algorithm runs in time O4logk
1+�m · m45, and outputs an equilibrium assignment with

�-deficit 4w∗1 h∗1�∗5 such that SW4w∗1 h∗1�∗5≥ SWOEA.

Proof. The running time of the algorithm can be immediately seen. Indeed, if a vector �̂ is not disregarded,
then it takes O4mg5=O4m25 time to construct the auction as g ∈ 6m1 41 + �5m7, O4mg35=O4m45 time to run
StableMatch, and O4m5 time to extract the assignment. Accordingly, it takes O4m45 time to examine a single
vector �̂, and there are O4logk

1+�m5 vectors in total.
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The remaining part of the theorem follows from the two lemmas below.

Lemma 1. 4w∗1 h∗1�∗5 is an equilibrium assignment with �-deficit.

Proof. In fact, we show that for each vector �̂ that is not disregarded, the extracted assignment 4ŵ1 ĥ1 �̂′5
is an equilibrium assignment with �-deficit. To see why this is true, first notice that

∑

i∈6k7 �̂ici ≤ 41 + �5B by
the construction of the algorithm, thus

∑

i∈6k7

�̂′

ici ≤
∑

i∈6k7

�̂ici ≤ 41 + �5B0 (1)

Second, for each j ∈ 6m7, letting Hĥ4j5r be the good matched to Pj according to �∗, we have

uj4ŵ1 ĥ1 �̂
′5= vĥ4j5j − ŵĥ4j5 = v̂ĥ4j5r1 j −p∗

ĥ4j51
= v̂ĥ4j5r1 j −p∗

ĥ4j5r
= u∗

j ≥ 01 (2)

where the third equality is because of Property 2 in §4.2 (in particular, Hĥ4j51 and Hĥ4j5r are identical goods, and
p∗

ĥ4j51
= p∗

ĥ4j5r
), and the other equalities/inequality are by definition.

Third, since 4u∗1 p∗1�∗5 is a bidder-optimal matching for auction 4g1m1 v̂5, we have that for each j ∈ 6m7,
i ∈ 6k7, and r ∈ 6�̂i7,

u∗

j ≥ v̂ir1 j −p∗

ir = vij −p∗

i1 = vij − ŵi1

and thus
uj4ŵ1 ĥ1 �̂

′5= u∗

j ≥ vij − ŵi0 (3)

Equations (1)–(3) together imply that every 4ŵ1 ĥ1 �̂′5 is an equilibrium assignment with �-deficit, and so is
4w∗1 h∗1�∗5. �

Lemma 2. SW4w∗1 h∗1�∗5≥ SWOEA.

Proof. To see why this is true, arbitrarily fix an optimal equilibrium assignment 4w1h1�5. Notice that for
each hospital Hi, there exists a “good guess” �̂i ∈ 8C01 : : : 1CL9 such that

�i ≤ �̂i ≤ 41 + �5�i0

Since � satisfies
∑

i∈6k7 �i =m and
∑

i∈6k7 �ici ≤ B, the vector �̂= 4�̂11 : : : 1 �̂k5 satisfies
∑

i∈6k7

�̂i ∈ 6m1 41 + �5m7 and
∑

i∈6k7

�̂ici ≤ 41 + �5B0

Thus it won’t be disregarded by the algorithm. Let 4g1m1 v̂5 be the auction constructed from �̂, 4u∗1 p∗1�∗5
the output of StableMatch under input 4g1m1 v̂5, and 4ŵ1 ĥ1 �̂′5 the assignment extracted from 4u∗1 p∗1�∗5.
Following the same reasoning shown in Equation (2), we have that for each j ∈ 6m7, uj4ŵ1 ĥ1 �̂

′5= u∗
j . Thus

SW4ŵ1 ĥ1 �̂′5=
∑

j∈6m7

u∗

j 0 (4)

From 4w1h1�5, we construct a matching 4u1p1�5 for the auction 4g1m1 v̂5 as follows. For each bidder j , we
have uj = vh4j5j −wh4j5; for each good Hir with i ∈ 6k7 and r ∈ 6�̂i7, we have pir =wi; and for each hospital Hi,
letting j1 ≤ j2 ≤ · · · ≤ j�i be the patients assigned to Hi by h, we have �= 84jr 1 ir52 i ∈ 6k71 r ∈ 6�i79.

It is easy to verify that the so constructed 4u1p1�5 is stable and weakly feasible, thus by the optimality of
u∗, we have that for each j ∈ 6m7,

u∗

j ≥ uj 0 (5)

Moreover, for the same reason as Equation (4), we have

SW4w1h1�5=
∑

j∈6m7

uj 0 (6)

Equations (4)–(6) together imply

SW4ŵ1 ĥ1 �̂′5≥ SW4w1h1�5= SWOEA

as we want to show. �
In sum, Theorem 2 holds. �
Remark 4. By running our algorithm with input budget B/41 + �5, we obtain an assignment whose budget

is at most B and whose social welfare is at least the optimal social welfare with budget B/41 + �5. However,
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this social welfare may be much smaller than the optimal social welfare with budget B. That is why we insist
on having a deficit instead of meeting the budget constraint strictly.

5. The endogenous emergence of waiting times. Next, we study the dynamics between hospitals and
patients. We shall consider continuous changes of waiting times, and in the discussion below, the patients’
valuations and the waiting times can be any nonnegative reals, not necessarily integers. We show that, in our
model, when the patients’ valuations are in some generic position, the only thing the government needs to enforce
is the amount of money it is willing to pay to each hospital, which can be equivalently enforced by the quota
vector. Given the quotas, the optimal waiting times and the optimal social welfare will emerge endogenously
from the dynamics.

5.1. The uniqueness of the optimal equilibrium. We start by defining the generic position of the patients
and studying the structure of the optimal equilibrium under it. Following Ashlagi et al. [3], we have the definition
below.

Definition 5. The patients 8P11 : : : 1 Pm9 with valuations 4vij5i∈6k71 j∈6m7 are independent if there do not exist
two different subsets S and T of the multiset 8vij 2 i ∈ 6k71 j ∈ 6m79 such that S and T both contain positive
numbers and

∑

v∈S v =
∑

v′∈T v
′.

Notice that the above definition of independent patients is weaker than the typical definition of generic
position, which rules out any relevant equality relation among the valuations. Notice also that it is easy to perturb
the numbers in the proof of Theorem 1, so that the resulted Provision-after-Wait problem is generic. Thus the
optimization problem is still NP-hard in the generic case. But our results below apply to any �, which may be
obtained via approximation algorithms or heuristics.

Let � be a quota vector with
∑

i∈6k7 �i ≥m.12 Recall that given �, the Provision-after-Wait problem reduces to
a unit demand auction. Thus following Shapley and Shubik [26] and Demange et al. [7], among all equilibrium
waiting time vectors with respect to �, there is a unique one that simultaneously minimizes the waiting time at
each hospital and maximizes the utility of each patient.13 Denoting this minimum waiting time vector by w̄, we
prove the following theorem.

Theorem 3. Assuming the patients are independent, there is a unique equilibrium assignment with respect
to � and w̄. Moreover, denoting this equilibrium by 4w̄1 h̄1 �5, we have that mini∈6k7 w̄i = 0, and that at this
equilibrium every hospital with positive waiting time is saturated, namely, �h̄−14i5� = �i whenever w̄i > 0.

Proof. Without loss of generality, we assume �i > 0 for each i ∈ 6k7. Consider the demand graph G given
w̄, that is, a bipartite graph with k nodes on one side for the hospitals and m nodes on the other side for the
patients. For each i ∈ 6k7 and j ∈ 6m7, the edge 4i1 j5 is in G if and only if Hi maximizes Pj ’s utility, namely,
vij − w̄i = maxi′∈6k7 vi′j − w̄i′ . By definition, any equilibrium assignment must assign each patient Pj to an adjacent
hospital Hi. Thus it suffices to show that within each connected component of G there is only one equilibrium
assignment. We start by proving the following claim.

Claim 1. There is no cycle in G.

Proof. For the sake of contradiction, assume there exists a (necessarily even length) cycle 4i11 j11 i21
j21 : : : 1 il1 jl1 i15, where ir ’s are hospitals and jr ’s are patients. By the construction of G, we have that for each
r ∈ 6l7, Hir

and Hir+1
maximize Pjr

’s utility, with l+ 1 defined to be 1. Thus

vir jr − w̄ir
= vir+1jr

− w̄ir+1
0

Summing all l equations together, we have
∑

r∈6l7

4vir jr − w̄ir
5=

∑

r∈6l7

4vir+1jr
− w̄ir+1

51

therefore
∑

r∈6l7

vir jr −
∑

r∈6l7

w̄ir
=
∑

r∈6l7

vir+1jr
−
∑

r∈6l7

w̄ir+1
0

12 Notice that we do not require that � satisfies the budget constraint, and our results apply to such �s as well.
13 Notice that this is the waiting time vector computed by the StableMatch algorithm of Aggarwal et al. [1].

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
0.

24
5.

14
.1

80
] 

on
 2

0 
A

pr
il 

20
16

, a
t 0

8:
00

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Braverman, Chen, and Kannan: Optimal Provision-After-Wait in Healthcare
Mathematics of Operations Research 41(1), pp. 352–376, © 2016 INFORMS 365

As
∑

r∈6l7 w̄ir
=
∑

r∈6l7 w̄ir+1
, we have

∑

r∈6l7

vir jr =
∑

r∈6l7

vir+1jr
0

Accordingly, we have found two different subsets 8vir jr 2 r ∈ 6l79 and 8vir+1jr
2 r ∈ 6l79 that sum up to the same

value, contradicting the hypothesis that the patients are independent. �

Following Claim 1, the connected components of G are all trees. Similarly, we have the following:

Claim 2. Each connected component of G contains at most one hospital with waiting time 0.

Proof. Again, for the sake of contradiction, assume there is a connected component with two different
hospitals Hi and Hi′ such that w̄i = w̄i′ = 0. Accordingly, there is a path 4i11 j11 i21 j21 : : : 1 il5, where ir ’s are
hospitals and jr ’s are patients such that i1 = i and il = i′. Similar to the proof of Claim 1, for each r < l, we
have

vir jr − w̄ir
= vir+1jr

− w̄ir+1
0

Summing all l− 1 equations together, we have

l−1
∑

r=1

vir jr −

l−1
∑

r=1

w̄ir
=

l−1
∑

r=1

vir+1jr
−

l−1
∑

r=1

w̄ir+1
0

As w̄i1
= w̄il

= 0, the above equation implies

l−1
∑

r=1

vir jr −

l−1
∑

r=2

w̄ir
=

l−1
∑

r=1

vir+1jr
−

l−1
∑

r=2

w̄ir
1

and thus
l−1
∑

r=1

vir jr =

l−1
∑

r=1

vir+1jr
1

again contradicting the hypothesis that the patients are independent. �

Claim 2 and the following claim together imply that each connected component of G has exactly one hospital
with waiting time 0.

Claim 3. Each connected component of G has at least one hospital with waiting time 0.

Proof. By contradiction. Assume there is a component C such that w̄i > 0 for each Hi in C. Let

�1 = min
Hi∈C

w̄i0

Notice that for each Pj not in C, by definition, the best utility that j can get from hospitals in C is strictly less
than umax

j , the best utility that j can get from his or her favorite hospital. Let

�2 = min
PjyC

[

umax
j − max

Hi∈C
4vij − w̄i5

]

0

We have �1 > 0 and �2 > 0. Let � = min8�11 �29/2, w′
i = w̄i − � for each Hi ∈ C, and w′ = 4w̄−C1w

′
C5. That is,

w′ is w̄ with all waiting times of hospitals in C reduced by �. As � < �1, w′ is a valid waiting time vector.
Notice that for any equilibrium assignment 4w̄1 h1�5, the assignment 4w′1 h1�5 is still an equilibrium. Indeed,

when the waiting time vector changes from w̄ to w′, for each patient Pj , his or her utility at every hospital
Hi ∈ C increases by �, and his or her utility at every other hospital remains the same. For Pj y C, � < �2, and
thus the best utility j gets from C is still smaller than umax

j , which is j’s utility at Hh4j5 y C. For Pj ∈ C, we
have Hh4j5 ∈C as well, and Hh4j5 still maximizes j’s utility after the increase.

Accordingly, w′ is another equilibrium waiting time vector. But w′
i < w̄i for each Hi ∈C and w′

i = w̄i for each
Hi yC, contradicting the hypothesis that w̄ minimizes the waiting time of each hospital among all equilibrium
waiting time vectors. Therefore Claim 3 holds. �

Following Claims 1–3, each connected component C can be considered as a tree rooted at the unique hospital
with waiting time 0, with hospitals and patients alternating along each path. Based on this structure, we show
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that there is only one way of assigning the patients to the hospitals at equilibrium in C. To do so, we need the
following.

Claim 4. For each hospital Hi ∈C with w̄i > 0, the degree of Hi in G is strictly larger than its quota �i.

The proof is similar to that of Claim 3: if the degree of some Hi ∈C is at most �i, then we can find a proper
value � ∈ 401 w̄i5 such that the vector w′ 4

= 4w̄−i1 w̄i − �5 is still an equilibrium waiting time vector. Indeed, with
properly chosen �, for every equilibrium 4w̄1 h1�5, let h′ be the assignment such that h′4j5= i if Pj is adjacent
to Hi (this is doable because the degree of Hi is at most �i), and h′4j5 = h4j5 otherwise. Then, 4w′1 h′1�5

is another equilibrium. But this contradicts the hypothesis that w̄ minimizes the waiting time of each hospital
among all equilibrium waiting time vectors. The formal analysis is omitted.

Following Claim 4, we have that the leaves of tree C are all patients. Indeed, if there is a hospital with
degree 1 and positive waiting time, then its quota is 0, contradicting our original assumption that all hospitals
have positive quotas. Accordingly, at every equilibrium, every patient at a leaf must be assigned to his or her
preceding hospital, as this is the only one maximizing the patient’s utility. Letting Hi be a nonroot hospital
whose descendants are all leaves, we have that the number of descendants of Hi, denoted by di, is at most �i,
otherwise no equilibrium exists. As w̄i > 0, by Claim 4, we have that the degree of Hi is strictly larger than
�i, which implies di ≥ �i. Accordingly, Hi uses up all its quota to serve its descendants, and the patient Pj

preceding Hi must be assigned to his or her preceding hospital.
Repeating the above reasoning in a bottom-up way along the tree, we have that there is only one way of

assigning the patients to hospitals at equilibrium with respect to � and w̄, that is, patients are assigned to their
predecessors in G, and hospitals with positive waiting times are saturated by their descendants. Thus Theorem 3
holds. �

By definition, the equilibrium 4w̄1 h̄1 �5 maximizes social welfare with respect to �, thus it is reasonable to
assume that this is the equilibrium that the government aims to implement.

5.2. The dynamics between hospitals and patients. We now show that given �, the waiting time vector
w̄ will endogenously emerge from the dynamics between hospitals and patients, and so will h̄. We consider a
continuous-time dynamics, where the patient population arrives continuously and uniformly along time (which
is consistent with our discrete model). In such a dynamic, the quota vector � represents the service rate of the
hospitals that the government is willing to pay for. Namely, for each hospital Hi, the total number of patients
paid by the government in any time interval 4t11 t25 is at most �i4t2 − t15.

14

The set of patients in previous sections, 8P11 : : : 1 Pm9 with valuations 4vij5i∈6k71 j∈6m7, now represents the
set of types of the arriving patients. That is, although the patient population goes to infinity, there are only
finitely many types of them. Every type has arrival rate 1: by any time t, the number of patients that have
arrived is mt, where t of them are of type P1 (i.e., with valuation 4v1j1 : : : 1 vkj5), and another t of them
are of type P2, etc. We say that the patient population is independent if 8P11 : : : 1 Pm9 is independent. Notice
that, in general, there may be different Pj and Pj ′ with the same valuation, and the number of patients of
a particular type by time t may be larger than t. But when the population is independent, any different Pj

and Pj ′ must have different valuations, and indeed represent different types. Below, we consider independent
population.

Let w4t5
4

= 4w14t51 : : : 1wk4t55 be the nonnegative waiting time vector of the hospitals at time t such that
w405 = 401 : : : 105. A patient of type Pj arriving at time t chooses a hospital Hi maximizing the individual’s
utility given w4t5, and will be served there at time t +wi4t5.

15 To break ties consistently throughout time, we
impose a partial ordering over the hospitals, according to their positions in the demand graph G with respect
to w̄. In particular, if Hi and Hi′ are in the same connected component of G and Hi precedes Hi′ , then at
any time t and for any patient of type Pj whose utility is maximized at Hi and Hi′ given w4t5, we assume
that Pj does not choose Hi. If Hi and Hi′ are in different connected components, then Pj can choose one

14 The budget constraint B now represents the spending rate of the government: the total amount of money the government can afford by
time t is Bt. But as already said, our conclusion in this section holds even when � does not satisfy the budget constraint. Thus we shall not
talk about the budget constraint in the remaining part of this section.
15 Therefore the patients are served in a first-in-first-out queue.
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arbitrarily, or even split the population of this type arbitrarily between Hi and Hi′ , as indicated by the definition
below.

Definition 6. For any i, j , t, the demand rate of Pj for Hi at time t, denoted by dij4t5, is a number in
60117 such that,

•
∑

i∈6k7 dij4t5= 1 for all j ,
• dij4t5 > 0 only if Hi maximizes Pj ’s utility at time t, and there is no other hospital Hi′ preceded by Hi in

the same connected component of G that does so.
The demand rate for Hi at time t is di4t5

4

=
∑

j∈6m7 dij4t5.

The fractional values of the dij ’s indicate how the patients of the same type will split between all hospitals
maximizing their utilities. For example, dij4t5 = 1/3 means that fixing the current waiting times, in the long
run, a third of the patients of type Pj will choose Hi. Notice that we do not completely specify how the
patients should make their decisions when there are ties, and yet our results hold no matter how these ties are
broken.

Because the patients arrive continuously under a constant rate, their effect on the waiting times at any point
of time is infinitesimal, and w4t5 is continuous. By definition, within an arbitrarily small time interval 4t1 t+�5,
the number of patients choosing Hi is di4t5�. Since the number of patients served by Hi in time � is �i�,
the waiting time will not change if di4t5 = �i (i.e., if the demand rate matches the service rate), and will
change by 4di4t5�−�i�5/�i otherwise, unless wi4t5= 0 and di4t5 < �i, in which case wi4t + �5 will remain 0.
That is,

wi4t + �5−wi4t5=















(

di4t5

�i

− 1
)

� if wi4t5 > 0 or di4t5≥ �i1

0 otherwise0

(7)

Accordingly, for each i ∈ 6k7 the right derivative of wi4t5 is

d+wi4t5

dt
=











lim
�→0

wi4t + �5−wi4t5

�
=

di4t5

�i

− 1 if wi4t5 > 0 or di4t5≥ �i1

0 otherwise0

(8)

Notice that for particular tie-breaking rules, the function di4t5 may not be continuous, and thus wi4t5 may not
be differentiable. But we can always define its right derivative as above.

We say that w4t5 is at most w̄, written as w4t5 ≤ w̄, if wi4t5 ≤ w̄i for each i ∈ 6k7. Moreover, we say that
w4t5 is smaller than w̄, written as w4t5 < w̄, if the above inequality holds for some i ∈ 6k7. The following two
theorems show that the dynamics will always converge to w̄ in finite time, and will never exceed w̄ before
converging.

Theorem 4. When the patient population is independent, then:
(1) w4t5≤ w̄ for any t ≥ 0;
(2) if w4t5= w̄, then d+wi4t5/dt = 0 for any i ∈ 6k7; and
(3) if w4t5 < w̄, then there exists i ∈ 6k7 such that d+wi4t5/dt > 0.

Proof. To prove Statement (1), it suffices to show the following.

Claim 5. For any t ≥ 0 and i ∈ 6k7, if w4t5≤ w̄ and wi4t5= w̄i, then di4t5≤ �i and wi4t5 will not increase.

Proof. Since �h̄−14i5� ≤ �i by the definition of equilibrium 4w̄1 h̄1 �5, it suffices to show

di4t5≤ �h̄−14i5�0

Since

di4t5=
∑

j∈6m7

dij4t5=
∑

j2 h̄4j5=i

dij4t5+
∑

j2 h̄4j5 6=i

dij4t5≤
∑

j2 h̄4j5=i

1 +
∑

j2 h̄4j5 6=i

dij4t5= �h̄−14i5� +
∑

j2 h̄4j56=i

dij4t51

it suffices to show that for any j ∈ 6m7,

if h̄4j5 6= i1 then dij4t5= 00
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To do so, arbitrarily fix a type Pj such that h̄4j5 6= i. If vij − wi4t5 < maxi′8vi′j − wi′4t59, then Hi does not
maximize Pj ’s utility under w4t5, and thus dij4t5= 0. Assume now

vij −wi4t5= max
i′

{

vi′j −wi′4t5
}

0

Notice that
vij −wi4t5= vij − w̄i ≤ vh̄4j5j − w̄h̄4j5 ≤ vh̄4j5j −wh̄4j54t5≤ max

i′

{

vi′j −wi′4t5
}

1

where the equality is because wi4t5 = w̄i, the first inequality is because hospital Hh̄4j5 maximizes Pj ’s utility
under w̄, and the second is because wh̄4j54t5 ≤ w̄h̄4j5 by hypothesis. Thus all the inequalities above are actually
equalities, that is,

vij −wi4t5= vij − w̄i = vh̄4j5j − w̄h̄4j5 = vh̄4j5j −wh̄4j54t5= max
i′

{

vi′j −wi′4t5
}

0

On the one hand, the second equality implies that Hi and Hh̄4j5 are adjacent to Pj in the demand graph G
under w̄. Since Pj is assigned to Hh̄4j5, following the analysis of Theorem 3, it must be the case that Hh̄4j5

precedes Pj and Pj precedes Hi in G. On the other hand, the last equality implies that Hh̄4j5 also maximizes
the utility of Pj given w4t5, and thus Pj will not choose Hi according to the tie-breaking rule. Accordingly,
dij4t5= 0 as we wanted to show.

In sum, we have di4t5 ≤ �h̄−14i5� ≤ �i, which implies that wi4t5 will not increase by the definition of the
dynamics. Therefore Claim 5 holds. �

Since w405 = 401 : : : 105 and w4t5 is continuous, Claim 5 implies that w4t5 ≤ w̄ for any t ≥ 0, and State-
ment (1) holds.

Statement (2) simply follows from the fact that, when w4t5= w̄, the patients choose their hospitals according
to the unique equilibrium 4w̄1 h̄1 �5, and thus di4t5 = �h̄−14i5� = �i for every i such that w̄i > 0, and di4t5 =

�h̄−14i5� ≤ �i for every i such that w̄i = 0.
Finally, Statement (3) is equivalent to the following claim, which we prove below.

Claim 6. If w4t5 < w̄, then there exists i ∈ 6k7 such that di4t5 > �i.

Proof. For the sake of contradiction, assume di4t5 ≤ �i ∀ i. We shall construct a new demand vector d′ =

4d′
ij5i∈6k71 j∈6m7 such that

d′

ij ∈ 80119 ∀ i1 j and d′

i
4

=
∑

j

d′

ij ≤ �i ∀ i0

Notice that d′ induces an equilibrium assignment with waiting time w4t5, where each Pj is assigned to the
unique hospital Hi with d′

ij = 1. This contradicts the fact that w̄ is the minimum equilibrium waiting time vector
with respect to �.

To find the desired d′, consider the demand graph G4t5 with respect to w4t5. For each Hi and Pj , dij4t5 > 0
implies that Hi and Pj are adjacent in G4t5. Since the patient population is independent, G4t5 is a forest with
hospitals and patients alternating along each path, as shown in the proof of Theorem 3.

The construction of d′ starts from G4t5, processes and removes its nodes step-by-step and in a bottom-up
way, and assigns patients to hospitals using a greedy method. More precisely, we initialize

d′

ij = 0 ∀ i1 j1 dij = dij4t5 ∀ i1 j1 and �′

i = �i ∀ i0

At any time of the construction, d′
ij represents the demand of a processed patient, dij represents that of a

remaining patient,
d′

i
4

=
∑

j∈6m7

d′

ij ∀ i1

and represents the total demand for a hospital from the processed patients,

di
4

=
∑

j2 Pj is adjacent to Hi

dij ∀Hi in the graph

and represents the total demand for a remaining hospital from the remaining patients, and �′
i is an integer, which

represents Hi’s remaining quota after some patients have been assigned to it. It will be invariant that

d′

i +�′

i = �i ∀ i1 di ≤ �′

i ∀ i1 and
∑

i2Hi adjacent to Pj

dij = 1 ∀Pj in the graph0 (9)

It is easy to see that Equation (9) holds at the beginning.
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In each step of the construction, arbitrarily choose a leaf with the longest path from its root in the remaining
graph. We distinguish two cases.

Case 1. The chosen leaf is a patient, denoted by Pj∗ .
This is the simpler case. Letting the unique adjacent hospital be Hi∗ , by Equation (9), we have

dij∗ = 0 ∀ i 6= i∗ and di∗j∗ = 1 ≤ di∗ ≤ �′

i∗ 0

Set d′
i∗j∗ = 1, di∗j∗ = 0, and �′

i∗ = �′
i∗ − 1, and remove Pj∗ from the graph. That is, Pj∗ is assigned to Hi∗ and

occupies 1 quota there. Notice that the invariance remains: indeed, d′
i∗ increases by 1 and �′

i∗ decreases by 1,
di∗ and �′

i∗ decrease by 1, and everything else remains unchanged.
Case 2. The chosen leaf is a hospital, denoted by Hi∗ .
This is the more complicated case. Letting the unique adjacent patient be Pj∗ , we have

0 ≤ di∗j∗ = di∗ ≤ �′

i∗ 0

On the one hand, if �′
i∗ ≥ 1 (that is, Hi∗ still has quota for one more patient), then set d′

i∗j∗ = 1, dij∗ = 0 ∀ i,
and �′

i∗ = �′
i∗ −1. Remove Pj∗ and its children (which are all leaves, since Hi∗ has the longest path from the root)

from the graph. That is, Pj∗ is assigned to Hi∗ , and for any other hospital Hi with Pj∗ being the only adjacent
patient, no patient will be assigned to it any more. Notice that the invariance remains: indeed, d′

i∗ increases by 1;
�′
i∗ decreases by 1; di∗ = di∗j∗ = 0; �′

i∗ is nonnegative; for any i 6= i∗, di either decreases or remains unchanged;
and everything else remains unchanged.

On the other hand, if �′
i∗ = 0, then di∗j∗ = di∗ = 0 by Equation (9). That is, no remaining patient wants Hi∗ .

We simply remove Hi∗ from the graph, keeping the invariance.
Notice that we finish processing all the nodes after at most m+ k steps. In the end, all the d′

ij ’s are either 0
or 1, and d′

i ≤ �i ∀ i, as desired. Thus Claim 6 holds. �

Accordingly, Statement (3) holds, and so does Theorem 4. �

Theorem 4 shows that the waiting times in the dynamics will continue increasing before they reach w̄, and will
stop changing once they reach w̄. The only thing remains to show is that, the evolution speed of the dynamics
will not go to 0 as time increases, so that it will indeed reach w̄ in a finite amount of time. More precisely,
letting MSW =

∑

j∈6m7 maxi∈6k7 vij and �max = maxi∈6k7 �i, we have the following theorem.

Theorem 5. When the patient population is independent, the dynamics converges to w̄ in time at most
2k�maxMSW .

Proof. Similar to the Hungarian method (see, e.g., Easley and Kleinberg [8]), we consider the following
potential function:

P4t5
4

=
∑

i∈6k7

�iwi4t5+
∑

j∈6m7

uj4t51

where uj4t5
4

= maxi∈6k74vij −wi4t55. Since wi4t5 is continuous for each i ∈ 6k7, we have that uj4t5 is continuous
for each j ∈ 6m7 and P4t5 is continuous as well.

By Theorem 3, we have mini∈6k7 w̄i = 0. By Theorem 4, we have that, before the dynamics converges,
401 : : : 105 ≤ w4t5 < w̄ for any t, and thus mini∈6k7wi4t5 = mini∈6k7 w̄i = 0. Accordingly, uj4t5 ≥ 0 for each Pj ,
and P4t5≥ 0.

It is easy to see that P405 = MSW . Thus it suffices to prove that P4t5 strictly decreases, and the local
decreasing rate is at least 1/4k�max5.

To do so, notice that

P4t5 =
∑

i

�iwi4t5+
∑

j

∑

i

dij4t54vij −wi4t55

=
∑

i

�iwi4t5−
∑

i

(

∑

j

dij4t5

)

wi4t5+
∑

i1 j

dij4t5vij

=
∑

i

4�i −di4t55wi4t5+
∑

i1 j

dij4t5vij 0
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Thus for arbitrarily small �> 0, by definition, we have

P4t + �5−P4t5

=
∑

i

4�i −di4t + �55wi4t + �5− 4�i −di4t55wi4t5+
∑

i1 j

dij4t + �5vij −
∑

i1 j

dij4t5vij

=
∑

i

4wi4t + �5−wi4t554�i −di4t55−
∑

i

wi4t + �5di4t + �5+
∑

i

wi4t + �5di4t5

+
∑

i1 j

dij4t + �5vij −
∑

i1 j

dij4t5vij

=
∑

i

4wi4t + �5−wi4t554�i −di4t55+
∑

i1 j

dij4t + �5vij −
∑

i1 j

dij4t + �5wi4t + �5

−
∑

i1 j

dij4t5vij +
∑

i1 j

dij4t5wi4t + �5

=
∑

i

4wi4t + �5−wi4t554�i −di4t55+
∑

i1 j

4dij4t + �5−dij4t554vij −wi4t + �550

Since w4t5 is continuous, lim�→06vij −wi4t + �57= vij −wi4t5. Accordingly, for any i1 j such that vij −wi4t5 <
uj4t5, we have vij − wi4t + �5 < uj4t5 for arbitrarily small �. Since the patients only choose hospitals that
maximize their utilities, dij4t5= dij4t + �5= 0. That is, for each Pj ,

∑

i2 vij−wi4t5=uj 4t5

dij4t5=
∑

i2 vij−wi4t5=uj 4t5

dij4t + �5= 10

Combining this equation with Equation (7), we have

lim
�→0

P4t + �5−P4t5

�

= −
∑

i2wi4t5>0 or di4t5≥�i

4di4t5−�i5
2

�i

+
∑

j

uj4t5 lim
�→0

∑

i2 vij−wi4t5=uj 4t5
4dij4t + �5−dij4t55

�

= −
∑

i2wi4t5>0 or di4t5≥�i

4di4t5−�i5
2

�i

+
∑

j

uj4t5 lim
�→0

1 − 1
�

= −
∑

i2wi4t5>0 or di4t5≥�i

4di4t5−�i5
2

�i

0 (10)

To upper bound the last part of Equation (10), we consider the set of hospitals

B
4

=

{

i2 w̄i −wi4t5= max
i′∈6k7

{

w̄i′ −wi′4t5
}

}

0

As w4t5 < w̄ before the dynamics converges, there exists i such that w̄i −wi4t5 > 0. Thus for any i with w̄i = 0,
i y B. By Theorem 3, hospitals in B are all saturated under 4w̄1 h̄1 �5, that is,

�h̄−14i5� = �i ∀ i ∈ B0

For any patient j with h̄4j5 ∈ B, we have
∑

i∈B

dij4t5= 11

because when the waiting times change from w̄ to w4t5, the utilities of j at hospitals in B become strictly more
advantageous against the patient’s utilities at hospitals not in B: indeed, by definition, the waiting times for
hospitals in B decrease the most from w̄ to w4t5. Thus

∑

j2 h̄4j5∈B

∑

i∈B

dij4t5=
∑

j2 h̄4j5∈B

1 =
∑

i∈B

�h̄−14i5� =
∑

i∈B

�i0

Let BP be the set of patients j such that h̄4j5y B but j is adjacent to a hospital in B in the demand graph of w̄
(BP for “boundary patients”). Notice that BP 6= � as B 6= 6k7. For any j ∈ BP , we again have

∑

i∈B dij4t5 = 1,
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for a similar reason as before—that is, at w̄ patient j is indifferent between the best hospital (for him or her) in
B and the best not in B, and from w̄ to w4t5, the hospitals in B become strictly more advantageous. Accordingly,

∑

i∈B

di4t5≥
∑

j2 h̄4j5∈B

∑

i∈B

dij4t5+
∑

j∈BP

∑

i∈B

dij4t5=
∑

i∈B

�i +
∑

j∈BP

1 ≥
∑

i∈B

�i + 10

Let B′ 4

= 8i ∈ B � di4t5≥ �i9. By definition, we have
∑

i∈B\B′ �i ≥
∑

i∈B\B′ di4t5, and therefore

∑

i∈B′

di4t5≥
∑

i∈B′

�i + 10

Thus, by the concavity of the function x2 and Jensen’s inequality, we have

lim
�→0

P4t + �5−P4t5

�
= −

∑

i2wi4t5>0 or di4t5≥�i

4di4t5−�i5
2

�i

≤ −
∑

i2 di4t5≥�i

4di4t5−�i5
2

�i

≤ −
∑

i∈B′

4di4t5−�i5
2

�i

≤ −
∑

i∈B′

4di4t5−�i5
2

�max

= −
�B′�

�max

·
1

�B′�
·
∑

i∈B′

4di4t5−�i5
2

≤ −
�B′�

�max

·

(∑

i∈B′4di4t5−�i5

�B′�

)2

≤ −
�B′�

�max

·

(

1
�B′�

)2

≤ −
1

k�max

1 (11)

for any time t before the dynamics converges.
Finally, letting T = 2k�maxMSW and assuming that the dynamics does not converge before time T , we show

that P4T 5= 0, and thus the dynamics must converge at time T . For the sake of contradiction, assume P4T 5 > 0.
We have

P4T 5−P405 > 0 − MSW = −
T

2k�max

0

Let

t∗
4

= sup
{

t2 t ≤ T 1 P4t5−P405≤ −
t

2k�max

}

0

Since P4t5 is continuous, we have

P4t∗5−P405≤ −
t∗

2k�max

1

and thus t∗ < T . By our hypothesis, the dynamic does not converge before T , thus by Inequality (11), there
exists � ∈ 401 T − t∗5 such that

P4t∗ + �5−P4t∗5≤ −
�

2k�max

0

Letting t′ = t∗ + �, we have t∗ < t′ <T and

P4t′5−P405= P4t∗ + �5−P4t∗5+P4t∗5−P405≤ −
t∗ + �

2k�max

= −
t′

2k�max

1

contradicting the definition of t∗. Therefore P4T 5 = 0 and the dynamics converges to w̄ in time at most T , as
desired. �

Remark 5. Although the potential function used in the above proof is similar to that used in the Hungarian
method for unit demand auctions, the analysis is different. For example, the potential function in the latter
measures the total price paid at each time step, while ours measures the “budgeted” total waiting time

∑

i �iwi4t5,
which can be very different from the total waiting time. Moreover, in the latter, the prices of the goods for sale
never go down, making the analysis much easier, while in our dynamics, the waiting times may go up and down,
depending on the demands.
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6. The optimality of the randomized assignment. Although waiting time is widely used to ration demand
in economic settings, it may burn a lot of social welfare, since the time waited is not beneficial to anybody.
Therefore, in this section, we study different allocation schemes in healthcare and give evidence that the gov-
ernment can avoid the welfare-burning effect of waiting times by limiting the choices available to the patients.
In particular, we show that the randomized assignment is actually optimal in terms of social welfare in many
cases.

Following our discussion in §1, we consider the case of two hospitals, a “good” one H1 and a “bad” one
H0, with costs c1 > c0. As already said, whoever prefers H0 can be directly assigned there and we no longer
consider them in our setting. The patients preferring H1 are indexed by the interval 60117, and each patient x
is associated with a value v4x5, indicating how long the individual is willing to wait at H1 to be treated there
instead of H0. We assume that the patients have been renamed and normalized, so that v4x5 is nondecreasing and
v405 = 0. Since the number of patients is infinite, we talk about the cost density ci4x5 of each hospital, rather
than the cost for serving a single patient. Without loss of generality, c14x5≡ 1 and c04x5≡ 0. The government
has budget B ∈ 40115, meaning that at most a B fraction of the patients can be served at H1. The government’s
goal is to maximize the expected social welfare subject to the requirement that the budget constraint is satisfied
in expectation.

In the randomized assignment, the government assigns each patient to H1 with probability p and waiting
time 0. The budget constraint gives

∫ 1

0
pc14x5dx = p = B1

and the corresponding social welfare, denoted by SW r , is

SW r =

∫ 1

0
pv4x5dx = B

∫ 1

0
v4x5dx0 (12)

Below, we compare this social welfare with that of lotteries.

Definition 7. A contract is a pair 4p1w5, where p ∈ 60117 is the probability of assigning a patient to H1,
and w ≥ 0 is the waiting time for that patient at H1.

A lottery consists of a set of contracts, denoted by the domain D ⊆ 60117 of the probabilities, and the waiting
time function w4p5 defined over D.

Given a contract C = 4p1w5 for patient x, the expected utility of x is

u4x1C5= p · 4v4x5−w50

Given a lottery L= 4D1w4p55, each patient x chooses the contract C4x5= 4p4x51w4p4x555 maximizing his or
her expected utility. Namely, for each p ∈D,

u4x1C4x55≥ u4x1 4p1w4p5550

If there is more than one value of p that maximizes the expected utility of x, we assume that p4x5 is the smallest
one, so that the cost of serving patient x is minimized. Notice that p4x5 depends on x only indirectly, via the
function v4x5: indeed, p4x5= p4x′5 whenever v4x5= v4x′5. Thus we can write p4x5 as p4v4x55.

As an example, the randomized assignment is a lottery with D = 8B9 and w4B5 = 0.16 As another example,
any equilibrium assignment is also a lottery, with D = 60117 and w4p5 always equal to the waiting time of H1

specified by the equilibrium. Indeed, for every patient x, the contract maximizing that individual’s expected
utility is to go to the hospital assigned by the equilibrium with probability 1.

Without loss of generality, we assume that D is a subinterval of 60117, denoted by 6a1 b7. Indeed, if a patient
can choose between 4p11w4p155 and 4p21w4p255 according to the lottery, then by using a “mixed strategy” he or
she can choose to be assigned to H1 with any probability p = �p1 + 41−�5p2 with � ∈ 60117, and corresponding
expected waiting time �p1w4p15+ 41 −�5p2w4p25.

Also, without loss of generality, we assume that the patients’ expected waiting time function p · w4p5 is
convex, and thus differentiable almost everywhere. Indeed, for any contracts C1 = 4p11w4p155, C2 = 4p21w4p255,
and C = 4p1w4p55 with p = �p1 + 41 − �5p2 for some � ∈ 60117, if p ·w4p5 > �p1w4p15+ 41 − �5p2w4p25,
then a patient is always better off by mixing between C1 and C2 instead of choosing C. Thus we may simply
assume that p ·w4p5≤ �p1w4p15+ 41 −�5p2w4p25.

17

The social welfare and the budget constraint are naturally defined for lotteries as follows.

16 In general, D can be a proper subset of 60117, as the government may not offer the whole interval 60117 for the patients to choose from.
17 Notice that w4p5 itself may not be convex.
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Definition 8. Given a lottery L= 46a1 b71w4p55 and the contracts 4p4x51w4p4x555 chosen by the patients
x ∈ 60117, letting u4x5

4

= u4x1 4p4x51w4p4x555, the social welfare of L denoted by SWL is

SWL =

∫ 1

0
u4x5dx0

Lottery L is feasible if the budget constraint is satisfied, namely,
∫ 1

0 p4x5dx = B.

Notice that we require a feasible lottery to use up all the budget. This is again without any loss of generality,
since our theorem below implies that any lottery with cost B′ <B is beaten by the randomized assignment with
budget B′, and thus by the one with budget B.

We assume that the expected waiting time function pw4p5 is piecewise twice differentiable in p. Notice that,
although assuming twice differentiability of pw4p5 over the whole domain is too much, assuming it piecewisely
is quite natural. For example, the government may use different w4p5’s for different intervals of p, but inside
each interval, it uses a smooth w4p5. The randomized assignment and equilibrium assignments trivially satisfy
this assumption.

The following theorem shows that, when the distribution of the patients’ valuations accumulates toward
the higher-value side, the randomized assignment is optimal compared with any lottery. Since equilibrium
assignments are special cases of lotteries, the randomized assignment is optimal compared with them as well.

Theorem 6. For any concave valuation function v4x5 and any feasible lottery L= 46a1 b71w4p55, we have
SW r ≥ SWL.

Proof. Since SW r does not depend on any waiting time, we will rewrite SWL, so that the waiting times
disappear from its representation.

As the choice of p4x5 maximizes the utility of x, for any ã > 0 patient x prefers contract C4x5 =

4p4x51w4p4x555 to contract C4x +ã5 = 4p4x +ã51w4p4x +ã555, and patient x +ã prefers C4x +ã5 to C.
That is,

u4x5= p4x56v4x5−w4p4x557≥ p4x+ã56v4x5−w4p4x+ã5571

and
u4x+ã5= p4x+ã56v4x+ã5−w4p4x+ã557≥ p4x56v4x+ã5−w4p4x5570

Accordingly,

v4x5 ·ãp4x5≤ã4p4x5 ·w4p4x5551 and v4x+ã5 ·ãp4x5≥ã4p4x5 ·w4p4x5550 (13)

As pw4p5 is piecewise twice differentiable, all the differential equations and statements made in this paragraph
hold piecewisely, and we shall not mention the piecewiseness again and again. To begin with, letting ã→ 0 in
Equation (13), we have (with variable x omitted for conciseness)

v =
d4pw4p55

dp
1 (14)

where the function on the right-hand side is well defined and differentiable in p. As p4v5 is the inverse of
Equation (14), it is differentiable in v. As v4x5 is concave, it is differentiable in x almost everywhere. Thus
p4x5= p4v4x55 is differentiable in x. Accordingly, we have

du4x5 = dp · 4v−w5+p · 4dv−dw5= p ·dv+ v ·dp− 4w ·dp+p ·dw5

= p ·dv+ v ·dp−d4p ·w5= p ·dv+ v ·dp− v ·dp = p ·dv0 (15)

(Notice that p4v5 and p4x5 may not be continuous functions, but we only need them to be “nice” piecewisely.)
Now, putting all the pieces together and integrating both sides of Equation (15) over the whole domain, we

have

u4x5=

∫ v4x5

0
p4v̂5dv̂0 (16)

As v4x5 is nondecreasing and concave, we have that v′4x5 ≥ 0 and v′4x5 is nonincreasing. If there exists
x < 1 such that v′4x5 = 0, then let x0 be the smallest number with v′4x05 = 0; otherwise (i.e., v4x5 is strictly
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increasing) let x0 = 1. We have that v4x5 is strictly increasing on 601 x07 and constant on 6x0117. Let v0 = v4x05.
Following Equation (16) the social welfare of lottery L is

SWL =

∫ 1

0
u4x5dx =

∫ 1

0

∫ v4x5

0
p4v̂5dv̂ dx =

∫ x0

0

∫ v4x5

0
p4v̂5dv̂ dx+

∫ 1

x0

∫ v0

0
p4v̂5dv̂ dx

=

∫ v0

0

(

p4v̂5
∫ x0

v−14v̂5
dx

)

dv̂+

∫ v0

0

(

p4v̂5
∫ 1

x0

dx

)

dv̂

=

∫ v0

0
p4v̂5 · 4x0 − v−14v̂55dv̂+

∫ v0

0
p4v̂5 · 41 − x05dv̂

=

∫ x0

0
p4x54x0 − x5v′4x5dx+

∫ x0

0
p4x541 − x05v

′4x5dx =

∫ x0

0
p4x541 − x5v′4x5dx0 (17)

Now that SWL only depends on the patients’ values and their choices of the probabilities, we rewrite SW r in
a similar way so that we can compare the two. Indeed, the social welfare of the randomized assignment can be
written as

SW r =

∫ 1

0
Bv4x5dx =

∫ 1

0

∫ v4x5

0
Bdvdx =

∫ x0

0

∫ v4x5

0
Bdvdx+

∫ 1

x0

∫ v0

0
Bdvdx

=

∫ v0

0

∫ x0

v−14v̂5
Bdxdv̂+

∫ v0

0

∫ 1

x0

Bdxdv̂ =

∫ v0

0
B4x0 − v−14v̂55dv̂+

∫ v0

0
B41 − x05dv̂

=

∫ x0

0
B4x0 − x5v′4x5dx+

∫ x0

0
B41 − x05v

′4x5dx =

∫ x0

0
B41 − x5v′4x5dx0 (18)

Following Equations (17) and (18), to compare SW r and SWL, we need to see how the two functions inside
the integrals compare to each other, in particular, how p4x5 is compared to B. Toward this goal, again notice
that p4x5 maximizes the expected utility of x. Thus, for any two patients x1 < x2, we have

u4x15= p4x154v4x15−w4p4x1555≥ p4x254v4x15−w4p4x2555

and
u4x25= p4x254v4x25−w4p4x2555≥ p4x154v4x25−w4p4x15550

Thus p4x254v4x25 − v4x155 ≥ p4x154v4x25 − v4x155. If v4x25 = v4x15, then p4x25 = p4x15 (as we already said,
p4x5 only depends on v4x5), otherwise p4x25≥ p4x15. That is, the function p4x5 is nondecreasing.

As L is feasible, we have
∫ 1

0 p4x5dx = B. Since v4x5 is constant on 6x0117, so is p4x5. Therefore p4x05≥ B.
Accordingly, there exists xB ∈ 601 x07 such that

p4x5≤ B ∀x < xB1 and p4x5≥ B ∀x ≥ xB0

Thus we have

SW r − SWL =

∫ x0

0
4B−p4x5541 − x5v′4x5dx

=

∫ xB

0
4B−p4x5541 − x5v′4x5dx+

∫ x0

xB

4B−p4x5541 − x5v′4x5dx0 (19)

Notice that the value of p4xB5 does not affect the value of the integration, thus without loss of generality, we
assume p4xB5= B.

For any x ≤ xB, we have (a) B − p4x5 ≥ 0, (b) 1 − x ≥ 1 − xB ≥ 0, and (c) v′4x5 ≥ v′4xB5 ≥ 0 since v′4x5 is
nonnegative and nonincreasing, thus

4B−p4x5541 − x5v′4x5≥ 4B−p4x5541 − xB5v
′4xB5 ∀x ≤ xB0 (20)

Similarly, for any x ≥ xB, we have (a) B−p4x5≤ 0, (b) 0 ≤ 1 − x ≤ 1 − xB, and (c) 0 ≤ v′4x5≤ v′4xB5, thus

4B−p4x5541 − x5v′4x5≥ 4B−p4x5541 − xB5v
′4xB5 ∀x ≥ xB0 (21)
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Combining Equations (19)–(21), we have

SW r − SWL ≥

∫ xB

0
4B−p4x5541 − xB5v

′4xB5dx+

∫ x0

xB

4B−p4x5541 − xB5v
′4xB5dx

= 41 − xB5v
′4xB5

∫ x0

0
4B−p4x55dx0

Since
∫ 1

0 p4x5dx =
∫ x0

0 p4x5dx+p4x0541 − x05 and
∫ 1

0 p4x5dx = B =
∫ x0

0 Bdx+B41 − x05, we have

∫ x0

0
4B−p4x55dx = 4p4x05−B541 − x050

Accordingly,
SW r − SWL ≥ 41 − xB5v

′4xB54p4x05−B541 − x05≥ 01

where the second inequality is because xB ≤ 1, v′4xB5≥ 0, p4x05≥ B, and x0 ≤ 1.
Therefore, Theorem 6 holds. �

Remark 6. It is worth pointing out that the analysis above holds as long as 41 − x5v′4x5 is nonincreasing.
Thus the randomized assignment is optimal compared with any lottery even for some convex valuation function
such as v4x5 = ex. However, since this is still a sufficient condition and it remains unknown whether it is
necessary, we choose to state our theorem for concave functions only, which is a well-studied class. It would be
very interesting to fully characterize the condition under which the randomized assignment is optimal, but new
techniques might be needed for this purpose.

When there are k > 2 hospitals, and, in particular, when the patients do not have the same ranking about
the hospitals,18 it becomes much harder to understand the structure of the optimal lottery. One possible way to
attack this problem is to consider the “size” of the optimal lottery, namely, how many distributions it should
provide for the patients to choose from. For k = 2, one can show that any Provision-after-Wait mechanism can
be replaced with a menu of only three choices (the cheaper hospital with no waiting, the more expensive hospital
with some waiting, or a lottery with some other amount of waiting). For k > 2, it might be possible to replace
an arbitrary menu of lotteries with one whose size is linear in k or at least is a function of k alone: we leave a
detailed study in this direction as a future work.
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