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I. INTRODUCTION

Service robots in domestic environments need the ability
to manipulate objects without good prior models in order to
cope with the variability of such environments. When multi-
ple measurements can be acquired around an isolated object,
standard approaches work satisfactorily as the generated 3-D
models can often be used for successful manipulation.

However, in cluttered scenes with multiple unknown ob-
jects, the segmentation of objects, also known as object
discovery in perception research [1], [2], [3], [4], becomes a
major problem. Typically, the problem is to decide which of
the segments in an oversegmented scene belong to the same
object. This is challenging especially because objects can
be partially occluded by others. Because of this uncertainty,
earlier work has concentrated on finding the best manipula-
tion action based on the most likely composition. Contrary
to earlier work, we 1) utilize a probability distribution over
object compositions in decision making, 2) take advantage
of object composition information provided by robot actions,
3) take into account the effect of different competing object
hypotheses on the actual task to be performed. We cast
the manipulation planning problem as a partially observable
Markov decision process (POMDP) [5] which plans over
possible hypotheses of object compositions. The POMDP
model chooses the action that maximizes the long-term ex-
pected task specific utility, and while doing so, considers the
value of informative actions and the effect of different object
hypotheses on the completion of the task. By considering
a temporally evolving system, the robot can infer from
past grasp attempts the likelihood of object hypotheses. Our
approach [6] combines earlier ideas of interactive perception
[71, [8], [9], [10], [11] and learned composition priors [3],
[4] in a planning under uncertainty framework.

II. MANIPULATING OBJECT COMPOSITIONS

We consider the scenario of a robot manipulating unknown
objects based on RGB-D data. The manipulation goal is
defined in terms of simple features that can be observed
incompletely from the point clouds. For example, the goal
could be to move all objects with a certain color to a
particular location. While manipulating unknown objects
is difficult, occlusion and noisy sensor readings make the
task even harder: the robot has to guess which parts of
the captured RGB-D image belong to the same object. We
propose to choose the manipulation action that maximizes
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Fig. 1. Overview. (a) At each time step, the robot uses an RGB-D sensor
to observe unknown objects, which may occlude each other. (b) The robot
over-segments the RGB-D image into patches and creates a probability
distribution over all possible object compositions from patches. (c) Using
this probability distribution the robot computes a POMDP plan. The plan
takes into account uncertainty in object composition, observations, and grasp
success. The POMDP plan is represented as a compact directed graph where
each node corresponds to an action and each edge is a possible observation.

reward over the distribution of possible compositions. By
considering a temporally evolving system, the robot can infer
from past grasp attempts the likelihood of object hypotheses.

Fig. 1 shows an overview of the system. At each time
instant, the robot performs the following steps:

1) Over-segment an RGB-D image of the current scene

2) For each pair of segments, estimate the probability of
the segments being part of the same object

3) From the estimated probabilities create a probability
distribution over possible object compositions that con-
forms with past grasp attempts (Section II-A)

4) Use a POMDP to select the best long-term manip-
ulation action for the current object distribution and
execute the action (Section I1-B)



For steps 1 and 2, for segmenting RGB-D data and estimating
probabilities for segment pairs, we use an existing approach
from [4]. Steps 3 and 4 are described below.

A. Robotic manipulation as a POMDP

We model robotic manipulation as a POMDP. A POMDP
defines optimal behavior for an agent (robot) in an uncertain
world with noisy, partial measurements. In particular, a
POMDP assigns the correct long-term value to informative
actions which are needed when exploring object hypotheses.
Transition probabilities define how the world state may
change when the robot performs an action, and observation
probabilities define the sensor model. The robot does not
observe the current world state directly but can make deci-
sions based on a probability distribution over states, called
the belief. A reward, given according to the current state and
robot action, specifies the objective. The goal is to maximize
the total reward over several time steps.

In our POMDP model [12], [6], the probabilities of
successfully grasping an object hypothesis, and observing its
attributes (for example color) depend on how occluded the
object hypothesis is. A world state contains a composition
of object hypotheses (called an object composition), object
attributes, locations, and history information. Because each
state may consist of different object hypotheses the transition
and observation probabilities are state specific. For example,
a certain world state may contain a set of three specific
objects, while another state may contain a set of two different
objects with different probabilities.

Because of the huge state space we use a particle rep-
resentation for the belief, that is, a set of states and their
probabilities. To create a belief from an RGB-D image, we
sample particles using segment pair probabilities computed
from the RGB-D image. For sampling we use a Markov
chain Monte Carlo approach, which discards samples that
do not conform with the observed history. The key insight
is that previously performed grasps must have failed for a
valid object hypothesis, otherwise the object would have been
moved. Furthermore, a grasp can only succeed for a wrong
object hypothesis, when the object is part of another object,
for which the grasp succeeds.

B. Manipulation planning

In order to use the POMDP method in [12] for planning,
we need to model the temporal evolution of the world state.
Because our probability distributions use a state particle
representation, we need, in particular, a way to sample states
and observations, and a way to estimate the likelihood of a
state particle given an observation. Next, we discuss how to
accomplish these tasks.

Actions. In our problem setting, the robot may grasp an
object and move it. Our approach based on principal compo-
nent analysis (PCA) grasps a narrow part of the target object
top-down. In order to restrict the computational load, instead
of allowing grasping of all possible object hypotheses, we
greedily select a fixed amount of possible grasps according
to the total grasp probability over all object hypotheses.

State sampling. As discussed earlier, a world state consists
of an object composition, and contains for each composition
a semantic object location, attributes, and history. To sample
a new state for a grasp action, we select the object hypothesis
that has the highest grasp probability for the action. Sample
grasp success and if the grasp fails, increase the grasp failure
of the object. If moving the object succeeds, change the
semantic location of the object.

Observation sampling. After executing a grasp, the robot
observes which object was moved, and in the case of a
successful move, the robot makes an observation about the
attributes (color in the experiments) of a limited number of
objects behind the moved object. The observation probability
for each object depends on how occluded the object is.

Observation probability. The probability of making an
observation is zero if the moved object hypothesis differs
from the observed one, or if the move fails and the attribute
observations do not match with previous attribute observa-
tions. Otherwise, the probability depends on occlusion.

III. EXPERIMENTS & CONCLUSION

Fig. la shows the experimental setup. The robot tries to
find and move an unknown number of fully red toys into
a target zone (Box 1). To remove occlusions, the robot can
move toys to a free zone (Box 2). Moving a red object into
Box 1 yields 1$. Moving a non-red object into Box 1 or
moving a red object into Box 2 costs 1$. Table I shows the
results. In ten different scenes, the POMDP approach was
better in five and a baseline approach, based on the most
likely object composition, in one. There are two main rea-
sons why the POMDP approach outperformed the baseline
approach. First, it planned its actions over the distribution
of compositions. For example, in one scene the POMDP
succeeded while the baseline approach finished execution
prematurely because the most probable object composition
did not contain red object hypotheses, although some other
compositions did. Second, the POMDP utilized information
gathering actions. For example, in another scene, it moved
several non-red objects away, thus reducing occlusion.

To summarize, a lack of object models and a noisy partial
view make object discovery difficult. In experiments, our
POMDP based approach which plans over different possi-
ble object compositions and takes uncertainty into account
outperformed a baseline approach.

TABLE 1
MOVING RED OBJECT(S) INTO A BOX. x IN V(x,y,z) DENOTES HOW MANY OBJECTS
WERE MOVED TO THE CORRECT RED (x) OR NON-RED (y) BOXES, AND HOW MANY
TO AN INCORRECT BOX (z). BOLD DENOTES HIGHER VALUES V (V =x—2).

POMDP PERFORMED BETTER IN FIVE AND BASELINE IN ONE SCENE.

Scene
Method 1 2 3 4 3
Baseline 0 .00 100 | -1 ©01) 1 (1,00 1 (1,00
POMDP 1030 -1 a.22) 0 0,10 1 (1,00 1 (1,00
Scene
Method 6 7 8 9 10
Baseline 0 .00 0 (0.0,0) -2 (1,0.3) 3 G0 -1 0.1
POMDP 0 .00 1 (1,00 0 (1,01 3 G0 1 (1,00
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