
Image-Based Visual Servoing for Differentially Flat Underactuated
Systems using Cross-Entropy Motion Planning

Matthew Sheckells and Marin Kobilarov1

Abstract— This work considers an Image-Based Visual Ser-
voing (IBVS) technique for differentially flat underactuated sys-
tems. We formulate the problem as an optimal control problem
that can be solved using cross-entropy motion planning. As a
cost function, we use the average squared distance between
SURF features matched between the desired image and the
image projected from the final state of the trajectory. The
optimization is performed over a polynomial parametrization
of the flat outputs of the system to decrease the dimensionality
of the optimization. Preliminary experimental results show
that the technique has a wide radius of convergence for
the case considered, which is a simulated quadrotor with a
downward-facing camera. This method assumes a model of the
environment is known or can be estimated (e.g. using structure
from motion algorithms).

I. INTRODUCTION

Visual servoing concerns bringing computer vision data
into the control loop of a robot and has been thoroughly
studied over the past two decades [2][9][10]. Image-Based
Visual Servoing (IBVS) attempts to directly control image
features in order to align them with some objective set
of features and thereby bring the system into a desired
state. Several works look at applying IBVS to underactuated
dynamic models, like quadrotors [7][4][3]. The standard
approach is based on a closed form control strategy using the
image jacobian, whereas this work formulates the problem as
an optimal control problem. By specifying the cost function
as the average squared distance between features in 2D image
coordinates, we can apply a cross-entropy motion planning
algorithm [5] to find an optimal trajectory which brings the
system into alignment with the desired image. We use a
sampling-based method because local methods like Gauss-
Newton do not converge. The optimization is performed over
a polynomial parametrization of the flat outputs of the system
to increase efficiency and radius of convergence. The cost
function relies on the ability to generate images from any
state in the workspace, so a 3D model of the environment is
constructed beforehand.

II. METHODS

A. Cross-entropy Method

The Cross-Entropy (CE) method is a sampling based ap-
proach to multi-extremal optimization and importance sam-
pling. It has been employed in motion planning for nonlinear
robotic systems operating in constrained environments [5].

1Matthew Sheckells and Marin Kobilarov are with the Department of
Computer Science and the Department of Mechanical Engineering, Johns
Hopkins University, 3400 N Charles Str, Baltimore, MD 21218, USA
msheckells|marin@jhu.edu

At a high level, it consists of two phases. First, a set of
trajectories is generated by sampling a finite dimensional
parametrization from a Gaussian Mixture Model (GMM).
Next, the parameters of the GMM are fit to the set of samples
corresponding to the those with the smallest costs. This
process is repeated until convergence.

B. Cost Function
Based on the state of the system, a virtual image is

generated from a 3D model of the environment. SURF
features [1] are extracted from the virtual image using an
OpenCV implementation. The set of features is denoted
F = {f1, f2, ..., fN}. The features are also extracted from
the goal image (but only once), and the set is denoted
Fg = {fg1 , fg2 , ..., fgM }. Features from both images are
matched using a k-nearest neighbors matching algorithm.
Matches are then filtered using a ratio test as proposed by
Lowe [6], resulting in K “good” matches. This gives a
mapping π : F → Fg between goal features and current
state features. The cost is then calculated as

JImage =

∑K
i=1 ‖fi − π(fi)‖2

K
,

where the difference between two features is defined as
the difference between their 2D pixel coordinates and the
magnitude is a Euclidean distance. Hence, the cost function is
the average squared 2D distance between matching features.

This function by itself has the drawback that the cost drops
to zero when there are no matches. So, when a state yields
fewer than Kmin features, the cost is calculated as

JImage =
a

Kmin + b
.

where Kmin, a, and b are chosen experimentally. Costs
associated with the state or control effort JState can be added
directly to this cost function if additional state information
is available. Thus, the total cost is J = JImage + JState.

C. Differential Flatness and Trajectory Parametrization
This work considers only differentially flat systems. A

system with state x ∈ Rn and inputs u ∈ Rm is differ-
entially flat if one can find outputs y ∈ Rm of the form
y = h(x, u, u̇, . . . , u(a)) and functions ψ and α such that
x = ψ(y, ẏ, . . . , y(b)) and u = α(y, ẏ, . . . , y(c)).

To reduce the number of optimization parameters, the
trajectory is parameterized in time as a Bézier curve over the
flat outputs y(t) of the chosen system. The curve should be b-
times differentiable to ensure continuity in the state trajectory
x(t). The full state of the systems and controls necessary to
produce the trajectory can be reconstructed using α and ψ.



−6

−4

−2

0

2

4

−10
−8

−6
−4

−2

−4

−3

−2

−1

0

1

2

X (m)

Quadrotor Trajectory

Y (m)

Z
 (

m
)

−6

−4

−2

0

2

4

6

8

10

−2 −1 0 1 2 3 4

−4

−3

Y (m)

Quadrotor Trajectory

X (m)

Z
 (

m
)

Fig. 1. The image on the left illustrates the environment with an example trajectory. On the right, two computed trajectories are shown that navigate to
the same desired image from different initial conditions. Both have a final desired state indicated by an image rendered from the position (−6,−2,−4)
with 0 yaw. This position is marked by the cyan-magenta-black axes on the plots. The first trajectory starts at (5,−11, 1) with a yaw of π/3. The second
trajectory starts at (10, 4,−4) with a yaw of π/3.

D. Feasible Initialization

The trajectories were initialized by first solving the same
problem for a fully-actuated 3D rigid body. The relevant flat
outputs from that solution were then used to initialize the
flat output trajectory for the quadrotor system. This gives an
initial guess for the solution that is already close to the final
result.

III. EXPERIMENT

A. System

The system considered is a simplified quadrotor model
with a downward facing camera. It takes four controls as
input: three torques that correspond to the roll, pitch, and
yaw axes and a thrust force along the z-axis of the quadrotor.
It is also subject to gravity. This system is known to be
differentially flat [8]. The full state is that of a rigid body with
second order dynamics given as x = (p,R, ṗ, ω) ∈ SE(3)×
R6. The flat outputs are given as y = (p1, p2, p3, γ) ∈ R4,
where γ is the yaw of a roll-pitch-yaw parametrization of the
rotation matrix R. For this work, we only need to recover
the pose and linear velocities of the system since the controls
and angular velocities are not used in the image-based cost
function. So, we have p = yt, ṗ = ẏt and the three columns
of the rotation matrix Rx, Ry, Rz are reconstructed as

Rz = m(ÿt − g)/‖m(ÿt − g)‖

Ry = Rz ×

cos y4
sin y4
0

 /

∥∥∥∥∥∥Rz ×

cos y4
sin y4
0

∥∥∥∥∥∥
Rx = Ry ×Rz

where m is the mass of the quadrotor, g is the gravity vector,
and yt = (y1, y2, y3).

B. Setup

All experiments were implemented in C++, using OpenCV
for feature detection and OGRE for model rendering [12].
An implementation of the CE method was used from the
Geometric Control, Optimization, and Planning library [11].

The workspace environment considered was a small lab
testing area with textured walls suitable for feature matching.

A 3D model of the area was created using the Agisoft
Photoscan SFM software [13].

The initial attitude of the system was always specified
with zero roll and pitch. In addition to the feature-based
cost function, penalties were added to prevent a non-zero
final velocity or non-level attitude. For the cost function, we
used Kmin = 7, a = 105, and b = 0.01, as these values
worked well in practice.

The Bézier curve parametrization used seven control
points to ensure smoothness and to provide enough degrees
of freedom for shaping the trajectory. The first three points
were fixed during optimization so as to keep the first two
derivatives of the flat outputs constant. This ensured that the
optimized trajectory matched the given initial conditions of
the system.

C. Cross-entropy Results

Two trajectories generated by the cross-entropy method
are shown in Figure 1. Each trajectory was optimized over
50 iterations while generating 200 sample trajectories per
iteration. Both trajectories consider a desired image taken
from the position (−6,−2,−4) with 0 yaw. The first tra-
jectory starts at (5,−11, 1) with a yaw of π/3. The second
trajectory starts at (10, 4,−4) with a yaw of π/3. It can be
seen that both trajectories effectively converge to the goal
position, with the first ending at (−5.07,−3.19,−1.70) and
the second ending at (−4.24,−1.56,−4.42).

IV. CONCLUSION

This work considers an IBVS technique that is suitably
general for any differentially flat system. The method for-
mulates IBVS in an optimal control context and uses a
cross-entropy motion planner to minimize an image-based
cost function. The trajectories are parametrized in flat output
space using Bézier curves to reduce the dimensionality of the
optimization problem. It has been shown experimentally that
this method shows promising convergence properties when
applied to a simulated quadrotor system. Future work will
give a more statistical treatment to the convergence of the
method and consider performance in the presence of image
noise and obstacles.



REFERENCES

[1] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. 2008.
Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst.
110, 3 (June 2008), 346-359.

[2] B. Espiau, F. Chaumette, and P. Rives. A new approach to visual
servoing in robotics. IEEE Transactions on Robotics and Automation,
Vol.8(3), pages: 313-326, 1992.

[3] N. Guenard, T. Hamel, and R. Mahony, “A Practical Visual Servo Con-
trol for an Unmanned Aerial Vehicle,” Robotics, IEEE Transactions
on, vol.24, no.2, pp.331,340, April 2008

[4] T. Hamel and R. Mahony, Visual servoing of an under-actuated
dynamic rigid-body system: An image based approach. IEEE Transac-
tions on Robotics and Automation, 2002, Vol. 18(2), pages: 187-198.

[5] M. Kobilarov, Cross-entropy Randomized Motion Planning, In
Robotics: Science and Systems (R:SS), 2011

[6] David G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, 60, 2 (2004),
pp. 91-110.

[7] L. Mejias, S. Saripalli, G.S. Sukhatme, and P. Cervera, Visual servoing
for tracking features in urban areas using an autonomous helicopter,
In Journal of Field Robotics, 2006. Vol 23. Issue 3-4, pages: 185-199.

[8] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” Robotics and Automation (ICRA), 2011 IEEE
International Conference on , vol., no., pp.2520,2525, 9-13 May 2011

[9] R. Pissard-Gibollet and P. Rives. Applying visual servoing techniques
to control of a mobile hand-eye system. In Proceedings of the
IEEE International Conference on Robotics and Automation, ICRA95,
pages: 166-171, Nagasaki, JAPAN, 1995.

[10] Lee E. Weiss, Arthur C. Sanderson, and Charles P. Neuman. Dynamic
sensor-based control of robots with visual feedback. IEEE Transactions
on Robotics and Automation, 3(5):404417, October 1987

[11] Geometric Control, Optimization, and Planning Library.
https://ascol.lcsr.jhu.edu/Software

[12] OGRE - Open Source 3D Graphics Engine.
http://www.ogre3d.org/

[13] Agisoft Photoscan. http://www.agisoft.com/


