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Abstract— Robots need to gain experience online, and use
this experience to improve their task execution performance
to prevent undesired outcomes. In this work, we present an
adaptive planning method for robots that uses the outcomes
of a real-world learning process during probabilistic planning
to achieve this objective. We analyze this method on a case
study with our autonomous mobile robot in a multi-object
manipulation domain. The results show that the presented
solution ensures efficiency in mobile manipulation performance.

I. INTRODUCTION

The main objective of this work is to develop an
experience-guided planning method for a robot to improve
its performance on manipulation tasks. In this method, the
robot builds its experience by learning through observations
made after each action execution. We selected a mobile
manipulation case study where the focus is on optimizing the
number of manipulated objects in the face of failures. This
can be achieved by using the built experience from previous
failure cases to guide future planning tasks of the robot.

Our prior work involves an experimental learning pro-
cess [1] using Inductive Logic Programming (ILP) and a
deterministic planner that uses the built experience [2]. The
previous deterministic planner takes contexts of hypotheses
into account to provide feedback to planning. The method
that we propose here differs from our earlier study with
the development of a probabilistic planner framework to use
hypotheses associated with probabilities built by learning.
Our probabilistic framework uses a Partially Observable
Markov Decision Process (POMDP) model to create an
adaptive policy for the robot to deal with uncertainties. We
use a new point-based algorithm named SARSOP [3] as a
POMDP planner in our learning-guided planning framework.

In the literature many studies can be found in which
POMDPs have been investigated for the object manipulation
task. In [4] and [5], manipulation of multiple objects is se-
lected as the main challenge, and an online POMDP planning
approach is proposed to change system dynamics according
to action performances. Our work differs from these works
in the way we guide the planning process with experience
and apply a generic method that can be applicable for all
types of actions in a planning domain without changing state
definitions. Some studies [6], [7] aim to generate planning
operators which are represented as probabilistic relational
rules to reduce or exclude the possibility of failures by
applying adaptive planning algorithms. Contrary to these
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studies, our system makes use of real-world observations in
the learning process. We demonstrate that our system on an
autonomous mobile robot can successfully use the real-world
experience on guiding the planning process.

II. EXPERIENCE-BASED GUIDANCE IN MOBILE
MANIPULATION

Our case study involves mobile manipulation scenarios
by an autonomous robot whose goal is to maximize the
number of objects transported to a destination while avoiding
failures in a given time period. In our system, a consistent
world model is maintained during runtime in the face of
the challenges of noise in sensory data, partial observability
and unexpected situations by a scene interpretation process
[8]. Additionally, action execution is monitored by another
process in which metric temporal formulas are defined
specifically for each action and, failures occurred during
execution are detected simultaneously [9].

In our study, the robot selects the preference order of
objects to be manipulated and plans to execute moveTo,
pickUp and transport actions in sequence. Whenever a
failure is detected during each transportation sequence, the
corresponding observation along with its related context is
encoded in the knowledge base of the robot. After a certain
number of observations, the robot builds its experience by
learning to determine its abilities on object manipulation, and
derive hypotheses on failure cases. Each hypothesis relates
a failure context (the antecedent part) to the outcome of an
action (the conclusion). An example hypothesis is given as:

category(cylindricalObj) ∧ color(green) ⇒ failure(pickUp) (P: 0.22)

where category and color attributes with cylindricalObj and
green values respectively represent the failure context for
the failure of action pickUp, and this rule is associated with
probability 0.22.

Our main contribution lies in the POMDP planning
formulation developed to use learning outcomes. In our
formulation, an object composition is defined to represent
encapsulation of qualitative and spatial information about an
object. Qualitative information specifies the predetermined
attributes (type, color, material, height, width, etc.) and the
spatial information represents the semantic location of an
object. For all combinations of object attributes and semantic
locations, different states are created. The combination sets
of all possible object compositions construct the state space
of POMDP formulation. The state definition is expanded
with two more states, one of which represents the possible
failure cases during action execution. A transition to this
state takes place whenever a failure is detected in the action
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Fig. 1. Snapshot sequence of a plan execution. Objects are represented as circles which are enumerated respectively for the green bowling pin, the purple
ball, the red big ball, the green cylinder and the red bowling pin. Red cross represents the destination. The blue region indicates the field of view of the
robot where the objects can be recognized. The objects colored gray indicate unseen objects. The circles with bold edges denote the objects with lower
probability of pickUp success. The recognized objects are shown in their respective colors.

execution. The other state specifies that the robot is holding
an object. The purpose of separating these states is creating
an abstraction from irrelevant state components to decrease
the number of states generated by the POMDP.

The preference orders of objects can be determined by
either prioritizing objects based on their locations in order to
minimize the travelled distance or primarily targeting objects
on which the robot has the best manipulation performance.
Success probabilities for action pickUp related to different
contexts are determined by learning and used while assigning
probabilities to state transitions in the POMDP model. The
distance between the location of the robot and a corre-
sponding object to be manipulated is another factor which
affects the manipulation timing and performance. Therefore,
semantic locations of the objects are also used to decide on
the next object to manipulate by determining probabilities of
action moveTo according to distances.

III. EXPERIMENTS

We evaluate the performance of our system on our Pioneer
3-DX mobile robot in a dynamic environment with varying
changing illumination conditions. The robot is equipped with
a laser rangefinder and an RGB-D camera to perceive its
environment and a 2-DOF gripper to manipulate objects.
The performance of the robot is tested on a set of five
different objects from various colors and categories: two
plastic bowling pins whose colors are green and red, a
green plastic cylindrical object, a small purple ball and a
big red ball. The actions moveTo, pickUp and transport
are executed ten times for the object set randomly cluttered
in the environment to measure the overall performance of the
robot. After preliminary results, an experiment is performed
by injecting failures, and the performance of the system
is analyzed with and without learning on the same failure
probability distribution which is determined randomly.

In the experiment, objects with category(bowlingP in)
are externally taken away from the environment with a
predetermined probability at the time of action pickUp. The
graphical illustration of this scenario is given in Fig. 1. After
executing action search to find objects in the environment,
the robot detects the purple ball and the green bowling
pin (Fig. 1(a)). According to the success probabilities of
action pickUp for different objects that are determined with
experience, the robot selects the purple ball to move to, since
its pickUp success probability is higher (Fig. 1(b)). The
robot detects farther objects while moving to the purple ball.

After transporting the purple ball successfully (Fig. 1(c)), the
robot selects the cylindrical object with the higher success
probability instead of the closer bowling pin (Fig. 1(d)). If
there is enough remaining time after transporting the objects
with higher success probability, the robot tries to manipulate
the objects with low success probability.
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Fig. 2. Time comparison between planning with and without learning
guidance in accordance with the number of successfully gathered objects

The described experiment is also performed without learn-
ing and the comparison of the planning with and without
learning is given as a histogram chart in Fig. 2. Here,
the number of successfully transported objects is shown in
relation to time. The red intervals in the histogram bars
indicate delays due to failures. Although the total required
time to manipulate all objects scattered in the environment
are approximately the same and the number of manipulation
trials are equivalent in both cases, learning guided planner
postpones the manipulation of the objects with lower success
probabilities until no other objects are available. On the
other hand, the planner without guidance chooses the closest
object to manipulate, since the success probabilities of all the
observed objects are believed to be equal. Therefore, the first
failure is encountered earlier in the plan without guidance
than that of the learning-guided planning system.

IV. CONCLUSION
We presented our adaptive probabilistic planning frame-

work that uses the outputs of an experimental learning
process by an autonomous robot. Our results show that the
probabilistic guidance in planning achieves the best manip-
ulation order of the objects to maximize the transportation
success over time in a real world scenario.
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