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Abstract— We propose a new sampling-based path plan-
ning algorithm, the Optimal Minimum Risk Rapidly-Exploring
Random Tree (MR-RRT*), that plans minimum risk paths
in accordance with primary and secondary cost criteria. The
primary cost criterion is a user-defined measure of accumulated
risk, which may represent proximity to obstacles, exposure
to threats, or similar. Risk is only penalized in areas of the
configuration space where it exceeds a user-defined threshold,
causing many graph nodes to achieve identical primary cost.
The algorithm uses a secondary cost criterion to break ties
in primary cost. The proposed method affords the user the
flexibility to tune the relative importance of the alternate cost
criteria, while adhering to the requirements for asymptotically
optimal planning with respect to the primary cost.

I. INTRODUCTION

Sampling-based path planning algorithms, in addition to
being highly successful in solving problems of high di-
mension [1], are capable of planning under a variety of
challenging costs and constraints. Algorithms such as the
probabilistic roadmap (PRM) [2], rapidly-exploring random
tree (RRT) [3], and their optimal variants PRM* and RRT*
[4], have been adapted to curb robot state uncertainty in
the objective [5], [6] and constraints [7], [8], maximize
information-gathering under energy constraints [9], minimize
distance traveled under task-based [10] and risk-based [11]
constraints, efficiently explore narrow passages [12], and
formulate multi-objective Pareto fronts [13].

In this effort, we focus on the minimization of risk,
which may entail maintaining a safe distance from obstacles,
avoiding exposure to threats, or other related objectives.
Transition-based rapidly-exploring random trees (T-RRTs)
produce generalized low-risk solutions by probabilistically
rejecting samples that are drawn in high-risk regions of
the configuration space [11]. This algorithm can be used
to maintain clearance from obstacles, or to avoid exposure
to threats. A property common to both applications is the
dependency of the risk function on a single robot configura-
tion. Although quantities such as state estimate uncertainty
and collision probability may also serve as measures of risk,
such measures depend on the robot’s initial error covariance,
and measurement and action histories [8], lying outside the
scope of the risks discussed in this work.

T-RRT*, a recent extension of T-RRT, inherits the property
of asymptotic optimality from RRT* while achieving clear-
ance from obstacles by rejection sampling [14]. However,
to maintain a high safety margin, this algorithm must avoid
high-risk regions throughout the entire configuration space.
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It is challenging to plan to or through a high-risk location
while also maintaing safety elsewhere in the graph.

To address such issues, we propose the Optimal Mini-
mum Risk Rapidly Exploring Random Tree (MR-RRT*),
which can enter high risk regions when they are a critical
component of feasibility, while penalizing them in general.
Like T-RRT*, the level of risk avoidance is tunable, except
risk is addressed in the objective rather than through a
sample rejection constraint. A risk penalty is only imposed
on regions of the configuration space that lie above a user-
designated threshold. As a result, many nodes in the tree
achieve identical values of primary cost, and a secondary
cost function, such as accumulated distance along the path,
may be used to break ties in the primary, risk-based cost. In
areas of the configuration space where risk is not a priority,
paths may be constructed with respect to the secondary cost
criterion instead, allowing a user to tune the relative impor-
tance of the two cost criteria. Unlike prior multiobjective
approaches that inherit the optimality properties of RRT*
through a weighted sum of costs [6], [15], we believe this is
the first approach that leverages a cost hierarchy instead.

II. PROBLEM DEFINITION

Let C ⊂ Rd be a robot’s configuration space. x ∈ C
represents the robot’s position and volume occupied in C.
Cobst ⊂ C denotes the set of obstacles in C that will cause
collision with the robot. Cfree = cl(C\Cobst), in which cl()
represents the closure of an open set, denotes the space that
is free of collision in C. We will assume that given an initial
configuration xinit ∈ Cfree, the robot must reach a goal
region Xgoal ⊂ Cfree . Let a path be a continuous function
σ : [0, 1] → Rd of finite length. We will assume the robot
moves through Cfree along paths obtained from a directed
graph G(V,E), with vertices V and edges E.

Our proposed algorithm uses the following primary cost
function, which penalizes the risk accumulated along a path
that is derived from G:

cRisk(σ) :=

∫ σ(1)

σ(0)

Risk(σ(s))ds (1)

Risk(x) :=

{
R(x), if R(x) > RiskThreshold
0 otherwise (2)

where the function Risk : Cfree → R+
0 evaluates the risk

at an invidividual robot configuration. We penalize a robot’s
risk using the tunable risk threshold RiskTheshold ∈ R+.
R : Cfree → R+ represents the strictly positive underlying
risk at a robot configuration, which is evaluated against
RiskThreshold and returned if the threshold is exceeded.
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(c) RiskThreshold = 0

Fig. 1: Trees generated by MR-RRT* under different values of RiskThreshold, whenR(x) is the inverse distance transform.

In addition, we define a secondary cost csecond as follows:

csecond(σ) :=

∫ σ(1)

σ(0)

Second(σ(s))ds (3)

where the function Second : Cfree → R+ represents a
strictly positive cost, ensuring that ties in secondary cost do
not occur as they do for primary cost.

III. ALGORITHM DESCRIPTION AND RESULTS

 (a) T-RRT*, parameterized so all goal regions are reached consistently.

 (b) MR-RRT*, parameterized to penalize high elevations.

Fig. 2: T-RRT* and MR-RRT* are compared over a terrain
map in which R(x) is the robot’s altitude.

The algorithm proceeds similarly to RRT* [4], except that
ties in primary cost may occur both when adding new nodes
to the tree and in rewiring the existing nodes of the tree.

When this occurs, ties are broken by evaluating the secondary
costs of all nodes with identical primary cost. The value
of RiskThreshold determines the influence of the primary
and secondary cost functions in the resulting tree. Let us
assume that the inverse distance transform is adopted as
R(x), and our secondary cost function is represented by the
accumulated distance along a path. When RiskTheshold
is infinite, risk is penalized nowhere in the configuration
space. In this case, MR-RRT* reduces to RRT* and produces
minimum-distance paths. When RiskThreshold is positive
and finite, the regions within a designated distance of the
obstacles are considered dangerous, and risk is penalized.
When RiskThreshold is zero, risk is penalized everywhere
and the secondary cost function does not play a role. The
paths generated by MR-RRT* follow the medial axis of
the free space before heading toward their respective goal
regions. Figure 1 gives examples of these situations.

We claim that the proposed algorithm is asymptotically
optimal with respect to its primary cost function, which
implies that the cost function is bounded and monotonic. To
achieve boundedness when the inverse distance transform is
adopted as R(x), we must impose a ceiling on this function
so it cannot take on infinite values in the close vicinity of
obstacles. The definition of (1) as an integral cost function
ensures that the cost function is also monotonic. However, a
unique feature of MR-RRT* is that the cost function is not
strictly positive over a path; it can be zero-valued in areas
where risk falls below the value of RiskThreshold. We also
claim that MR-RRT* is characterized by the same worst-case
O(n log(n)) complexity as the original RRT* algorithm, due
to a constant-factor increase in the number of cost function
evaluations required over the edges of the tree.

Preliminary results are given in Figure 2 comparing MR-
RRT* with T-RRT* over a terrain map where risk is equiv-
alent to the robot’s altitude, representing its exposure to
threats. The robot must reach five small, high-risk goal
regions and the results depicted are obtained from trees
constructed over 10,000 samples. T-RRT*’s rejection sam-
pling is parameterized to be as risk-averse as possible while
consistently reaching all five goal regions.
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