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Abstract— Planning motions that enable robots perform com-
plex tasks has been widely studied. Motions that adhere to the
kinodynamic constraints would enable robots to perform such
tasks by maximizing the use of natural dynamics. Sampling-
based planners such as Rapidly Exploring Random Trees are a
useful tool for kinodynamic motion planning. In such planners,
the choice of distance metric plays an important role in the
feasibility of generated motion plans. However, computing the
distance metric, which is the optimal cost-to-go between states,
takes a significant amount of time. On the other hand, using
a supervised learning algorithm to obtain reasonably good
estimates of the distance metric considerably alleviates the
problem of metric computation time. In this work, we present a
generic framework that combines the domain of optimal control
and supervised learning that approximates distance metrics in
state space in quick time.

I. INTRODUCTION

The most common solution space for kinodynamic motion
planning problems is the state space of a robotic system as
trajectories in state space implicitly consider the associated
dynamical constraints. Sampling-based approaches such as
Rapidly Exploring Random Trees (RRT) [1] and Probabilistic
Road Map (PRM) [2] have provided important insights
towards solving kinodynamic motion planning problems. In
our work, we use the RRT algorithm, but our approach itself
is not restricted to RRT alone.

Ever since the basic RRT algorithm proposed the Eu-
clidean distance as the choice of distance metric in [1],
significant amount of research has been conducted in order
to improve the estimation of distance metric in state space.
For example, the authors of [3], [4] present Linear Quadratic
Regulator (LQR) based heuristics to compute state space
distances and show that these approximations significantly
improve the solutions from RRT algorithms over Euclidean
distance. An important drawback however, is that the point-
based linearization technique that is an integral part of
LQR-based approaches significantly compromises the use of
natural system dynamics. Also, it is well known that optimal
cost determination is computationally expensive to be used
in the nearest neighbor search of RRT.

II. APPROACH

The central idea of our framework is to generate and use a
learning-based approximation of the optimal cost-to-go. This
enables us to leverage the benefits of optimal control with
the speed advantage from learning which is, in principle, a
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good combination for motion planning in state space using
RRT. In other words, we benefit from having a reasonable
approximation of the distance metric in state space with
the computational cost of a learning approximation, which
is much lower compared to computing an optimal control
solution between pairs of multiple states [7]. The basic idea
of our scheme is represented in the block diagram of Fig. 1.
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Fig. 1. Schematic of the learning-based approach to distance metric
approximation in state space.

The generality of our approach stems from the fact that our
scheme allows for experimentation with a variety of combi-
nations of supervised learning and optimal control schemes.
We consider one such combination. In the following section
we briefly introduce the learning and the optimal control
methods used and reason further regarding the choice we
make.

III. COMBINATION OF OPTIMAL CONTROL AND
LEARNING

We use Iterative Linear Quadratic Gaussian (iLQG) [5]
and Locally Weighted Projection Regression (LWPR) [6] as
the candidates for optimal control and supervised learning
respectively. The motivation for the choice of the optimal
controller is the trajectory-based linearization scheme that is
used in iLQG which aids significantly in accounting for the
natural dynamics of a given system much better than point
based linearization schemes such as in [4], [3]. Also, the
choice for LWPR is motivated by the ability of the learning



algorithm to incrementally learn nonlinear relationships be-
tween input and output data in high dimensions. However,
we have not been able to completely utilize this benefit yet
which we will detail further in the discussion section. Due
to space restrictions, we turn our focus now to discussing
the current results we have using our framework and refer
to [7] and the references therein for further details. Subse-
quently, we conclude with a discussion on some important
observations which provide directions for further research to
gain maximum benefits from our framework.

IV. CURRENT RESULTS

To get useful approximations of the optimal cost-to-go, it
is necessary to provide sufficient number of training samples
to LWPR learning. This is accomplished by Algorithm 1.
The training samples are generated as input-output pairs with
inputs being two states between which the optimal cost-to-
go is computed and the output is the optimal cost computed
by iLQG controller. We have considered a quadratic cost
function of the control effort.

Algorithm 1 LearnMetric (nSamples, dt)
for j = 1,. . . nSamples do
xi ← Sample
xf ← Sample
costoptimal ← ILQG (xi, xf , dt)
Xtr(j)← [xi; xf ]
Ytr(j)← costoptimal

end for
return ρlearn = LWPRlearnmetric (Xtr, Ytr)

The LearnMetric procedure ensures unbiased learning
by sampling the states uniformly at random. These random
samples are equally divided into a training and a test data set
by the LWPRlearnmetric procedure in order to generate
and validate the learning model .

In our experiments, we studied the performance of the
learning-based approximation on three different dynamical
systems in simulation; a simple pendulum, the acrobot and
a differentially driven mobile robot. The learnt models were
subsequently used in the basic RRT algorithm to compute
the nearest neighbors to a randomly sampled state. And
the correctness of the models were verified by computing
the squared difference between predicted and actual cost
of traversal between the chosen nearest neighbor and the
randomly sampled state. The prediction error mean and
variance for the three models are indicated in Table I. It
is to be noted here that, both input and output training data
were normalized to a range of [0, 1] and the errors were
computed by normalizing the actual cost of traversal using
the same range used for training. The mean and the variance
of the squared prediction errors for all three models were
calculated by creating an RRT of 500 nodes.

From the mean and variance values of the squared predic-
tion errors, it is clear that the magnitudes of prediction errors
are relatively low. Thus, in all three cases with different state

TABLE I
MEAN AND VARIANCE OF SQUARED PREDICTION ERRORS.

System
State

dimension
Learning

dimension
Mean/

Variance

Pendulum 2 4
1.8e− 3
5.3e− 5

Acrobot 4 8
4.4e− 4
1.7e− 7

Mobile Robot
(Differential Drive) 5 10

7.2e− 3
1.3e− 4

dimensions, the results show that a successful approximation
of the cost-to-go between different states is achieved. In
the following section, we discuss the main aspects that we
are currently studying further in order to achieve the best
performance from our framework.

V. DISCUSSION AND FUTURE WORK

It was briefly mentioned in the previous section that the
input and output data were normalized to a [0, 1] range.
For this purpose, a sufficiently large number of randomly
generated states were used. This enabled us to assume a
reliable range for the velocities for normalization. Further-
more, we identified that there is a significant difference
between the prediction accuracy of the learnt models with
and without input-output normalization. The impact of input
normalization on the prediction accuracy is quite under-
standable as that provides a uniform range along the input
dimensions for generating learning models. An important
aspect we are currently investigating is the influence of
output normalization on the prediction accuracy.

Currently, the incremental learning benefits of LWPR are
unused as large number of training samples are required.
However, this issue provides us with a new direction of
embedding dynamical model of the systems in the learning
algorithm. This is based on the fact that state pairs which are
on the trajectory of the natural evolution of system dynamics
need not interfere with learning the cost models as they
are all zero cost state pairs. We believe other supervised
learning approaches such as deep learning [8] can also
serve as interesting options to study the quality of the cost
approximation in comparison to LWPR.

Finally, the main benefit of the learning-based approxi-
mations for feasible motion planning in state space can be
observed in the resulting motion plans from the basic RRT
algorithm. In particular, for the pendulum and acrobot swing-
up problems where natural dynamics play an important role
in achieving the desired goal positions, the performance
difference is quite significant in comparison to approaches
such as in [4]. Due to space restrictions, we are confined to
only stating these benefits here. Our next step is to use this
framework for kinodynamic motion planning on robot arms
such as the UR5 and the Kuka LWR.
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