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1 Groups

08/25/08 - 08/27/08

Definition 1.1 Semigroups, monoids, groups, rings and commutative rings. For a map G�G � G, consider
the following properties:

1) Closure,
2) Association,
3) Identity,
4) Inverse,
5) Commutative.

A set G with a composition law G � G � G is called :

a semigroup if it satisfies 1-2,
a monoid if it satisfies 1-3,
a group if it satisfies 1-4,
a abelian group if it satisfies 1-5.

Definition 1.2 A subgroup H of group G is a subset of G that is also a group with the same map of
G � G � G.

Example 1.3 � � 0: semigroup; � � 0: monoid; �: group.

Definition 1.4 A group homomorphism is a function f : G � H s.t. f�xy� � f�x�f�y�. If f is injective,
surjective, and bijective, then we call them monomorphism , epimorphism , isomorphism .

Example 1.5 ��,�� � ��,�� is an injective homomorphism; but there does not exist a nonzero homomor-
phism ��,�� � ��,��. Suppose not then f�1� 	 0 and nf�1
n� � f�n � 1
n� � f�1� � f�1
n� 	 0. But no
matter what f�1� is, it cannot be infinity and there are some n such that 0 
 f�1�
n � f�1
n� 
 1. This is
not possible since f�1
n� � �.

Definition 1.6 A permutation of a set X is a bijection X � X:�
1 . . . . . . n

a1 . . . . . . an

�
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Definition 1.7 The symmetric group on a set X is the collection of all permutations on X with notation
Symm�X�. If X � �1, . . . , n�, we write Sn for Symm�X�.
Remark. We have injection φ : Sn � Sn�1 by extending any permutation f with f�n � 1� � n � 1.
We may define S� � ��

n�1Sn. If we let X � �1, 2, . . .�, then S� 	 Symm�X� since the permutation
σ � �2, 1, 4, 3, 6, 5 . . .� � Symm�X�, but σ � S�.

Theorem 1.8 Let f : G � H be a homomorphism.

(1) f is a monomorphism if and only if ker f � �e�.
(2) f is an isomorphism if and only if there eixsts a homomorphism f�1 s.t. f � f�1 � 1H , f�1 � f � 1G.

Proof.

(1) (�) Clear. (�) Suppose f�x� � f�y�, then f�xy�1� � f�1� � 1H , by assumption xy�1 � 1 � x � y.

(2) (�) f is invertible, we just need to verify that it is a homomorphism: f�1�ab� � f�1�a�f�1�b�. (�)
Clear.

�

08/29/08

Definition 1.9 let a1, . . . , ar be distinct elements of X � �1, 2, . . . , n�, and let Y � X��a1, . . . , ar�. If f � Sn

fixes every element in Y and f�ai� � ai�1 for i � 1, r � 1 and f�ar� � a1, then f is called an r-cycle and we
write f � �a1, . . . , ar�. A 2-cycle is called a transposition .

Definition 1.10 Two permutations α, β are disjoint if

(1) α�k� 	 k � β�k� � k, and

(2) β�k� 	 k � α�k� � k.

Proposition 1.11 Every permutation α � Sn is a composite (product) of disjoint cycles.

Proof. By induction on the number of elements that moved by α.

(case m � 0) α � �1� is the identity.

(case m � 0) Choose a1 with α�a1� 	 a1 and let a2 � α�a1�, . . . ai�1 � α�ai� until we have al �
�a1, . . . , al�1�. We claim that al � a1. Suppose not and al � ai, 1 
 i 
 l, then al � α�al�1� and
ai � α�ai�1�, which imply that al�1 � ai�1, contradicting that al is the first repetition.

We may then get a cycle that is disjoint from the rest of the permutation and apply induction hypothesis. �

Definition 1.12 G is a group and a, g � G, then gag�1 is a conjugate of a.

Example 1.13 G � Sn, let α � �a1, . . . , an� � Sn, then for τ � Sn, τατ�1 � �τ�a1�, . . . , τ�an��.
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If a � �τ�ai��, then τ�1�a� � �ai�, hence it is fixed by α and τατ�1�a� � τ�τ�1�a�� � a. On the other hand,
if a � τ�ai�, then τατ�1�a� � τ�α�ai�� � τ�ai�1�. Therefore τατ�1 � �τ�α1�, . . . , τ�αn�).

Definition 1.14 An automorphism is an isomorphism between a group G and itself.

Proposition 1.15 Define Φg : G � G, a �� gag�1, Φg is an automorphism.

Proof. gag�1 a homomorphism since gabg�1 � gag�1gbg�1. Obviously Φg is surjective; it is injective since
gag�1 � gbg�1 � a � b. �

Definition 1.16 Inn�G� � �Φg : g � G� is the set of inner automorphism.

Definition 1.17 A subgroup K of G is normal if gkg�1 � K for all g � G, k � K.

Lemma 1.18 K is normal if and only if gK � Kg for all g � G.

Theorem 1.19 K � G then aKbK � abK for all a, b � G.

Definition 1.20 The collection G
K � �gK : g � G� forms a group that is the quotient group of G over
K.

Theorem 1.21 (First isomorphism theorem) Let f : G � H be homomorphism of groups, then

G
 ker f � imf

and ker f � G, imf � H.

Theorem 1.22 (Second isomorphism theorem) Let K � G, N � G, then KN is a subgroup of G,
N � K � K and

NK
N � K
�N � K�
.

Theorem 1.23 (Third isomorphism theorem) Let K,N � G,K � N then N
K is normal in G
K and

�G
K�
�N
K� � �G
N�

.

09/03/08

Lemma 1.24 Every σ � Sn is a product of transpositions.

Proof. We get the disjoint cycles and then from them it is easy to get the transpositions. �

Definition 1.25 If G is a group and X is a set, then a (left) group action of G on X is a binary function
G � X � X denoted �g, x� �� g � x which satisfies associativity and e � x � x for all x � X.
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Definition 1.26 Orbit of x � X is O�x� � �gx : g � G�. Stablizer Gx � �g � G : x � gx�.

Proposition 1.27 If G acts on a set X, then

�X� �
�
i

�O�xi��,

in which different O�xi�’s are pairwise disjoint.

Remark. Every transposition is a conjugate of another one. Conjugation take a r-cycle to another r-cycle.
Conjugation takes subgroups to subgroups.

09/05/08 - 09/08/2008

Remark. Category: see notes. Low importance for now.

09/10/08

Definition 1.28 For G � �X�R�, G is finitely generated if there exists a presentation such that X is finite.
G is finitely presented if more over R is finite.

Lemma 1.29 (1) Let H � G be a subgroup then H acts on G on the right. The orbit of g � G is the left
coset gH � �gh : h � H�; G is a disjoint union of left cosets gH .

Lemma 1.30 (2)Let now X � G
H � �kH : k � G�, then G acts on X on the left by G�X � X, �g, kH� ��
gkH.

Lemma 1.31 (3)Let G be a finite group and H � G a subgroup, then gH � H, k �� g�1k is a bijection and
�gH� � �H� for all g � G.

Definition 1.32 For a subgroup H � G, the number of left cosets of H is called the index of H in G,
denoted �G : H�.

Theorem 1.33 (Lagrange) For a finite group G and a subgroup H,

�G : H� � �G�
�H�.

Proof. From (3) we know cosets are of size �H� and they are disjoint by (1). Therefore, the number of
them is �G�
�H�. The proof of (1), (2), and (3) are trivial. �

Definition 1.34 For a subgroup H of group G, NG�H� is the normalizer of H in G. That is, NG�H� is
the largest subgroup of G such that H � NG�H�.

Corollary 1.35 The number of conjugates gHg�1 of H is �G : NG�H��.
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Proof. We first show that if G acts on a set X, then �O�x�� � �G : Gx�. Gx is a subgroup of G, by Lagrange,
G
Gx � �G : Gx�. We wish to establish a bijection between G
Gx � �gGx� and O�x� (not a homomorphism).
We may define ϕ : gGx �� gx as the mapping. It is well defined since gGx � hGx � g � hfx for some
f � Gx; but then fx � x hence gx � hx. ϕ is an injection since if gx � hx, then h�1gx � x � h�1g � Gx �
h�1gGx � Gx � gGx � hGx. ϕ is obviously surjective. Therefore it is a bijection.

With above, and the fact that G acts on H with conjugation with stablizer is NG�H�. Here our set is
X � �gHg�1� and we let x � H. �

09/12/08 - 09/15/2008

Theorem 1.36 (Cauchy) If �G� has a prime p as a factor, then G has an element of order p.

Sketch of Proof. If G is abelian with trivial center, then the abelian case of Cauchy applies. For G
with non-trivial center, we prove via induction over �G�. If �G� � p, then it is obvious. If not, let �G� � mp
and for any x � G, check the centralizer Gx. This is a subgroup of G and if p  �Gx�, induction gives that
Gx has an element of order p. If this is not the case for all Gx, then p does not divide

�
i�G : Gxi� and by

�G� � �C�G����i�G : Gxi�, the center C�G� contain p as a factor. The induction hypothesis again applies. �

Lemma 1.37 �G� � p2, p prime, then G is abelian.

Proof. G has nontrivial center since otherwise �G� � 1��i�G : Gxi� but then p2 � 1�mp. If �C�G�� � p2

we are done since its G and abelian. If �C�G�� � p (cyclic and abelian, by definition of center), C�G� is
normal in G, G
C�G� is of order p and is cyclic; let �aC�G�� be a generator of the quotient group. Now
for any g1, g2 � G, g1 � �aC�G��n1 , g2 � �aC�G��n2 for some n1, n2. Then g1 � an1cn1

1 , g1 � an2cn2
2 for some

c1, c2 � C�G�. Then g1g2 � an1cn1
1 an2cn2

2 � an1�n2cn1
1 cn2

2 � an2cn2
2 an1cn1

1 � g2g1. G is then abelian. �

Definition 1.38 A Sylow p-subgroup of a finite group G is a maximal p-subgroup P .

Lemma 1.39 (5.33) Let P be a Sylow p-subgroup of a finite group G, then

(1) Every conjugate of P is again a Sylow p-subgroup.

(2) �NG�P �
P � is prime to P .

(3) If a � G has order some powers of p and if aPa�1 � P , then a � P .

Proof.

(1) Suppose Q � gPg�1 is not Sylow (not maximal), then �Q� 
 �P � but P � g�1Qg implies �P � ! �Q�.
Contradiction.

(2) Suppose not, then �NG�P �
P � contains p as a factor and by Cauchy, NG�P �
P contains an element aP
of order p. �aP � is then a subgroup of NG�P �
P of order p. The elements of P, aP, a2P, . . . , ap�1P is a
subgroup of NG�P �. Therefore, P is not Sylow.
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(3) aPa�1 � P � a � NG�P �; but by (2) a cannot be of order divisible by p.

�

Theorem 1.40 (5.34) Let G be a finite group of order pe1
1 . . . pet

t , and let P be a Sylow p-subgroup of G for
some prime p � pj.

(1) Every Sylow p-subgroup is conjugate to P .

(2) If there are rj Sylow pj-subgroups, then rj is a divisor of �G�
pej

j and rj " 1 mod pj.

Proof.

(2) Let X � �P1 � P,P2, . . . , Prj� be the Sylow p-subgroups conjugate to P . Let Q be any Sylow p-subgroup
of G, let it act on X by conjugation. The orbit of an element of X, Pi, satisfies �O�Pi�� � �Q : QPi�.
If we let Q � P , the only orbit of size 1 is O�P �; this is true because for any Pi 	 P , if a � P makes
aPia

�1 � Pi, then by 5.33(3) a � Pi. Therefore there must be some a � P s.t. aPia
�1 	 Pi, otherwise

P � Pi. This gives us that rj � �X� � 1 � pm " 1 mod p.

(1) If Q � X is a Sylow p-subgroup, then above would suggest that �X� " 0 mod p, contradiction.

�

Corollary 1.41 A finite group G has a unique Sylow p-subgroup P for some prime p iff P � G.

Proof. ��� For g � G, if Q � gPg�1 	 P , then Q is another Sylow p-subgroup, contradicting that P is
unique. Therefore gPg�1 � P for all g � G, P � G. ��� Since for all g � G, gPg�1 � P , P has no conjugate
and is unique. �

Theorem 1.42 (Sylow, 5.36) If G is a finite group of order pem in which p is prime and p # m, then every
Sylow p-subgroup of G has order pe.

Proof. �G : P � � �G : NG�P ���NG�P � : P �. We know the number of conjugates of P in G is �G : NG�P ��
and p # �G : NG�P ��. P is the unique Sylow p-subgroup in NG�P � by previous corollary, so p # �NG�P � : P �.
Therefore p # �G : P �, and the rest follows. �

09/17/08

Theorem 1.43 �G� � mpe, p # m, then there is a Sylow p-subgroup of G with order pe.

Theorem 1.44 Let G be a group of order �G� � pe1
1 pe2

2 . . . for distinct primes s.t. there is a single Sylow
p-subgroup for p � p1, p2, . . . , pk. Then G � P1 � P2 � . . ..

Remark. See notes for proofs.
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Definition 1.45 A normal series of a group G is a sequence of subgroups such that

G � G0 $ G1 $ G2 $ . . . $ Gn � �1�,

The factor groups of this series are the quotient groups

G0
G1, G1
G2, . . . , Gn�1
Gn.

A group is called solvable if it has a normal series with all factor groups having prime order.

Definition 1.46 A composition series is a normal series with simple factor groups. The composition
factors are the non-trivial factors.

Proposition 1.47 Every finite group has a composition series

Proof. Proof via induction. Let G be a smallest such group; take H be its maximal normal subgroup
such that G
H is simple (existence by the remark below). Then H has a composition series and G as well.
Contradiction. �

Remark. Correspondence theorem is useful G1
H � G0
H % G1 � G0 with H normal in G0.

09/19/08 - 09/22/08

Definition 1.48 Refinement of a normal series �Gi� is a sequence �Nj� that contains the original sequence
as a subsequence.

Lemma 1.49 (Zassenhaus Lemma, Butterfly Lemma) Given four subgroups A�A�, B�B� of a group
G, then A�A� � B� � A�A� � B��, B�B� � A� � B�B� � A�� and there is an isomorphism

A�A� � B��
A�A� � B� � B�B� � A��

B�B� � A� .

Theorem 1.50 (Schreier Refinement Theorem) Any two normal series for a group G have equivalent
refinements.

Theorem 1.51 (Jordan-Holder) Any two composition series of a group G are equivalent.

Remark. The above theorems can be proved in that sequence.

Lemma 1.52 Let P be a sylow p-subgroup of G, and let N � NG�p�, then NG�N� � N .

Proof. Let x � NG�N�, then xNx�1 � N and xPx�1 � P � � N since P � N . P is normal in N ,
hence it is the only Sylow p-group in N (since all Sylow p-groups of G are conjugates); therefore P � P � and
xPx�1 � P � x � NG�P � � N . �

Lemma 1.53 In a group with γn�G� � �e�, the only subgroup H with NG�H� � H is H � G.
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Proof. We show that if H & G, then H & NG�H�. Since H 	 G and G � γ0�G� � γ1�G� � . . . � γn�G� �
�e�, 'i s.t. H & γi and γi�1 � H. Let a � γi�H, then for any g � G, �g, a� � gag�1a�a � γi�1 � H. If g � h �
H, we have hah�1a�1 � h� for some h� � H. Then ah�1a�1 � h�1h� � H � aHa�1 � H � a � NG�H�. But
a � H, so H & NG�H�. �

Lemma 1.54 A group if nilpotent if and only if the derived series stablize at the identity. TFAE:

(1) The group G has a descending central series with γn�G� � �e� from some n.

(2) The group G is a direct product of its p-subgroups (% Every Sylow p-subgroup is normal in G).

Proof.

�1� � �2�: For any Sylow p-subgroup P of G, let N � NG�P �. By Lemma 1.52, NG�N� � N . By Lemma
1.53, NG�N� � N % N � G. So NG�P � � G, implying that every Sylow p-subgroup is normal in G.
Let the Sylow p-subgroups be P1, . . . , Pn. We have Pi �Pj � �1� for i 	 j since any non-zero element of
Pi must have order greater than 1 and divides pi, therefore Pi, Pj cannot share any non-zero elements.
Take any elements ai � Pi, aj � Pj , since aiPja

�1
i � Pj , aiaja

�1
i � a�j � aiaja

�1
i a�1

j � a�ja
�1
j � Pj .

Similarly, aja
�1
i a�1

j � a�i � aiaja
�1
i a�1

j � aia
�
i � Pi. This implies aiaja

�1
i a�1

j � 1 � aiaj � ajai. Thus
any element of G can be expressed uniquely in the form a1a2 . . . an, meaning that G is a direct product
of its p-subgroups.

�2� � �1�: We only need to show that each Pi is nilpotent, the direct product properties then that G is
nilpotent as well. So we only need to show that any p-group is nilpotent, which is proved in the next
three results.

�

Lemma 1.55 If G is a nilpotent group, then Z�G� 	 �1�.
Proof. If G is nilpotent, then from the lower central series, there exists γi ( G, �γi, G� � �1�. For any
element gi � γi, g � G, gigg�1

i g�1 � 1 � gig � ggi. Since γi 	 �1�, Z�G� 	 �1�. �

Lemma 1.56 If G
Z�G� is nilpotent, then G is nilpotent.

Proof. G ) G
Z�G� � Z�G�. Let the lower central series of G be �γi� and that of G
Z�G� be
γ�1, . . . , γ

�
i, . . . , γ

�
n. We show inductively that γiZ�G�
Z�G� � γ�i. We have γi�1Z�G�
Z�G� � �γi, G�Z�G�
Z�G�.

An element of �γi, G�Z�G�
Z�G� has the form

gigg�1
i g�1Z�G� � giZ�G�gZ�G�g�1

i Z�G�g�1Z�G�

hence
γi�1Z�G�
Z�G� � �γi, G�Z�G�
Z�G� � �γiZ�G�
Z�G�, G
Z�G�� � �γ�i, G
Z�G�� � γ�i.

This gives us that γn � Z�G� and γn�1 � �1�. �

Corollary 1.57 Every p-group is nilpotent.
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Proof. Let P acts on itself via conjugation, it is easy to see that P has non-trivial center and this is true
for all P 
Z�P � (also p-group). We can apply the previous lemma inductively to get that P is nilpotent. �

Lemma 1.58 A group is solvable if and only if the lower central series stablizes at the identity, or TFAE:

(1) The group G has a derived series with G�n� � �e� for some n.

(2) The composition factors of G are cyclic of prime order.

Proof.

�1� � �2�: Derived series has abelian factor groups, the refinement then gives what we need. Let
F1 � G�0�
G�1�, then F1 is abelian; it then has a normal series with prime factors since all subgroups of
an abelian group are normal. Applying correspondence theorem then gives us the refinement from G�0�

to G�1� we need.

�2� � �1�: Assume that G has a normal series G � G0 � G1 � . . . � Gn � �e� with prime (cyclic and
abelian) factor groups. We need to show that G�i� � Gi. This is straightforward by Jordan-Holder: the
refinement of G�0�$G�1�$ . . . is the same as G � G0 � G1 � . . . � Gn � �e�; since there are no normal
subgroups between G and G1, we have the conclusion.

�

Proposition 1.59 A nilpotent group G is solvable.

Proof. Nilpotent � G � γ1�G� � γ2�G� � . . . � γn�G� � �e� for some n. For derived series,
G � G�0� � G�1� � . . ., we have �Gi�1, Gi�1� � G�i� � γi�1�G� � �G, γi�G��. So G�n�1� ! γn�G� � �e�. �

Lemma 1.60 G solvable then its subgroups are solvable.

Proof. H � G, then the derived series of H is contained in the derived series of G and must reach �e�. �

Lemma 1.61 G is solvable, N � G, then G
N is solvable.

Proof. N � G, then G � N � 1 refines to the normal series of G: G0 � G1 � . . . � N � . . . � 1.
G0
N � G1
N � . . . � N
N gives us the normal series of G
N . �

Lemma 1.62 G a group, N � G, N,G
N both solvable, then G is solvable.

Proof. Show that GiN
N ! �G
N�i, this gives that for some k, GkN
N � N
N hence Gk � N . Since N
normal, Gk has a normal series that completes the whole normal sereis of G. �

Theorem 1.63 The direct product of nilpotent groups is again nilpotent.

Proof. This is straightfoward if we go to lower central series. �
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2 Rings

09/24/08

Remark. For the material covered here, the role of prime and maximal ideals are very important; for the
part involving PID/UFD, irreducible element generates prime ideal is key to many proofs. The noetherian
properties are introduced at last; with Zorn’s lemma, some additional results can be proved.

Definition 2.1 Semigroups, monoids, groups, rings and commutative rings.
For a map G � G � G, consider the following properties:
1) Closure,
2) Association,
3) Identity,
4) Inverse,
5) Commutative.

A set G with a composition law G � G � G is called :
a semigroup if it satisfies 1-2,
a monoid if it satisfies 1-3,
a group if it satisfies 1-4,
a abelian group if it satisfies 1-5.

A ring R is a set together with two maps:
� : R � R � R (addition), and
. : R � R � R (multiplication),

such that the set R is an abelian group under addition (satisfying properties 1-5) and a monoid under
multiplication (satisfying properties 1-3). Also, the distributive law holds:

a�b � c� � ab � ac,*a, b, c � R

R is an commutative ring if the multiplication is commutative.

Example 2.2 Example of rings.
�,�,�,� are rings. ��x� is the ring of polynomials in the variable x, with coefficients in �.
2� is not a ring since there is no multiplicative identity.
�
n� is a commutative ring.
�0̄, 2̄, 4̄� � 2�
6� � �
6� � �0̄, 1̄, 2̄, 3̄, 4̄, 5̄�, �
6� and 2�
6� are rings. 1R � 4̄ in 2�
6� :

0̄ 2̄ 4̄
0̄ 0̄ 0̄ 0̄
2̄ 0̄ 4̄ 2̄
4̄ 0̄ 2̄ 4̄

Definition 2.3 . A subset S � R of a ring R is called a subring if
1) a � b � S,*a, b � S,
2) ab � S,*a, b � S, and
3) 1S � 1R.

If S is a subring, then S is itself a ring.
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Example 2.4 Subring.
� is a subring of � .
S � 2�
6� is a ring, but it is not a subring of R � �
6� because 4̄ � 1S 	 1R � 1̄.

Definition 2.5 An integral domain is a commutative ring R with :
1) 1R 	 0R, and
2) *a, b � R, ab � 0 � a � 0 or b � 0.

Remark. The second criterion above is equivalent to for a, b, c � R, c 	 0, then ac � bc � a � b. That is,
the cancellation law holds.
Property 2) in the above definition is equivalent to saying that for a, b, c � R, ac � bc, c 	 0 � a � b.

Definition 2.6 *a, b � R, we say b divides a in R if there exists q � R such that a � qb (if R is commutative,
a � qb � bq). A divisor of 1R is called a unit ; a divisor of 0R is called a zero divisor if q 	 0.

With above definition, if b is a unit, then qb � 1R for some q � R.

Example 2.7 Let R � �
2�,
a � R is a unit % �a, n� � 1,
a � R is a zero % �a, n� 	 1.

Definition 2.8 A field is a commutative ring with 1 	 0 such that every non-zero element is a unit.

Proposition 2.9 Every field is an integral domain.

Proof. Let F be a field and a, b � F s.t. ab � 0. Suppose that a 	 0, then a is a unit in F with qa � 1F .
Therefore, b � 1b � qab � q0 � 0. �

Proposition 2.10 Every finite integral domain is a field.

Proof. Let R be the domain and a � R, a 	 0. Define a homomorphism f : R � R by f : x �� ax. The
map is well defined since every element x is mapped to ax (not one to many). The map is an injection since
ax � ay � a�x � y� � 0; R is a domain so a 	 0 � x � y � 0 � x � y. Since the map is from finite R to R
and injective, it is also surjective.
Since the map is a bijection, there exist x � R, ax � 1R. Hence a is a unit. �

Example 2.11 Integral domains that are not fields: � , ��x�.
Remark. [the following till next lecture not covered in class] Every subring of a domain is then itself
a domain since the cancellation law carries over to the subring. Since fields are domains, it follows that every
subring of a field is a domain. The converse is also true: every domain is a subring of a field. We have:

Theorem 2.12 If R is a domain, then there is a field F containing R as a subring. Moreover, F can be
chosen s.t. for each f � F , there are a, b � R with b 	 0 and f � ab�1 (b�1 is the multiplicative inverse of b).

Remark. In section 3.4 of text, we have the following results:
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Theorem 2.13 Assume that k is a field and that f�x�, g�x� � k�x� with f�x� 	 0. Then there are unique
polynomials q�x�, r�x� � k�x� with

g�x� � q�x�f�x� � r�x�
and either r�x� � 0 or deg�r� 
 deg�f�.

Corollary 2.14 Assume that R is a field and that f�x�, g�x� � R�x� with f�x� 	 0 is a monic polynomial.
Then there exist q�x�, r�x� � k�x� with

g�x� � q�x�f�x� � r�x�
and either r�x� � 0 or deg�r� 
 deg�f�.

Lemma 2.15 Let f�x� � k�x�, where k is a field, and let u � k. Then there is q�x� � k�x� with

f�x� � q�x��x � u� � f�u�.

Proposition 2.16 If f�x� � k�x�, where k is a field, then a is a root of f�x� in k if and only if x � a divides
f�x� in k�x�.

Theorem 2.17 Let k be a field and let f�x� � k�x�. If f�x� has degree n, then f�x� has at most n roots in k.

Remark. In Corollary 2.14, q�x�, r�x� are not stated as unique, therefore above is not true for polynomials
in R�x� for arbitrary commutative ring R.

Corollary 2.18 Every nth root of unity in � is equal to

e2πik	n � cos�2πk

n
� � i sin�2πk

n
�,

where k � 0, 1, . . . , n � 1.

Corollary 2.19 Let k be any field, perhaps finite. If f�x�, g�x� � k�x�, if deg�f� ! deg�g� ! n, and if
f�a� � g�a� for n � 1 elements a � k, then f�x� � g�x�.
Proof. Let h�x� � f�x� � g�x�, h�x� cannot have more than n roots in k. �

Lemma 2.20 (3.30)The multiplicative group E� � E��0� of finite field E is cyclic.

Proof. The proof is by showing that E� has at most one cyclic group of order equal to each unique divisor
of �E��. For a divisor of �E��, say d, suppose there are two subgroups S, T of order d. Then the elements of
S
�

T are all roots of xd � 1 in the multiplicative group. But �S�T � � d, and xd � 1 has too many roots in
E� (by theorem 3.25). Therefore, there is at most one subgroup of order as each divisor of �E��. Then by
theorem 2.86 in the text, �E�� is cyclic. �

Theorem 2.21 If k is a field, and f�x�, g�x� � k�x�, then their gcd, d�x�, is a linear combination of f�x� and
g�x� in k�x�; that is there are s�x�, t�x� � k�x� s.t.

d�x� � s�x�f�x� � t�x�g�x�.
Monic gcd�f�x�, g�x�� is unique.

12



Lemma 2.22 Let k be a field, let p�x�, f�x� � k�x�, and let d�x� � �p, f� be there gcd. If p�x� is a monic
irreducible, then d�x� � 1 if p�x� # f�x�; d�x� � p�x� if p�x�  f�x�.

Theorem 2.23 [Euclid’s Lemma] Let k be a field and let f�x�, g�x� � k�x�. If p�x� is irreducible in k�x�, and
p�x�  f�x�g�x�, then p�x�  f�x� or p�x�  g�x�. This works similarly if p�x�  f1�x�f2�x� . . . fm�x�.
Proof. Assume that p�x� # f�x�, then gcd�p, f� � 1 � 1 � sp � tf � g � spg � tfg. p  fg, then p  g. �

Definition 2.24 Let k be a field. f�x�, g�x� � k�x� are relative primes if gcd�f, g� � 1.

09/26/08

Definition 2.25 ϕ : R � S is a homomorphism of rings if

(1) ϕ�1R� � 1S ,

(2) ϕ�a � b� � ϕ�a� � ϕ�b�, and

(3) ϕ�ab� � ϕ�a�ϕ�b�.

We have that ker ϕ � �r � R : ϕ�r� � 0� and imϕ � �ϕ�r� : r � R�.

Definition 2.26 I ( R is a left R-ideal if

(1) 0 � I,

(2) *a, b � I, a � b � I, and

(3) *a � I, r � R, ra � I.

Example 2.27 ker ϕ � R is a left R-ideal. That is, kernel of a ring homomorphism R � S is an R-ideal in
S.

The only ideals of a field f is �0� and f ; but f may contain nonzero proper subrings. For example, � in � .

Theorem 2.28 (Correspondence Theorem of Rings) The R
I-ideals, �J
I�, are in bijection with R-
ideals �J : I � J � R�.
Proof. [trivial, to be filled in, for now, see book (page 320, proposition 6.1) for details.] �

Definition 2.29 An ideal I � R is a prime ideal if I 	 R, and ab � I � a � I or b � I.

Example 2.30 Prime ideals.

(1) 5� � � is a prime ideal.

(2) 6� � � is not a prime ideal; 6 � 6�, 6 � 2 � 3, but 2, 3 � 6�.

13



Proposition 2.31 I � R is a prime ideal % R
I is a domain.

Proof.

“�” For ab � R
I, if �a � I��b � I� � ab � I � 0 � I, then ab � I. I is prime hence a � I or b � I. We may
assume that a � I; we then have a � I � I.

“�” For ab � I, since 0� I � ab� I � �a � I��b � I� and R
I is a domain, a� I � I or b� I � I; therefore,
a � I or b � I.

�

Definition 2.32 An ideal I � R is a maximal ideal if I 	 R and if for all R-ideal J , I � J � R � I � J or
J � R.

Proposition 2.33 Every maximal ideal is a prime ideal.

Proof. Suppose I � R is a maximal ideal in R. Suppose I is not prime; then 'ab � I, a � I, b � I. Then
�I, a� is a larger ideal in R; since J is maximal, �I, a� � R. Then 1R is generated by elements y � I and a
such that 1R � y � ra, r � R. But then b � yb � rab. Both y and rab belong to I, so b � I, contradiction. �

Proposition 2.34 An R-ideal I is maximal % R
I is a field.

Proof.

“�” For a � R�I, I is maximal hence �I, a� � R, which gives 1R � ra � y for some r � R, y � I. Then
ra � y � I � 1 � I in R
I. This gives �r � I��a � I� � 1 � I, making a � I a unit.

“�” R
I is a field, then the only ideals in R
I are R
I and �0�. By correspondence theorem for rings, I is a
maximal ideal in R.

�

Example 2.35 ��x, y�
�y� )��x� is a domain but not a field (since for example, x� 1 has no inverse in it),
�y� is a prime ideal but not a maximal ideal. Note: �0� � �y� � �x, y� � ��x, y�.

09/29/08

In � , if p  ab, then p  a or p  b. This property generalizes.

Lemma 2.36 Let P � R be a prime ideal, then IJ � P � I � P or J � P .

Proof. For IJ � P , if I, J are not in P , then exist a � P �I, b � P �J . Now ab � IJ � P , P prime hence
a � P or b � P , contradiction. �

Let I, J ( R be ideals, then I
�

J is an R-ideal. I � J � �a � b : a � I, b � J� is an R-ideal. IJ �
�a1b1 � a2b2 � . . . � arbr : ai � I, bi � J, r � �� is an R-ideal.

14



Definition 2.37 a, b � R are called associates if exists a unit u � R, s.t. a � ub.

Lemma 2.38 R is a domain. a, b � R are associates if and only if �a� � �b�.
Proof.

“�” a, b are associates, then a � ub for some u � R. Then �a� � �b�. Similarly �b� � �a�; hence �a� � �b�.
“�” �a� � �b� then a � ub, b � va for some u, v � R. Hence a � ub � uva. R is a domain, we may cancel a

and get uv � 1. Therefore, u, v are units in R.

�

Definition 2.39 An element r � R is irreducible if r is not a zero or a unit and if r � ab, then a is a unit
or b is a unit. We then have �r� � �a� or �r� � �b�.

Lemma 2.40 If �p� with p 	 0 is a prime ideal, then p is irreducible.

Proof. �p� � R is prime ideal hence p is not a unit; otherwise �p� � R. Let p � ab. We get
�p� � �a�, �p� � �b�. Since ab � �p�, we may assume that a � �p�; then a � rp for some r � R. We then have
�a� � �p�. Hence �p� � �a� and p, a are associates. This gives that p is irreducible. �

Definition 2.41 R ia principal ideal domain (PID) if R is a domain and every ideal in R is generated
by a single element in R.

Example 2.42 � , � are PIDs; ��x, y� is not a PID. In fact, every field is a PID since the only ideals in a
field is the zero ideal and the whole field.

Remark. For any PID R and a, b � R, we can prove that they have a gcd δ and there are r, s � R s.t.
δ � ra � sb. Furthermore, for any irreducible element p � R and xy � R, p  xy � p  x or p  y. This works
for any PID, hence for any field. We formally prove it in the following theorem.

Theorem 2.43 (3.57)

(1) Every α, β � R has a gcd, δ, which is a linear combination of α and β in the form: δ � rα� sβ for some
r, s � R.

(2) Furthermore, if p is an irreducible element of R and p  ab for some ab � R, then p  a or p  b.

Proof.

(1) If one or both of α, β are zero, then the conclusion is trivially true; assume they are not zeros. Let
I � �α, β�, the ideal generated by α and β. R is a PID, then I � �δ� for some δ � R. We claim that
δ � gcd�α, β�. Obviously δ  α, β and is a linear combination of the form δ � rα� sβ for some r, s � R,
since δ � �α, β�. On the other hand, for any common divisor σ of α, β, σ  α � σα� � α for some α� � R,
similarly σβ� � β. Therefore δ � rα � sβ � σ�rα� � sβ�� and σ  δ.

(2) p � ab, p is irreducible, then either �p� � �a� or �p� � �b�, therefore p  a or p  b.
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�

Proposition 2.44 In a PID R, �p� is a prime ideal if and only if p is irreducible.

Proof.

“�” By Lemma 2.40.

“�” We show that if p is irreducible then �p� is maximal in R, hence prime. Suppose not, then exists ideal
J such that �p� � I & J & R. R is a PID, therefore J � �q� for some q � R. We have q � rq for some
r � R. p is irreducible, therefore either r or q must be a unit. If r is a unit, then I � �p� � �q� � J ; if q
is a unit, then J � �q� � R. Both contradict the assumption that I & J & R.

�

Definition 2.45 A domain R is a unique factorization domain (UFD) if

(1) Every r � R is either 0, or a unit, or a product of irreducible elements.

(2) Every nonzero element has a unique factorization into irreducible elements. That is, if r � up1p2 . . . pm �
vq1q2 . . . qn with u, v units and pi, qi irreducible, then m � n and there exists a bijection σ : �p1, p2, . . . , pn� �
�q1, q2, . . . , qn� such that pi and qj � σ�pi� are associates.

Proposition 2.46 (6.17) Let R be a ring in which ever nonzero r � R is a product of irreducible elements,
then R is UFD if and only if �p� is a prime ideal for every irreducible element p.

Proof.

“�” Suppose R is a UFD, p � R irreducible. If ab � �p�, then ab � rp for some r � R. p is irreducible,
therefore it must be an associate of an irreducible factor of either a or b. Therefore, a � �p� or b � �p�.
�p� is prime.

“�” Let x � R have two factorizations up1p2 . . . pm � vq1q2 . . . qn. We prove via induction on max�m,n�. p1

is an irreducible element in R hence �p1� is prime by assumption. vq1q2 . . . qn � x � �p1�, therefore some
qi � �p1�. Assume qi � rp1; qi is also irreducible, therefore p1, qi are associates. By induction hypothesis,
we have that the two factorizations are equivalent and unique.

�

10/01/08

Proposition 2.47 (6.18)

(1) If R is a commutative ring and I1 � I2 . . . � In � . . . is an ascending chain of ideals, then J � �
n
1 Ii

is an ideal.

(2) If R is a PID, then there is no infinite strictly ascending chain of ideals I1 & I2 . . . & In & . . ..
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(3) Let R be a PID, then every nonzero r � R is a product of irreducible.

Proof.

(1) Straightforward verification.

1. 0 � J ,

2. *a, b � J , a � Im, b � In for some m,n, therefore a � b � Imax�m,n� � J , and

3. *a � J, r � R, a � In for some n, therefore ra � In � J .

(2) Given any chain �Ij�, R is a PID, J � �x� for x � In for some n. Then J � In and the chain stops there;
it cannot be infinite.

(3) Suppose r � R is not irreducible, then there exists r1s1 such that neither r1 or s1 is a unit. At least
one of r1 and s1 is not irreducible; suppose r1 is not irreducible. Then r � �r1� and �r� & �r1� (if
�r� � �r1�, then s1 must be a unit; but s1 is not a unit). Repeating this we get an infinite chain
�r1� & �r2� & �r3� . . ., which contradicts (2). Therefore, r is a product irreducible elements.

�

Theorem 2.48 (6.19) R is PID � R is UFD.

Proof. The proof follows directly from above previous two results. �

Definition 2.49 A domain R is a Euclidean domain if there exists a degree function d : R��0� � �

with the following properties:

(1) d�a� ! d�ab� for all a, b � R��0�, and

(2) For all a, b � R, b 	 0, 'q, r � R s.t. a � qb � r and either r � 0 or d�r� 
 d�b�.

Example 2.50 �, ��i�, ��x� are Euclidean domains; ��x, y�,��+�19� are not.

Theorem 2.51 Every Euclidean domain is a PID.

Proof. Let I be an R-ideal, choose b � I s.t. d�b� is minimal; we claim that I � �b�. To see this, let a � I,
R Euclidean then a � qb � r with r � 0 or d�r� 
 d�b�. Suppose r 	 0, since a, b � I, we have r � I and by
the assumption that d�b� is minimal, d�r� � d�b�. Therefore, r must be 0 and a � �b�. �

Definition 2.52 Let R be a UFD. A polynomial f�x� � R�x� is primitive if its coefficients are relatively
prime, that is, if f�x� � anxn � . . . � a1x � a0, then the only common divisors of a0, a1, . . . , an are units.

Remark. In a UFD, a common divisor is well defined, and we can talk about a greatest common divisor of a
and b. d is a gcd for a and b if d�  a and d�  b implies d�  d. In a UFD, if a � upe1

1 . . . per
r and b � vpf1

1 . . . pfr
r .

Then d ��r
i�1 p

max�ei,fi�
i is a gcd for a and b.

Proposition 2.53 For a UFD R, if p�x� � R�x��R is irreducible, then p�x� is primitive.
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Proof. Suppose p�x� is not primitive, then 'q � R s.t. p�x� � qg�x�,deg�g� � 0, where q is not a unit.
Since p�x� is irreducible, p�x� and q are associates; this makes g�x� a unit. Contradiction. �

Lemma 2.54 (Gauss’s Lemma, 6.23 in the text) Let R be a UFD, if f�x�, g�x� � R�x� are primitive,
then f�x�g�x� is primitive.

Proof. If �p� is a prime ideal in R, then the ring homomorphism π : R � R
�p�, a �� a � �p� induces
a ring homomorphism �π : R�x� � R
�p��x� s.t. the coefficients of ai of f�x� � R are mapped to π�ai�. If
h�x� � h0 � h1x � . . . � hrx

r is not primitive, then exists irreducible p � R s.t. p  hi for all i. Therefore,
π�hi� � hi � �p� � 0 � �p�. �π�h�x�� � 0 � R
�p��x� since all the coefficients are 0.
Suppose now that f�x�g�x� is not prmitive, then �π�f��π�g� � �π�fg� � 0 � R
�p��x�. R
�p��x� is a domain
(this can be proved by showing that R is a domain then R�x� is a domain), therefore �π�f� � 0 or �π�g� � 0.
That is, either f�x� or g�x� are not primitive. Contradiction. �

10/03/2008

Definition 2.55 For f�x� � R�x�, let c�f� be a gcd of the coefficients, and let f�x� � c�f�f��x� so that
f��x� � k�x� is primitive. c�f� is called the content of f .

Lemma 2.56 (6.24)

(1) For f�x� � R�x�, let f�x� � c�f�f��x�. The factorization is unique, if f�x� � rg��x� with r � R, g�

primitive, then c�f� and r are associates and f� and g� are associates.

(2) For f�x�, g�x� � R�x�, c�fg� and c�f�c�g� are associates and �fg�� and f�g� are associates.

(3) Let f�x� � R�x�, g��x� � R�x�, g� primitive. If g�  bf�x�, b � R, b 	 0, then g�  f .

Proof.

(1) rg� � cf�, with r
c � u

v such that u, v are relative primes. Then ug� � vf�. u  vf� � u  f� � u is a
unit. Similarly, v is a unit. Therefore, c, r are associates and g�, f� are associates.

(2) fg � c�fg��fg�� � c�f�c�g�f�g�, since f�, g� are primitive, so does f�g� by Gauss’s Lemma. Therefore,
by (1) we have that c�fg� and c�f�c�g� are associates and �fg�� and f�g� are associates.

(3) We may write bc�f�f��x� � bf�x� � h�x�g ,�x� � c�h�h��x�g��x�. h��x�g��x� and f��x� are associates,
therefore exists unit r, rh��x�g��x� � f��x� � g��x�  f��x� � g��x�  f�x�.

�

Theorem 2.57 If R is a UFD, then R�x� is a UFD.

Proof.

(1) Every nonzero element f�x� � R�x� that is not a unit is a product of irreducible elements. We prove
this by induction on deg�f�.
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– deg�f� � 0. Then f � R, R is UFD.

– deg�f� � 0. f�x� � c�f�f��x�. c�f� � R, if f��x� is an irreducible element then we are done.
Suppose not, then f��x� � gh such that g, h are not units. g, h � R, otherwise f��x� being
primitive implies that g or h is a unit. Therefore, deg�g�,deg�h� 
 deg�f��. We may then apply
induction hypothesis on g�, h� to conclude that every f�x� is a product of irreducibles.

(2) Every irreducible p�x� � R�x� generates a prime ideal. In other words, we want to show that for every
p�x� � R�x�, p  fg � p  f or p  g. We prove this for two cases based on deg�p�.

– deg�p� � 0. f�x� � c�f�f��x�, g�x� � c�g�g��x�. p  fg � p  c�fg� � p  c�f�c�g�. p, c�f�, c�g� �
R and R is a UFD, �p� is prime, c�f�c�g� � �p�, then c�f� � �p� or c�g� � �p�. Therefore, p  c�f�
or p  c�g�.

– deg�p� � 0. Let I � �p, f� � R�x�p�x� � R�x�f�x� � R�x�, let m�x� � I be of minimal degree,
apply quotient/remainder over Q�x�, in which Q � Frac�R�, to f and m,

f�x� � m�x�q��x� � r��x�,

q��x�, r��x� �� Q�x�. Clearing denominators gives bf�x� � m�x�q�x� � r�x� � R�x�, b � R, s.t.
r�x� � 0 or deg r�x� 
 deg m�x�. bf�x� � I, m�x� � I � r�x� � I. Therefore r�x� � 0 since
m�x� is of minimal degree in I. We have that bf�x� � m�x�q�x� � c�m�m��x�q�x�. It follows that
m�  f�x� by Lemma 2.56(3). Similarly m��x�  p�x�. p�x� is irreducible, m��x� is a unit or an
associate of p�x�. Two cases:

i (m� is a unit). m � �p, f� � m � s�x�p�x� � r�x�f�x�. mg�x� � s�x�p�x�g�x� � r�x�f�x�g�x�,
p�x�  f�x�g�x� hence p�x�  mg�x� � p�x�  c�m�m�g�x�. p�x� is primitive (since it is
irreducible, p�x� � c�p�p, implies that c�p� is a unit), p�x�  g�x� by Lemma 2.56(3).

ii (m� is an associate of p�x�). m��x�  f�x� � p�x�  f�x�.
�

Corollary 2.58 For k a field, k�x1, x2, . . . , xn� is a UFD.

Proof. By induction on n. k is a field; the only ideas are �0� and k, which are both generated by a
single element. k is then a PID then UFD. We have k�x� is also a UFD as the base case, and we may use
k�x1, x2, . . . , xn�1� as induction hypothesis to get that k�x1, x2, . . . , xn� is a UFD. �

Corollary 2.59 (Gauss) Let R be a UFD, let Q � Frac�R� be the field of fraction of R. For f�x� � R�x�,
if f�x� � G�x�H�x� is a factorization of f�x� in Q�x�, then f�x� has a factorization f�x� � g�x�h�x� � R�x�
such that deg g � deg G,deg h � deg H.

Proof. By Lemma 2.56(1), we may factor G�x� � qG��x�,H�x� � q�H��x� s.t. G�,H� � R�x� are primitive.
Then G�H� is also primitive in R�x�. f�x� � c�f�f��x� � R�x�, this forces qq� � R. Therefore, �qq��G� � R�x�;
a factorization of f�x� � R�x� is given by f�x� � �qq�G��x��H��x�. Rest follows. �

10/06/08
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Definition 2.60 A commutative ring R satisfies the ascending chain condition (ACC) if every ascending
chain of ideals I1 � I2 � I3 . . . � In � . . . stabilizes.

Definition 2.61 An R-ideal I is finitely generated or f.g. if there exist a1, a2, . . . , an � R such that
I � �a1, a2, . . . , an�.

Proposition 2.62 Let R be a ring, the following are equal:

(1) R satisfies ACC,

(2) R satisfies the maximum condition: every nonempty family F of R-ideals has a maximal element, and

(3) Every R-ideal is f.g..

Proof.

(1) (�1� � �2�). R satisfies ACC, let F be a family of ideals in R. For I1 � F , since I1 is not maximal,
'I2 � F , I1 & I2. Similarly, 'I3 � F s.t. I2 & I3. Repeating this we get an infinite ascending chain
I1 & I2 & . . . & In . . ., contradiction.

(2) (�2� � �3�). Let I � R, Let F � �f.g.R�ideals � I�. F has a maximal element M , M � I, and M is
f.g.; if M 	 I, then exist a � I, a � M , then �M,a� is a larger ideal than M , contradiction. Therefore,
M � I and I is f.g..

(3) Every R-ideal is f.g., for any ascending chain �Ii�, let J � �
Ii, J is an ideal in R and J is f.g. Then

there are only finitely different Ii’s in the chain and the chain must stabilize.

�

Definition 2.63 A commutative ring R with any of the above properties is called noetherian .

Corollary 2.64 Let R be a noetherian ring. Then every ideal I is contained in some maximal R-ideal of M .

Proof. Let F be the family of proper ideals containing I, then F has a maximal element M that contains
I. If M is not maximal ideal in R then exists J , M & J & R. J � F , contradiction. �

Corollary 2.65 If R is noetherian and J is an R-ideal, then R
J is noetherian.

Proof. Let I
J be an R
J-ideal with J � I � R, the generators for I certainly generates I
J . �

Theorem 2.66 (6.42 in the text, Hilbert Basis Theorem) R is commutative noetherian ring, then R�x�
is also a commutative noetherian ring.

Proof. Let I � R�x� be an ideal, assume that I is not f.g., we will obtain a contradiction.
Choose f0 � I � R�x� of minimal degree, then �f0� & I (I is not f.g.). Choose f1 � I � �f0� of smallest
degree and repeat this procedure, we obtain a sequence of ideals �f0� & �f0, f1� & �f0, f1, f2� & . . . such that
deg f0 ! degf1 ! . . .. For �f0, f1, . . . , fm� & I, consider the ideal �a0, . . . , am� � R, in which ai is the leading
coefficient of fi.
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R is noetherian, then the chain formed by �a0, . . . , am� stablizes. Say am�1 � �a0, . . . , am�, let am�1 �
r0a0 � . . . � rmam, consider

f� � fm�1 �
m�

i�0

�rifi�x��xdeg fm�1�deg fi ,

then f� � I��f0, . . . , fm� since the rest of the terms are linear combinations of elements in �f0, . . . , fm�. If we
write fk � akx

dk � lower terms, then

f� � �am�1x
dm�1 � lower terms� ��m

i�0 ri��aix
di � lower terms��xdeg dm�1�deg di

� am�1x
dm�1 ��m

i�0 riaix
dm�1 � lower terms

� lower terms.

this gives us that deg f� 
 deg fm�1, therefore f� � �f0, . . . , fm�, yielding a contradiction. �

With Zorn’s Lemma, 6.46, 6.48, 6.53 can be proved.

Definition 2.67 X is a partially ordered set if there is a relation x ! y onr X that is

• Reflexive,

• Antisymmetric (x ! y, y ! x � x � y), and

• Transitive.

Definition 2.68 A partially ordered set X is a chain if for all x, y � X, either x ! y or y ! x.

Axiom 2.69 (Zorn’s Lemma) If X is a non-empty partially ordered set in which every chain has an upper
bound then X has a maximal element.

Remark. The standard way of applying Zorn’s Lemma to a set A is to construct a family F with desired
property, then show that any chain C in F has an upper bound M (for example, if the partial order is inclusion,
the union of all sets in C is the upper bound) and that M is in F hence in C. Zorn’s Lemma then says that
F contains a maximal such with the desired property.

Definition 2.70 A poset if well-ordered if every nonempty subset S of X contains a smallest element.

Theorem 2.71 The following are equivalent:

(1) Zorn’s Lemma.

(2) The well ordering principle: Every set X has some well-ordering of its elements.

(3) The axiom of choice.

(4) Hausdorff maximal principle.

10/08/08

Proposition 2.72 (6.46) In a commutative ring R with 1 	 0, every ideal is contained in a maximal ideal.
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Proof. Let F � �I : I � - I� be the set of proper R-ideals that contain I. The set F is partially ordered
w.r.t. inclusion. F has a maximal element if every chain in F has an upper bound (Zorn’s Lemma). Let C
be a chain of ideals in F , define I� � �

I
C I, then clearly I� . I and I� is an upper bound for C. Moreover,
I� � F % I� is a proper R-ideal. Indeed, I is proper, for if 1 � I� then 1 � I for some I; but the ideals in C
are proper. Contradiction. Let M � F be maximal, then M is a maximal R-ideal. Suppose I � M & J � R,
then J � F , contradiction. �

Definition 2.73 Let V be a vector space V over some field k, and let Y � V be a (possibly infinite) subset.

(1) Y is linearly independent if every finite subset of Y is linearly independent.

(2) Y spans V is each v � V is a linear combination of finitely many elements of Y . We write V � �Y �
when V is spanned by Y .

(3) A basis of a vector space V is a linearly independent subset that spans V .

Example 2.74 V � k�x� as a vector space over k has a basis Y � �1, x, x2, . . .�.

Proposition 2.75 (6.48) Let V be a vector space over k, then V has a basis and every linearly independent
subset B � V is contained in a basis for V .

Proof. Let X � �B� : B � B��, the family of all the linearly independent subsets of V that contain B.
The family X is nonempty, since B � X. We want to show that every chain C � X has an upper bound. Let
C � �Bj : j � J� be a chain of X and let B� � �

j
J Bj. Then Bj � B� for all j � J and B� is an upper
bound for C if B� is linearly independent.
Assume B� is not linearly independent, say B� - �y1, y2, . . . , ym� with y1, y2, . . . , ym linearly dependent.
Then there are Bji ’s such that yi � Bji , i � 1, 2, . . . ,m. We have

�m
i�1 Bji - �y1, y2, . . . , ym�. There must

be some j� � �j1, j2, . . . , jm� s.t. Bj� - �y1, y2, . . . , ym� (since we are working in a chain with the relationship
being inclusion). Contradicting that Bj� ’s are all linearly independent.
We have shown that every chain C � X has an upper bound, by Zorn’s Lemma, X has a maximal element M .
By definition of X, M is linearly independent. M also spans V ; for if not, then there exists a � V ��M� and
B � M & �M,a�. That is M plus a is a larger linearly independent subset of V that contains B, contradicting
the maximality of M . �

Lemma 2.76 (6.52) Let R be a commutative ring and let F be the family of all those ideals in R that is not
finitely generated. If F 	 /, then F has a maximal element.

Proof. We show that every chain C in F has an upper bound in F . Let I� � �
I
C I, then I� is an upper

bound for C if I� is not f.g.. Suppose I� � �a1, a2, . . . , am�, ai � Ii is f.g., as before, there exits I0 � C s.t.
�a1, a2, . . . , am� � I0. But then I� � I0 � I� and I0 is f.g., contradiction. I� is an upper bound. The rest
follows Zorn’s Lemma. �

Theorem 2.77 (I. S. Cohen, 6.53 in the text) A commutative ring R is noetherian if and only if every
prime ideal in R is finitely generated.
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Proof. We need to show the “if” part only. Let F be the family of ideals that is not f.g., we obtain
a contradiction from F 	 /. By previous lemma, there exists maximal M � F that is not f.g., we show
that M is a prime ideal. Suppose not, then there exist a, b � M,ab � M . Then M � Ra . M,M � Rb . M
and M�Ra,M�Rb are f.g., by the maximality of M . But �M�Ra��M�Rb� � M is then f.g., contradiction. �
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3 Fields

10/13/08

Definition 3.1 A field is a commutative ring in which 1 	 0 and every nonzero element is a unit. A subfield
of a field K is a subring k of K that is also a field.

Definition 3.2 For a given field K with a subfield k, we call K an extension field of field k and K
k a
field extension or an extension of fields.
An extension field K of a field k is a finite extension of k if K is a finite-dimensional vector space over k.
The dimension of k, denoted by �K : k�, is called the degree of K
k.

Remark. This is saying that for any field extension K
k, we may treat elements of K as vectors and elements
of k as scalars.

Example 3.3 Dimension of field extensions.

(1) �
�. � is of infinite dimension over � .

(2) ��i�
� : ��i� � �a � bi : a, b � �, i2 � �1�. ��i� is of finite dimension over � .

Theorem 3.4 If R is a commutative ring, and I is an R-ideal, then R
I can be made a ring with multiplicative
operation �a � I��b � I� � �ab � I�.
Proof. Sketch: The underlying abelian groups of R and I give R
I as a quotient group under addition;
we only need to verify that R
I is a monoid under the given multiplication, which is straightforward. �

R
I is called the quotient ring of R modulo I.

Theorem 3.5 For any homomorphism f : R � A of rings, R
kerf ) imf .

Proof. To prove we need to show that we have a homomorphism and it is bijective. If we forget about
the multiplication, R
kerf ) imf is an isomorphism of groups. It then suffices to verify that the map is
compatible with multiplication. �

Remark. In any homomorphism between a ring and a field R � K, the image is a subring of K and therefore
must be a domain (straightforward to verify). If we have a homomorphism between two fields F � K, it is
more special since the kernel is an ideal in F but there are only two ideals, �0�, F in F .

Definition 3.6 For a field k, let k0 be the intersection of all the subfields of k, then k0 is itself a subfield,
called the prime field of k.

Example 3.7 k � �, k0 � �. Any subfield of R must contain 1; then it must contain � with addition; then
it must contain all � since very nonzero element is a unit in a field.

Proposition 3.8 For a field k, the prime field k0 is either k0 � � or k0 � �p�) �
p�� where p is a prime
number.
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Proof. Consider the ring homomorphism

f : �� k,

which is the mapping
f : n �� n1k.

then ker f � � and ker f � �m� for some m � �. The later is true because � is PID. We have two cases:

• case m � 0: f is injective, therefore, k contains all the integers. For k to be a field, it then contains
the fraction ring of � , which gives us � . We then have k0 � �.

• case m 	 0: We have that f � : �
m�� k is an injective mapping. Since k is a field, imf � is a domain
(cancellation law certainly holds for any subring of a field; therefore any subring of a field must be a
domain). m� is then a prime ideal in �. Let prime p � m, we then have �
p� � �p is isomorphic a
subfield P � �0, 1k, 21k, . . . , �p� 1�1k� (21k is 2 multiplies 1k) of k. Now any subfield of k must contain
1k and therefore all of P . P is then the prime field of k.

�

If k0 � �, we say k is a field of characteristic 0 ; if k0 � �p, k is a field of characteristic p. The later case
is sometimes also called positive characteristics, finite characteristic, or nonzero characteristic.

Proposition 3.9 If k is finite field, then �k� � pn for a prime p and n � 0.

Proof. Assume p  �k� and q  �k� for distinct primes p, q, then by Cauchy’s for abelian group, there are
elements a, b in k with order p and q, respectively (a, b is of some prime order so they are not the 0 element).
a is of order p so 0k � ap � ap1k. Simiarly, bq1k � 0k. Since k is a field, then k is an integral domain,
therefore, a�p1k� � 0 and a 	 0 � p1k � 0; p1k � q1k � 0. But �p, q� � 1 � 'r, s, s.t. sp � tq � 1. But
1k � sp1k � tq1k � 0k, contradiction. �

Proposition 3.10 Let k be a field and let I � �p�x�� � k�x�. Then k�x�
I is a field if and only if p�x� is
irreducible in k�x�.
Proof.

“�” Suppose k�x�
I is a field. If p�x� is not irreducible, then p�x� � g�x�h�x� with deg�g� 
 deg�p� and
deg�h� 
 deg�p�. We must have that g�x� � I 	 I, otherwise g�x� � I � p�x��g�x� � deg�p� ! deg�g�.
Same holds for h�x�. Now �g�x� � I��h�x� � I� � �g�x�h�x� � I� � �p�x� � I� � 0 � I. But k�x�
I is a
field then an integral domain, in which the product of nonzero elements is nonzero. Contradiction.

“�” Suppose p�x� is irreducible, we show that k�x�
I is a field by verifying that the definition is satisfied.

(1) 1 	 0. I � �p�x�� is a proper ideal and 1 � I for if not, then p�x� must be a unit and then not
irreducible. Therefore, 1 � I 	 0 � I.

(2) Every nonzero element is a unit. For the above choice of f�x�, p�x� # f�x�, otherwise f�x� � �p�x��
and f�x� � I � I. Since p�x� is irreducible, f�x� # p�x� by definition. Therefore p, f are relatively
prime and there are polynomials s, t with sf � tp � 1. Now 1 � I � s�x�f�x� � t�x�p�x� � I �
s�x�f�x� � I � �s�x� � I��f�x� � I�, and we have found the inverse of f�x� � I.
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Proof. [Second proof] We may use Proposition 2.34. That is, R
I is a field if and only if I is maximal.

“�” We have that R
I is a field then �p�x�� is maximal and then prime. We want to show that p�x� is
irreducible. For any g�x�, h�x� s.t. p�x� � g�x�h�x�, obviously �p�x�� � �g�x��, �p�x�� � �h�x��. �p�x��
is prime, then g�x�h�x� � �p�x�� hence g�x� � �p�x�� or h�x� � �p�x��. We then have �g�x�� � �p�x�� or
�h�x�� � �p�x��. Therefore one of g, h is a unit, and p�x� is irreducible.

“�” We want to show that �p�x�� irreducible then �p�x�� is maximal. For any f�x� � �p�x��, f�x� �
q�x�p�x� � r�x�, where deg�r�x�� 
 deg�p�x��. Therefore �p�x�, r�x�� � 1 and �p�x�, f�x�� � R. Since
f�x� is arbitrary, �p�x�� is maximal.

�

Example 3.11 k � �, k�x� � ��x�, choose p�x� � x2 � 1, p�x� is irreducible. Let I � �p�x��, then
��x�
�p�x�� ) ��i� by f�x� � I �� f�i�.

10/15/08

Proposition 3.12 (3.117) Let k be a field and let p�x� � k�x� be irreducible polynomial of degree d; I �
�p�x��. Let K � k�x�
I, and write β � x � I.

(a) K is a field with a subfield k� � �a � I : a � k� s.t. k� ) k.

(b) β is a root of p�x�.
(c) If β is a root of g�x� � k�x� then p�x��g�x�.
(d) p�x� is the unique monic irreducible polynomial in k�x� s.t. β is a root of p�x�.
(e) K is a vector space over k of dim � �K : k� � d with basis 1, β, β2, . . . , βd�1.

Proof.

(a) K is a field by previous proposition. Define the map φ : k � K s.t. for a � k, a �� a � I. The
map is injective by Cor 3.53 in the textbook(we first verify that φ defines a homomorphism of rings,
then we have that ker φ is an ideal in k. But k is a field, the only ideals in k is zero ideal or k itself.
Since 1 �� 1 � I 	 0 � I, not everything maps to 0 � I, therefore the kernel is not k; hence it is �0�
and we have an injection.); the kernel is then trivial. Therefore, by first isomorphism theorem of rings,
k ) k
�0� ) k�. φ is an isomorphism from k � k�.

(b) We may write p�x� � �d
i�0 aix

i. We evaluate p�β� as

p�β� � p�x � I� � a0 � a1�x � I� � . . . � ad�x � I�d
� a0 � a1�x � I� � a2�x2 � I� � . . . � ad�xd � I�
� a0 � a1x � . . . � adx

d � I
� p�x� � I � I.

Therefore, β is a root of p�x�.
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(c) If p�x� # g�x�, p�x� irreducible � gcd�p�x�, g�x�� � 1 and exist s�x�, t�x� s.t. 1 � sp� gt. Since β is the
root of both g�x� and p�x�, s�β�p�β� � t�β�g�β� � 0. Contradiction. Therefore, p�x�  g�x�.
Alternatively (more clearly), follow proof in (b), 0�I � g�β� � g�x��I. g�x� � �p�x��, hence p�x�  g�x�.

(d) By (c), if there is another monic irreducible g�x� with β as a root, then p�x�  g�x� and g�x�  p�x�.
Thus g�x� � cp�x� for some constant c. Since both p�x� and g�x� are monic, the leading coefficient are
both 1, which implies c � 1. Thus p�x� � g�x� and p�x� is unique.

(e) We first show that every f�x� in k�x� is a linear combination of βi’s. Every elements of K � k�x�
I has
the form f�x� � I. We may write f�x� � q�x�p�x� � r�x� with deg�r�x�� 
 deg p�x� � d. Then

f�x� � I � r�x� � I
� r0 � r1x � r2x

2 � . . . � rd�1x
d�1 � I

� r0 � r1�x � I� � r2�x2 � I� � . . . � rd�1�xd�1 � I�
� r0 � r1�x � I� � r2�x � I�2 � . . . � rd�1�x � I�d�1

� r0 � r1β � r2β
2 � . . . � rd�1β

d�1.

We have shown that every f�x� can be represented as a linear combination of βi with i 
 d. We now
show that the basis is linearly independent. Suppose this is not true; then there exist c0, c1, . . . , cd�1

that are not all zeros such that
�d�1

i�0 ciβ
i � 0. Let g�x� � c0 � c1x � c2x

2 � . . . � cd�1x
d�1, then

0 � I � �d�1
i�0 ciβ

i � I � g�x� � I, therefore g�x� � I and p�x�  g�x�. But deg�g�x�� 
 d � deg�p�x��;
therefore g�x� � 0 and every ci must be 0. Contradiction.

�

Definition 3.13 Let K
k be an extension of fields. α � K is algebraic over k if there is some nonzero
polynomial f�x� � k�x� having α as a root; otherwise, α is transcendental over k, An extension K
k is
algebraic if every α � K is algebraic over k.

Example 3.14 Algebraic and transcendental elements and algebraic field.

(1)
+

3 � �
� is algebraic over � ; since it is a root of f�x� � x2 � 3.

(2) π � �
� is transcendental over � (proof is not trivial).

(3) K � Frac�k�x��, then K
k if a field extension. x � K
k, is transcendental over k.

Example 3.15
+

5�+
3 � �, is a root of f�x� � �x�+

5�+
3��x�+

5�+
3��x�+

5�+
3��x�+

5�+
3� �

x4 � 16x2 � 4.

Definition 3.16 If K
k is an extension and α � K, then k�α� is the intersecion of all those subfields of k
that contain k and α; we call k�α� the subfield of K obtained by adjoining α to k.

Example 3.17 ��+3� � ���+
3 is the smallest subfield of �
� that contains

+
3.

Proposition 3.18 If K
k is a finite field extension, then K
k is an algebraic extension.
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Proof. For a finite K
k, K is a vector space of some dimension n over k. Then for any α � K, the list of
n � 1 vectors 1, α, α2, . . . , αn must be linearly dependent. Then there are a0, a1, . . . an, not all 0, such that�

aiα
i � 0. Then α is a root of f�x� � �

aix
i. �

Remark. This suggest that for α � K, p�x� � irr�α, k� cannot have degree higher than �K : k�. This is
true because 1, α, α2, . . . , αn are dependent; then we can obtain a f�x� as in above proof with α as a root.
f�x� ! n; but p�x�  f�x� by the definition of p�x�. Hence deg�p� ! n.

Example 3.19 ���+2� : �� � 2 with possible basis �1,+2�. Any element of the form α � a� b
+

2 � ��+2�
is algebraic over � s.t. deg irr�α,�� ! 2.

Theorem 3.20 (3.120) Let K
k be an extension of fields and let α � K be algebraic over k.

(a) There exists a unique monic irreducible polynomial p�x� � k�x� having α as a root. Moreoever, if
I � �p�x��, then k�x�
I ) k�α� given by f�x� � I �� f�α�.

(b) If α� is another root of p�x�, then k�α� ) k�α��.

Proof.

(a) For algebraic α � K, consider the homomorphism of rings

ϕ : k�x� � K
f�x� �� f�α�

The kernel of ϕ is a principle ideal (any ideal I � k�x� is a principle one, otherwise 'p�x�, q�x� � I, p # q
and q # p, then there are some s, t s.t. sp � tq � 1 � �p, q� � R, I cannot be proper); we may let
ker ϕ � �h�x�� for some h�x� � k�x�. Then k�x�
�h�x�� ) imϕ � K. imϕ is a subring of K and thus a
domain; this gives that h�x� is irreducible, and we can get p�x� monic irreducible and �p�x�� � �h�x��.
Finally, imϕ � k�α�, since imϕ is a subfield of K (since k�x�
�h�x�� is a field since h�x� is irreducible)
containing k (if we let f�x� � c � k) and α (if we let f�x� � x); it is the smallest since every such subfield
must contain all the polynomials of α. We then get k�x�
I ) k�α�. Uniqueness follows Proposition
3.12(d).

(b) The two isomorphisms, k�x�
I ) k�α� and k�x�
I ) k�α�� induces a third: k�α� ) k�α��.

�

Definition 3.21 For given K
k, α � K algebraic over k, let irr�α, k� � k�x� be the unique monic irreducible
polynomial in k�x� that has α as a root. irr�α, k� is called the minimal polynomial of α over k.

Example 3.22 irr�+5 �+
3,�� � x4 � 16x2 � 4.

Theorem 3.23 Let k be a field and let f�x� � k�x� be a nonzero polynomial. Then there exists a field K
containing k as a subfield and with f�x� a product of linear factors in K�x�.
Proof. We prove via induction on the deg�f�.

• (deg�f� � 1). If deg�f� � 1, f�x� is already in linear factor form; K � k then suffices.
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• (deg�f� � 1). If deg�f� � 1, write f�x� � p�x�g�x� in which p�x� is irreducible. By Proposition 3.12(a),
F � k�x�
�p�x�� is a field containing k and a root of p�x� (a root in F is z � x� I, I � �p�x��). Hence,
in F �x�, we have p�x� � �x � z�h�x� and f�x� � �x � z�h�x�g�x�. Induction hypothesis then gives us a
field K containing F in which h�x�g�x�, and hence f�x�, is a product of linear factors in K�x�.

�
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Theorem 3.24 (3.121) Let k � E � K be fields s.t. K
E and E
k are both finite. Then K
k is finite and

�K : k� � �K : E��E : k�.
Proof. We first show that every element of K can be expressed as linear combination with a basis of size
�K : E��E : k� over k, then we show that the basis is linearly independent.

(1) Let the basis of �K : E� be β1, β2, . . . , βm and that of �E : k� be α1, α2, . . . , αn. Then we may write any
element x � K as x � �m

i�0 ciβi. For each ci, we may write it using basis over k as ci � �n
j�0 dijαj .

Then x � �
i,j dijβiαj and X � �βiαj� spans K over k.

(2) To see that X is linearly independent, we see that for any linear combination of all basis elements in X
to be 0, since βi’s are linearly independent,

�
dijαj must all be zero. This in turn requires that all dij ’s

are zero.

�

Definition 3.25 Let k � K be fields, let f�x� � k�x�. Then f�x� splits over K if

f�x� � a�x � z1��x � z2� . . . �x � zn�,
where z1, z2, . . . , zn are in K and a � k is nonzero. For a given field k and given polynomial f�x� � k�x�, E
k
is a splitting field of f�x� over k if f�x� splits over E but not over any proper subfield of E.

Corollary 3.26 (3.124) Let k be a field, and let f�x� � k�x�. Then a splitting field of f�x� over k exists.

Proof. By Kronecher’s theorem, there is a field extension K
k such hat f�x� splits in K�x�; say,
f�x� � a�x�α1��x�α2� . . . �x�αn�. Then the subfield E � k�α1, α2, . . . , αn� is a splitting field of f�x� over
k. �

Proposition 3.27 (3.126) Let p be a prime, and let k be a field. If f�x� � xp � c � k�x�, then either f�x�
is irreducible in k�x� or c has a p-th root, say, α, in k. Therefore, if k contains the p-th roots of unity, then
k�α� is a splitting field of f�x�.
Proof. Suppose that f�x� is not irreducible over k, then f�x� � g�x�h�x�, 1 ! d � deg g 
 p. Let
�1, ω, ω2, . . . , ωp�1 be the set of p-th roots of unity. We have	

f�x� � �x � α��x � αω� . . . �x � αωp�1�
f�x� � g�x�h�x�

29



Let b be the constant term of g�x� be b, 0b � αdω, in which ω is again a p-th root of unity (ωp � 1). Then

�0b�p � �αdω�p � αdp � cd.

p is prime and d 
 p, therefore p, d are relative primes; gcd�d, p� � 1 and we have 1 � sd�tp with s, t integers.
We get

c � csd�tp � csdcdp � �0b�psctp � ��0b�sct�p.
Therefore, c has a p-th root in k as �0b�sct. If ω � k, E � k�α� is a splitting field of f�x�. �

Theorem 3.28 (Galois, 3.127 in the text) Let p be a prime and n � 0. Then there exists a field of size
pn.

Proof. Let q � pn, k � �p, g�x� � xq � x � k�x�. By Kronecker’s theorem, there exists K
k s.t. g�x� splits
over K. Let E � K be the subset

E � �α � K : g�α� � 0�,
we claim that E is a field of size q � pn. To see this, we first show that g�x� has no multiple roots. For a
multiple root α, �x � α�  g�x� and �x � α�  g��x�; but g��x� � qxq�1 � 1 � �1 (we get �1 by mod p since
we work with �p). Therefore, all the roots are distinct, and �E� � q � pn.
We are then left to verify that E is a subfield of K. We have:

• 1 � E since 1 is a root of xq � x.

• For a, b � E, �ab�q � aqbq � ab (since aq � a � 0 � a � aq). We thus have ab � E.

• For a, b � E, �a � b�q � aq � . . .� bq � aq � bq � a � b � E. All cross terms


q
k

�
akbq�k are zeros because

p  
qk�; therefore


q
k

�
akbq�k " 0 mod p.

• Inverse. a � E, aq�1 � 1, then aq�2a � 1 � a�1 � aq�2.

therefore, E is a field of size pn. �
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Corollary 3.29 (3.128)For given p and n � 0, there exists an irreducible polynomial g�x� � �p�x� of degree
n.

Proof. Let E
�p be a field extension with q � pn elements, then E� � E��0� is a group of size q�1. More-
over, this group is cyclic by Lemma 2.20. Then E� � �α� for some α of multiplicative order q� 1. E � �p�α�
since on one hand �p�α� � E; on the other �p�α� contains α and then every nonzero elements of E. Let
p�x� � irr�α,�p�, degree d � ��p�x�
�f�x�� : �p� (Proposition 3.12(e)). But �p�x�
�p�x�� ) �p�α� � E by
Theorem 3.20 in the text. Therefore d � �E : �p� � n; f�x� is an irreducible polynomial of degree n. �

Lemma 3.30 (3.130) Let f�x� � k�x�, where k is a field, and let E be a splitting field of f�x� over k. Let
ϕ : k � k� be an isomorphism of fields, let ϕ� : k�x� � k��x� be the isomorphism

g�x� � a0 � a1x � . . . � anxn �� g��x� � ϕ�a0� � ϕ�a1�x � . . . � ϕ�an�xn,
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that is, ϕ� is an extension of ϕ to k�x�. Let E� be a splitting field of f��x� over k�. Then there is an
isomorphism Φ : E � E� extending ϕ.

Proof. We prove via induction on the degree of d � �E : k�.
�d � 1�. f�x� � k�x� has all roots in k, then f�x� is product of linear polynomials, f��x� � ϕ�f�x�� is
also product of linear polynomials in k�; then E� � k� is a splitting field of f��x�.
�d � 1�. Let z � k be a root of f�x� in E, and let p�x� � irr�z, k� be the minimal irreducible polynomial
with z as a root. deg�p� � 1 since z � k. Then k�x�
�p�x�� ) k�z� � E and �k�z� : k� � deg�p�. Given
ϕ : k ) k�, p��x� � ϕ�p�x�� is again a minimal irreducible polynomial in k��x� (if one of p, p� can be
factorized, then ϕ, being an isomorphism, would indicate that the other is as well). Let z� be a root of
p��x�, then ϕ extends to an isomorphism �ϕ of k�z� � k��z�� by Theorem 3.20 (before applying Theorem
3.20, we note that ϕ : k � k� extends naturally to an isomorphism ϕ� : k�x� ) k��x�, f�x� �� f��x�;
ϕ� then induces an isomorphism ϕ� : k�x�
�p�x�� ) k��x�
�p��x��, f�x� � I �� f��x� � I�. Then
k�z� ) k�x�
�p�x�� ) k��x�
�p��x�� ) k��z��).
Then E is again a splitting field of f�x� � k�z��x� since all roots of f�x� are still in E. Similarly E� a
splitting field of f��x� � k��z���x�. But now �E : k�z�� 
 �E : k�, so we may apply inductive hypothesis
that �ϕ extends to some Φ that is an isomorphism between E and E�; then ϕ also extends to Φ.

�

Theorem 3.31 Any two splitting fields E and E� for f�x� over k are isomorphic.

Proof. This is the case when k � k� in previous lemma. �

Corollary 3.32 (E. H. Moore, 3.132 in the text) Any two finite fields having exactly pn elements are
isomorphic. Alternatively, a field of size q � pn is unique up to isomorphism.

Proof. Let E be a field of size q � pn, then E� � E��0� is a cyclic group of order q � 1 and αq�1 � 1 for
all α � E�; αq � α � 0 for all α � E. Thus, E of size pn is a splitting field for g�x� � xq � x over �p (since
xq � x � �p�x�) and therefore, E is a unique up to isomorphism. �

Extra: The number of irreducible polynomials of given degree is encoded by a Zeta function. The classical
Riemann Zeta function is ζ�s� � ��

n�1
1
ns , s � �. [see text/notes for now, may be added later]
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Definition 3.33 Let E
k be a filed extension. An automorphism σ of E is an isomorphism σ : E � E. σ
fixes k if σ�a� � a for all a � k.

Proposition 3.34 (4.1) Let k be subfield of a field K, let

f�x� � xn � an�1x
n�1 � . . . � a1x � a0 � k�x�

and let E � k�z0, z1, . . . , zn� � K be a splitting field for f over k. If σ is an automorphism of E fixing k, then
σ permutes the roots.
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Proof. Suppose α is a root of f�x�, from

f�α� � αn � an�1α
n�1 � . . . � a1α � a0 � 0,

we obtain that
0 � σ�f�α�� � σ�α�n � σ�an�1α

n�1� � . . . � σ�a1�α�� � σ�a0�
� σ�αn� � an�1σ�α�n�1 � . . . � a1σ�α� � a0

� f�σ�α��,
since σ�ai� � ai by the assumption that σ fixes k. Therefore σ�α� is also a root of f�x�. On the other hand,
since σ : E � E is isomorphism and the number of roots are finite, σ is a bijection between �zi� and itself,
therefore permuting the roots. �

Definition 3.35 Let E
k be a field extension. The Galois group of E over k, Gal�E
k�, is the set of all
automorphisms of E that fixes k. Let f�x� � k�x� has splitting field E over k, the Galois group of f over k
is Gal�E
k�.

Lemma 3.36 (4.2 in the test) Let E � k�z1, z2, . . . zn� and let σ � Gal�E
k� be such that σ�zi� � zi for
i � 1, 2, . . . , n, then σ � idE .

Proof. We prove via induction on n.

(1) (n � 1). E � k�z1�, let α � E, then α � f�z1�
g�z1�

for f, g � k�z�, g�z1� 	 0. Then σ�α� � σ�f�z1��
σ�g�z1��

� f�z1�
g�z1�

� α.

(2) (n � 1). Let K � k�z1, z2, . . . , zn�1�, if σ fixes z1, z2, . . . , zn then σ fixes K by induction hypothesis; σ
fixes E after we apply (n=1) case again.

�

Theorem 3.37 (4.3) For f�x� � k�x�, deg f � n. The Galois group Gal�E
k� is isomorphic to a subgroup of
Sn.

Proof. Let X � �z1, z2, . . . , zn�. Define

ϕ : Gal�E
k� � Symm�X�,

by ϕ : σ �� σ�X. σ�X is the restriction of σ to X. We need to verify that ϕ gives an injective homomorphism.

• ϕ�στ��zi� � �στ��zi� � σ�τ�zi�� � σ��ϕ�τ���zi�� � ��ϕ�σ�ϕ�τ���zi��. Therefore ϕ is a homomorphism.

• The kernel of ϕ fixes zi � X; by previous lemma, σ is the identity element. Since there is a single element
in the kernel, the map is injective.

We then have an injective homomorphism from Gal�E
k� to Symm�X�, but Symm�X� is a subgroup of Sn

(since some elements of X may be multiple roots). We are done. �

Lemma 3.38 (4.4) If k is a field of characteristic k � 0, then an irreducible polynomial f�x� � k�z� has no
repeated roots.
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Proof. Let f�x� � k�x�, f�x� 	 0 be irreducible. We may assume that deg f � 1, which implies f ��x� 	 0
since k � 0 (that is, we don’t need to consider the modulo stuff). f�x� has a repeated root if and only if
gcd�f, f �� 	 1. But f�x� irreducible, so f � # f , gcd�f, f �� � 1. �

Definition 3.39 Let E
k be algebraic. An irreducible polynomial f�x� � k�x� is separable if it has no
repeated roots. An arbitrary polynomial f�x� � k�x� is separable if its irreducible factors are separable.
An element α � E is separable over k if irr�α, k� is separable. E
k is separable if α is separable over k
for every α � E.

Example 3.40 Let k � �p�t� � Frac��p�t��, let f�x� � xp � t. Claim: f�x� is irreducible over k and is not
separable. Let α be any root of f�x� s.t. αp � t. Then f�x� � xp � t � xp � αp � �x � α�p. Therefore
f�x� has repeated roots and is inseparable. To show that f�x� is irreducible, by proposition 3.27, f�x� is
either irreducible in k or it contains a root in k; suppose it contains a root α � k. Say α � g�t�

h�t� , then
αp�h�t��p � �g�t��p � t�h�t��p � �g�t��p, the leading powers of t at two sides cannot match, contradiction.
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Theorem 3.41 (4.7) Let E
k be a splitting field for f�x� � k�x�, f�x� separable in E
k.

(1) for ϕ : k ) k� and for a splitting field E� for f� � ϕ�f�, ϕ extends to exactly �E : k� isomorphisms
Φ : E � E�.

(2) �Gal�E
k�� � �E : k�.

Proof. Sketch of ideas: It works similarly as Lemma 3.30. Here the induction is on �E : k�. For induction
step, we again pick a p�x� irreducible, and it has degree d with d non-repeating roots. For α as a root of p�x�,
for each α� as a root of p��x�, there is an extension of isomorphism from k ) k� to isomorphism k�α� ) k��α��.
There are exactly d of these. Then we can apply induction hypothesis over k�α��x� to get that there are
�E : k�α�� isomorphisms between E,E� extending �ϕ. We then obtain the result.
Note that here we don’t need to consider other roots of p�x� since we are basically trying to construct E from
one side and find corresponding isomorphisms on the other side. For this reason, using k�α� or k�β� are the
same; but we don’t need to use both to construct E. �

Corollary 3.42 (4.9) If moreover f�x� is irreducible, then n � deg�f�  �Gal�E
k��.
Proof. n � deg�f� � �k�α� : k� and �E : k�α���k�α� : k� � �E : k�. �

Theorem 3.43 (4.12) Let k � �p, E � �pn , where E is the splitting field of g�x� � xq � x over �p for
q � pn. Then Gal��pn
�p� is cyclic of order n with generator:

Frob : �pn � �pn , u �� up

Proof. We know that �Gal��pn
�p�� � n by Theorem 3.41. Therefore, we only need to verify that Frob
is an automorphism of �pn that fixes �p, and that Frob is of order n. Let q � pn, and let G � Gal��q
�p�.
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Since �q has characteristic p, we have Frob�a � b� � �a � b�p � ap � bp � Frob�a� � Frob�b�,Frob�ab� �
�ab�p � apbp � Frob�a�Frob�b�, and Frob is homomorphism of fields (a field under ring homomorphism maps
to a field, since 1 � 1 and for any f�a�, 'b, ab � 1 � f�a�f�b� � 1). As a homomorphism from a field, Frob
is injective (since kernel is an ideal in �q; a field only has itself or �0� as ideals. Since 1 is mapped to 1, the
whole field is not the kernel.), �q is finite, Frob is bijective and then an automorphism.
Frob fixes �p since for a � �p, ap " a mod p (Fermat’s little theorem). The order of Frob is n since upn � u

for all u. If smaller n� can satisfy upn� � p for all roots of upn � u, then upn� � p has too many roots. �

Example 3.44 �4
�2 is the splitting field of x4 � x � x�x � 1��x2 � x � 1� � x�x � 1��x � α��x � α2�. We
have

Gal��4
�2�
u

�









�









�
id(u) Frob(u)

0 0 0
1 1 1
α α α2

α2 α2 α

Example 3.45 F �x� � x4 � 16x2 � 4 � irr�+5 �+
3,�� � ��x�,

��+5 �+
3�

4

�

��+5,
+

3�
2

������ 2
������

��+5�
2 ��������

��+3�
2��������

�

��+5 �+
3� � ��+5,

+
3� is a splitting field for f�x� over �,

Gal���+5,
+

3�
�� � ��+5 �� +
5,
+

3 �� +
3�, �+5 �� �+

5,
+

3 �� +
3�,

�+5 �� +
5,
+

3 �� �+
3�, �+5 �� �+

5,
+

3 �� �+
3��

Proposition 3.46 (4.13) Let k be a field and let E
k be a splitting field for f�x� � k�x� s.t. f�x� has no
repeated roots. Then f�x� is irreducible if and only if Gal�E
k� acts transitively on the roots of f�x�.
Proof. ���. Let f�x� be irreducible and let α, β be roots of f�x�. Since

k�α�

k�x�
�f�x��
�

��������

�

��������

k�β�

there exists ϕ : k�α� ) k�β�; then

E
�Φ�� E� � E

k�α� � �� k�β�
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ϕ extends to an automorphism Φ : E � E s.t. Φ fixes k and Φ�α� � β.
���. Let f�x� � q1�x�q2�x� . . . qt�x� for irreducible polynomial q1, . . . , qt. Let q1�α�, q2�β� � 0. By assump-
tion, there exists σ : E � E, σ � Gal�E
k�. s.t. σ�α� � β. But then q1�β� � 0 and β is a multiple root (it
appears in both q1, q2), contradiction. �

Alternative proof of Corollary 3.42: Proof. G � Gal�E
k� acts transitively on X as the set of roots of f ,
where �X� � n � deg f . Then �G� � �Gx��X� � n  �G�. �

Example 3.47 Let f�x� � x3 � 2 � ��x�, f�x� is irreducible (by Eisenstein). What is the splitting field of
f�x� over �? x3 � 2 � �x � 3

+
2��x2 � 3

+
2 � 3

+
4�, let x � 3

+
2u, x3 � 2 � 2�u � 1��u2 � u � 1�. We have

E � �� 3
+

2,
+�3�

2

�� 3
+

2�
3

�

hence �E : �� � 6, which is maximal for f of degree 3. In general, for deg f � n,Gal�E
k� � Sn; in our case
Gal�E
�� ) S3.
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Definition 3.48 A pure extension of type m is an extension k�u�
k, um � k for some m � 1. An extension
K
k is a radical extension if there is a tower of fields

k � K0 � K1 � . . . � Kt,

in which each Ki�1
Ki is a pure extension.

Definition 3.49 Let f�x� � k�x� have splitting field E
k. We say f�x� is solvable by radicals if there is a
radical extension

k � K0 � K1 � . . . � Kt,

with E � Kt.

Proposition 3.50 Ever irreducible cubic

f�x� � x3 � bx2 � cx � d � k�x�
is solvable by radicals.

Proof. [sketched] Apply change of variable twice, first time let x � x � b
3 , then x � g � h. This yields the

equation
g3 � h3 � �3gh � q�x � r � 0

. Obviously, solutions of g, h to 	
g3 � h3 � �r
gh � �1

3q
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will also be solutions to the original equation when we add up g and h. It turns out that three solutions are
obtained this way; since a cubic has only three roots, these are all the solutions. �

Remark. The material that will be covered in the next several lectures will lead to theorem 4.26 and 4.53
in the text. 4.26 says that if f�x� is solvable by radicals then Gal�E
k� is solvable for characteristic k � 0.
4.52 makes 4.26 stronger by showing the other ways around is also true (if and only if). We can thend draw
conclusions that cubics and quartics are solvable by radicals since for f�x� � k�x�, Gal�E
k� � S3(cubics) or
S4(quartics). Since S3, S4 are both solvable, cubics and quartics are solvable by radicals.

Theorem 3.51 (4.16) Let k � B � E s.t. B
k is a splitting field for f�x� � k�x�. E
k is a splitting field for
g�x� � k�x�. Then Gal�E
B� � Gal�E
k� and Gal�E
k�
Gal�E
B� ) Gal�B
k�.
Proof. Let B � k�z1, . . . , zn�, let σ � Gal�E
k�, then σ permutes the roots of f by the proof used in Propo-
sition 3.34. In particular, σ�B� � B. Define ρ : Gal�E
k� � Gal�B
k� by σ �� σ�B. We then claim that ρ is
a homomorphism with ker ρ � Gal�E
B�, and ρ is surjective. ρ is a homomorphism can be obtained similarly
as that in Theorem 3.37. We also have ker ρ � Gal�E
B� since the kernel is exactly these permutations in E
that fixes B. It follows that Gal�E
B� is a normal subgroup of Gal�G
k�. ρ is surjective by Lemma 3.30: if
τ � Gal�B
k�, then there is σ � Gal�E
k� extending τ . The first isomorphism theorem then gives the result. �

Definition 3.52 A character of a group G in a field K is a group homomorphism χ : G � K�(K� is the
multiplicative group of K with 0 removed).

Remark. Since a field K with zero removed is a multiplicative group (denote this as K�), then σ � Aut�K�
restricted to K� (denoted as σ�K�) is then a character in K.

Lemma 3.53 (E.Artin) A set of distinct characters �χ1, . . . , χn� is independent. That is, if a1, . . . , an are
such that

�,� a1χ1�g� � a2χ2�g� � . . . � anχn�g� � 0,

for all g � G, then a1 � a2 � . . . � an � 0.

Proof. Proof by descent. Assuming that a relation �,� exists with nonzero coefficient, we show that there
exists a relation with fewer nonzero coefficients. Clearly, at least two coefficients in �,� are nonzero. Say
a1, a2 	 0. Let h � G be s.t. χ1�h� 	 χ2�h�, then

a1χ1�gh� � . . . � anχn�gh� � 0 % a1χ1�h�χ1�g� � . . . � anχn�g�χn�h� � 0.

Subtract �,�χ1�h� from the second equation yields

a2�χ2�h� � χ1�h��χ2�g� � . . . � an�χn�h� � χ1�h��χn�g� � 0,

let a�1 � a2�χ2�h� � χ1�h��, . . ., we obtain a smaller set of χi’s that are dependent. �

Corollary 3.54 (Dedekind) Let G � K� and let �σ1, . . . , σn� be distinct field automorphism, then �σ1, . . . , σn�
are independent.
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Proof. Apply previous lemma. �

10/29/2008

Lemma 3.55 (4.17)

(1) Let K � k�α1, α2, . . . , αn� be a finite extension of fields. Then there is a finite extension E
k s.t. E
k
is a splitting field for some f�x� � k�x�(Such an extension E
k of smallest degree is called the normal
closure of K
k). Moreover, if each αi is separable over k, then f�x� can be chosen to be a separable
polynomial.

(2) If K is a radical extension of k then a normal closure E
k is also a radical extension.

Proof.

(1) Theorem 3.20 gives us pi�x� � irr�αi, k� has αi as a root for each αi. Let f�x� � p1�x� . . . pn�x�, we have
E that is a splitting field of f�x� containing K. If αi is separable over k then from definition f�x�, as a
product of irreducible polynomials that are separable, is itself separable.

(2) We can write the radical extension K as k0 � k � k1 � k�u1� � k2 � k�u1, u2� � . . . � kt �
k�u1, u2, . . . , ut� � K s.t. ki�1
ki is a pure extension (umi�1

i�1 � ki). We may let

G � Gal�E
k� � �σ1 � id, σ2, . . . , σr�.

Let B0 � k. We construct a tower

B0 � k � k�u1 � σ1�u1�� � k�u1, σ2�u1�� � . . . � k�u1, σ2�u1�, . . . , σr�u1�� � B1.

Any σj , being an automorphism then a homomorphism (that is, σj�ab� � σj�a�σj�b�), gives σj�u1�m1 �
σj�um1

1 �. Since um1
1 � k and σj fixes k, σj�u1�m1 � k � B0. Thus B1
B0 is a radical extension. Similarly

we may define
Bi�1 � Bi�ui�1, σ2�ui�1�, . . . , σr�ui�1��,

It is straightforward to see that Bi�1
Bi is a radical extension. Since E � Bt, we have that E is also a
radical extension.

�

Lemma 3.56 (4.18) Let K
k be a radical extension, say k � K0 � K1 � . . . � Kt � K. Assume that
moreover �Ki�1 : Ki� � pi is prime, and let that k contains pi-th roots of unity for i � 1, 2, . . . , t. If K
k is a
splitting field then there exits a sequence of subgroups

Gal�K
k� � G0 � G1 � . . . � Gt � �e�

s.t. Gi�1 � Gi and �Gi : Gi�1� � pi. In other words, G � Gal�K
k� is solvable.
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Proof. For each i, let Gi � Gal�K
Ki�. Since elements of Gi � Gal�K
Ki� are automorphisms of K that
fixes Ki, they certainly contain all elements that fixes Ki�1, thus having Gi�1 � Gal�K
Ki�1� as a subgroup,
therefore we have the subgroup relationship

Gal�K
k� � G0 � G1 � G2 � . . . � Gt � �1�.

Since K1 � k�u� with up1 � k, and k contains the p1th roots of unity, K1 is the splitting field for f�x� � xp1 �
up1. Obviously, K is also a splitting field for f�x�. Theorem 3.51 then applies to say that Gal�K
k�
Gal�K
K1� )
Gal�K1
k� and G1 � Gal�K
K1� is normal in G0 � Gal�K
k�. Since �Gal�K1
k�� � �K1 : k� � p1 by Lemma
3.55, G0
G1 ) �
p1� is cyclic of oder p1. Repeating this for all i then yields the result. �

Theorem 3.57 Construction of a polynomial not solvable by radicals.
Let f�x� � ��x� be an irreducible polynomial of degree p s.t. f�x� has precisely two complex roots. Then the
splitting field E
� of f�x� has groups Gal�E
�� ) Sp.

10/31/2008

Items to cover today:

• Construct f�x� � xp � . . . � ��x�, with Galois group Sp.

• Compare normal extension versus splitting field extension (same).

• Remove condition in Lemma 3.56.

Theorem 3.58 Construction of f�x� � xp � . . . � ��x�, with Galois group Sp. Let f�x� � xp � . . . �
��x� be an irreducible polynomial with precisely two complex roots. Then the splitting field E
� of f�x� has
group Gal�E
�� ) Sp.

Proof. We want to construct Sp � ��12�, �12 . . . p��. Let α be a root of f�x�, then p � ���α� : �� and
p  �E : ��. For a splitting field E
�, �Gal�E
��� � �E : ��. Hence, Gal�E
�� contains an element of order
p. Since Gal�E
�� � Sp, Gal�E
�� contains an element σ � �i1, i2, . . . , ip�. Let τ � Gal�E
�� corresponds to
complex conjugation, then τ � �j1, j2� (there exists τ since complex conjugation only affects the two complex
roots and fixes everything else). wlog, we may assume τ � �12� and σ � �12 . . . p� (by taking a suitable power
of σ � �i1, i2, . . . , ip�). �

Definition 3.59 An extension is normal if for every α � E, α algebraic over k, the polynomial p�x� �
irr�α, k� splits in E.

Theorem 3.60 A finite extension E
k is normal if and only if E is the splitting field of some polynomial
f�x� � k�x�.
Proof. (�) Assume E � k�α1, . . . , αn�, E is the splitting field of f�x� ��n

i�1 irr�αi, k�.
(�) let E
k be the splitting field for f�x� � k�x�, let α � E, let g�x� � irr�α, k�. We have E � E�α�. Let α� be
another root of g�x�. Then we have that k�α� ) k�α�� with isomorphism ϕ. We then have that f�x� � k�α��x�
have E�α� as the splitting field since all of f�x�’s roots are in E. Similarly, f�x� � k�α���x� has E�α�� as
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the splitting field. By Lemma 3.30, ϕ extends to an isomorphism between E�α�, E�α��. But E � E�α� and
E � E�α��, therefore E � E�α��. �

Remark. Lemma 3.56 has two conditions that will be removed: 1. k contains the pth roots of unity whenever
p  �K : k�, 2. K
k is a splitting field. Next lemma removes the second condition.

Lemma 3.61 (4.20) Let k be a field and let f�x� � k�x� be solvable by radicals: There is a radical extension
k � K0 � K1 ( . . . Kt with Kt containing a splitting field E of f�x�. If each Ki�1
Ki is a pure extension of
prime type pi, and if k contains all the pi-th roots of unity, then the Galois group Gal�E
k� is a quotient of
a solvable group.

Proof. We work with the normal closure of K
k, say L. By Lemma 3.55, L
k is a splitting field extension
and a radical extension. Then Lemma 3.56 gives us that Gal�L
k� is solvable. Since L
k, E
k are both
splitting field extensions, by Theorem 3.51, Gal�E
k� ) Gal�L
k�
Gal�L
E� is again solvable (quotient group
of a solvable group is again solvable by 4.21). �

11/03/08

Remark. Summary of 4.17 - 4.20
Let f�x� � k�x� be solvable by radicals. Then there exists a tower

L normal closure ofK
k

K radical extension overk

E splitting field off�x�overk

k

Assume moreover that k contains the p-th roots of unity whenever p  �K : k�.
Combining the following with Lemma 3.55 (4.17),

• L
k is splitting field over k;

• L
k is radical;

• p  �L : k� � p  �K : k�.

Lemma 3.56 (4.18) says that if E � K � L, then Gal�E
k� is solvable.
Lemma 3.61 (4.20) says that if E � K � L, then Gal�E
k� is a quotient group of Gal�L
k� and then is
solvable.

Lemma 3.62 Let k�
k be a splitting field for g�x� � xm � 1 � k�x�, then k�
k is abelian.

Proof. Let σ, τ � Gal�k�
k�, say σ�ω� � ωa, τ�ω� � ωb, where ω is a primitive mth root of unity, then
�στ��ω� � �ωb�a � �τσ��ω�. �
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Example 3.63 Special case when k � �, k� � ��ω�.
��
m��� ) Gal���ω�
�� with �a mod m� �� �σ : ω �� ωa�.
For m � 15, ���ω� : �� � ���
15���� � 8, ��
15��� ) ��
5��� � ��
3��� ) ��
4�� � ��
2��. Abelian but
not cyclic.

Theorem 3.64 (4.26) Let f�x� � k�x� be solvable by radicals and let E
k be the splitting field of f�x� over
k. Then Gal�E
k� is solvable.

Proof. The idea is to construct another tower

L�

���
��

L K�

��
��

K E�

���
�

E k�

��
��

�

k

by letting k�
k be the splitting field of xm �1 � k�x� where m is large enough s.t. p  m whenever p  �K : k�.
Then k� contains all the pth roots of unity that we need to apply Lemma 3.61. We then have that Gal�E�
k��
is solvable. Now look at the tower k�k��E�, since E�
k, k�
k are splitting field extensions (and k�
k solvable
by construction), by Theorem 3.51, Gal�E�
k�� is normal in Gal�E�
k� with quotient group isomorphic to
Gal�k�
k�; therefore Gal�E�
k� is also solvable. Finally for the tower k�E�E�, E�
k,E
k are splitting field
extensions, we then apply Theorem 3.51 again to get that Gal�E
k� ) Gal�E�
k�
Gal�E�
E� and therefore
solvable as a quotient group. �

Remark. Now the Fundamental Theorem of Galois Theory starts.

Definition 3.65 For a field E and for a subfield H � Aut�E�, define the fixed field of H as

EH � �a � E : σ�a� � a,*σ � H�,

that is, the part of E that is fixed by H.

Remark. If H � Gal�E
k� � Aut�E�, then EH - k; this is true because any σ � Gal�E
k� fixes k; therefore
at least k is in the fixed field EH .

Example 3.66 The inclusion EH - k can be strict. Let E � �� 3
+

2. If σ � G � Gal�E
��, then σ must
fix �, and so it permutes the roots of f�x� � x3 � 2. But the other two roots of f�x� are not real, so that
σ� 3

+
2� � 3

+
2. It now follows that σ is the identity and EG � E.

Proposition 3.67 (4.28) If E is a field, then the function H �� EH is order reversing: if H ! L ! Aut�E�,
then EL � EH .

Proof. a � E fixed by L must be fixed by H, but not necessarily the other way around. �

Definition 3.68 A rational function g�x1,x2,...,xn�
h�x1,x2,...,xn�

� k�x� is a symmetric function if it is fixed by Sn.
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Proposition 3.69 (4.30) A list σ1, . . . , σn of distinct characters from E� � E� is independent over E.

Lemma 3.70 (4.31) If G � �σ1, . . . , σn� � Aut�E� is a set of distinct automorphisms then �E : EG� � n.

Proof. Suppose �E : EG� � r 
 n, since E is an extension field of EG, we may assume it has a basis
α1, . . . , αr. Then the system of equations

σ1�α1�x1 � σ2�α1�x2 � . . . � σn�α1�xn � 0
σ1�α2�x1 � σ2�α2�x2 � . . . � σn�α2�xn � 0
. . .
σ1�αr�x1 � σ2�αr�x2 � . . . � σn�αr�xn � 0,

has a nontrivial solution c1, . . . , cn, since n � r. Then for any β � E,

β � b1α1 � . . . � brαr

then if we multiply bi with the ith row of the system and note that bi � σj�bi� for any σj (since σj fixes EG),
we have

σ1�b1α1�c1 � σ2�b1α1�c2 � . . . � σn�b1α1�cn � 0
σ1�b2α2�c1 � σ2�b2α2�c2 � . . . � σn�b2α2�cn � 0
. . .
σ1�brαr�c1 � σ2�brαr�c2 � . . . � σn�brαr�cn � 0,

summing up all the rows then gives us

σ1�β�c1 � σ2�β�c2 � . . . � σn�β�cn � 0

which contradicts the independence of the characters σ1, . . . , σn. �

11/05/08

Proposition 3.71 (4.32) If G � Aut�E� is a finite subgroup, then �E : EG� � �G�.
Proof. From Lemma 3.70 we have �E : EG� � n; therefore we need to show �E : EG� ! n � �G�. Let
G � �σ1 � id, . . . , σn� and let α1, . . . , αm, be independent over EG, the system

σ1�α1�x1 � σ1�α2�x2 � . . . � σ1�αm�xm � 0
σ2�α1�x1 � σ2�α2�x2 � . . . � σ2�αm�xm � 0
. . .
σn�α1�x1 � σn�α2�x2 � . . . � σn�αm�xm � 0,

we claim that it has no nontrivial solution. Therefore, n � m and we are done.
Assume that x � �x1, . . . , xm� is a nontrivial solution to AT x � 0, we may assume that

• Not all x1, . . . , xm � EG. Otherwise, since σ1 � id � σ1�αi� � αi, the first row of the system gives us
that x1α1 � . . . � xmαm � 0. But α1, . . . , αm are independent over EG.

• X has maximum number of zeros among all nontrivial solutions.
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We may then arrange x as

x � �x1 � EG, x2, . . . , xr � 1, xr�1 � 0, . . . , xm � 0�,

in which x1, . . . , xr are not zero and the rest are zeros. Since xr � 1, we have

σj�α1�x1 � . . . � σj�αr� � 0.

Since x1 � EG, some σk does not fix it, σk�x1� 	 x1, applying σk to above equation,

�σkσj��α1�σk�x1� � . . . � �σkσj��αr� � 0

since σkσj is just another element in σ1, . . . , σn, we may let it be σi for some i. Then the equation becomes

σi�α1�σk�x1� � . . . � σi�αr� � 0.

Subtracting this from the ith equation of the linear system, we have

σi�α1��σk�x1� � x1� � . . . � σi�αr�1��σk�xr�1� � xr�1� � 0.

Since �σk�x1� � x1� 	 0, we obtain a nontrivial solution with more zeros (each j corresponds to a unique i so
we again get the system), contradiction. �

Theorem 3.72 (4.33) If G,H ! Aut�E� are two finite subgroups s.t. EG � EH , then G � H (in other
words, function γ : H �� EH is injective).

Proof. If we can prove that for σ � Aut�E�, G � Aut�E�, σ fixes EG % σ � G, then σ � H % σ fixes
EH % σ fixes EG % σ � G. Now for the proof, we have two directions:

(�) Trivial inclusion.

(�) Suppose σ fixes EG, σ � G. We have EG � EG��σ� since all of EG are fixed by G � �σ�. On the
other hand, Proposition 3.67 gives EG - EG��σ�, therefore EG � EG��σ�. But then n � �G� � �E :
EG� � �E : EG��σ�� � �G � �σ�� � n � 1 by Proposition 3.71, contradiction.

�
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Theorem 3.73 (4.34) Let E
k be a finite extension of fields with group G � Gal�E
k�. The following are
equivalent

(1) E
k is a splitting field for some separable f�x� � k�x�.
(2) k � EG.

(3) E
k is a normal extension.

Proof. We have (1) % (3) by Theorem 3.60, therefore we prove (1) % (2).
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((1) � (2)). E
k is a splitting field, then by Theorem 3.41, �G� � �E : k�. By Proposition 3.71,
�G� � �E : EG�. Therefore �E : k� � �E : EG�. But k � EG since k is fixed by all elements of G;
�E : k� � �E : EG��EG : k�. We then have �EG : k� � 1 then k � EG.

((2) � (1)). Let α � E,α � k, for all σ � G, let α1, . . . , αn be the distinct elements of σ�α�. Then let
f�x� � �n

i�1�x � αi� � xn � an�1x
n�1 � . . . � a0. Now any coefficient of f�x� is invariant under any

τ � G since f��x� � xn � τ�an�1�xn�1 � . . . � τ�a0� �
�n

i�1�x � τ�αi�� � f�x�. That is, all coefficients
ai’s of f�x� are in E and are fixed by G; ai � EG then f�x� � EG�x�. Since EG � k by assumption,
f�x� � k�x�. Then we have that E
k is a splitting field for f�x�. f�x� has no repeated roots therefore
any irreducible factor of f�x� is separable, making f�x� also separable.

�

Definition 3.74 A finite extension is a Galois extension if it is normal and separable.

Corollary 3.75 (4.36) If E
k is Galois and B is an intermediate field, then E
B is Galois.

Proof. E
k is a splitting field of f�x� � k�x�, then E
B is also a splitting field of f�x� � B�x�. �

Theorem 3.76 (4.43) Let E
k be a finite Galois extension with group G � Gal�E
k�.

(1) The function γ : H �� EH is an order invesring bijection between subgroups of G and intermediate
fields of E
k with inverse σ : B �� Gal�E
B�.

(2) Let B be an intermediate field, then B
k is Galois if and only if H � Gal�E
B� � G.

Proof.

(1) γ is injective by Theorem 3.72. We prove surjectiveness by showing that every intermediate field B is of
form B � EH for some subgroup H ! G. For the tower k �B � E, let H � Gal�E
B�, E is a splitting
field of some f�x� � k�x� � B�x�; then Theorem 3.73(2) gives us that B � EH .

(2) (�) B
k Galois then is a splitting field extension. Then Gal�E
B� is normal in Gal�E
k�. (�) Assume
that H � G, then B � EH � �a � E : η�a� � a,*η � H�. For any σ � G, η � H,a � EH , since
H � G, ση�σ�1 � η � H; ησ � ση� � η�σ�a�� � ησaσ�1η�1 � ση�aη��1σ�1 � σaσ�1 � σ�a�. Since η is
arbitrary, σ�a� is fixed by H, so σ�a� � B. This gives that for any α � B, p�x� � irr�α, k�, if we denote
another root of p�x� as β, then some σ � G gives σ�α� � β. But σ�α� � B, hence all roots of p�x� is in
B, making B
k a normal splitting field. B
k is then Galois.

�
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Example 3.77 Let E � �� 3
+

2, ω�, ω2 � ω � 1 � 0. Determine all subfields B � E.
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k � �, G � Gal�E
k� ) S3. This is true since G is isomorphic to a subset of S3 since E is the split-
ting field of x3 � 2; �E : k� � 3, but the largest proper subfield of S3 is A3 with 3 elements; hence E ) S3.
S3 � ��1�, �12�, �23�, �13�, �123�, �132�� has four subgroups, so we should have four subfields B,B1, B2, B3 with
the correspondence:

E

		
		 







����������

B B1 B2 B3

�

����






����������

1

�1�
������

���
���

��������������

��123�� ��23�� ��31�� ��12��

S3

������
������

���������������

Action of G � S3 on E, let x3 � 2 � �x � α1��x � α2��x � α3�, α1 � 3
+

2, α2 � ω 3
+

2, α3 � ω2 3
+

2. Choose
generators ρ and σ for Gal�E
�� as:

ρ� 3
+

2� � ω 3
+

2 ρ�ω� � ω

σ� 3
+

2� � 3
+

2 σ�ω� � ω2

We see that G is then isomorphic to S3 with mapping

1 ρ ρ2 σ σρ σρ2

�1� �123� �132� �23� �13� �12�
We then have

E
�ρ�

����������
�σ�

�σρ�
�����������

�σρ2�

��������������������������

B � ��ω� B1 � �� 3
+

2� B2 � �� 3
+

2ω� B3 � �� 3
+

2ω2�

�

����������

�����������

��������������������������
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Example 3.78 ��ξ15�
�, ξ15 is the 15th root of unity. Find all intermediate fields.

Gal���ξ15�
�� ) ��
15��� � �1, 2, 4, 7, 8, 11, 13, 14�, hence ���ξ15� : �� � 8. We have

�1�
���������

����������

�1, 11�
������� �1, 4�

��������

��������
�1, 14�

��������

�1, 2, 4, 8�
���������

�1, 4, 11, 14� �1, 4, 7, 13�
����������

G

��ξ15�
��������

��������

��ξ5�
�������� ��+5,

+�3�
�������

�������
��ξ15 � ξ�1

15 �
��������

��+�15�
���������
��+5� ��+�3�

�����������

�

[see notes for additional detail]

Theorem 3.79 (4.46) Let E
k be finite extension of fields, there exists α � E s.t. E � k�α� if and only if
there are finitely many fields B s.t. k � B � E.
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Proof. (case k is finite). E is also finite, and E
k is generated by a generator α for the multiplicative group
E� � �α�.

(case k is infinite). We have two directions

(�). Assume that E
k has finitely many intermediate fields. Let k � k�α1, α2� � E for α1, α2 � E,
we show that there exits α � E s.t. k�α1, α2� � k�α�. Consider the extensions k � k�α1 � cα2� �
k�α1, α2�, c � k. Since there are only finitely many intermediate k�α1 � cα2� by assumption, there exist
c 	 c� s.t. k�α1 � cα2� � k�α1 � c�α2�, but then k�α1 � cα2� � k�α1 � cα2, α1 � c�α2� � k�α1, α2�.
(�). Assume that E � k�α� for some α � E, if E
k is Galois, then there are finitely many intermediate
fields (by Fundamental Theorem of Galois Theory), each intermediate field corresponds to a subgroup
H � Gal�E
k�.
If E
k is not Galois, then let L
k be a normal closure for E
k (such normal closure always exists when
E
k is a finite extension). Then L
k has finitely many intermediate fields; hence E
k has finitely many
intermediate fields.

�
Remark. There is a second proof of the (�) direction above in the note.

Theorem 3.80 (4.47) If E
k is a finite separable extension then E � k�α� for some α � E. In particular,
when characteristic k � 0, every finite extension E
k can be written as E � k�α� for some α � E.

Proof. Let L
k be the normal closure of E
k, if E � k�α1, α2, . . . , αn�, then we can take L the splitting
field of f�x� � �n

i�1 irr�αi, k�. Then L
k is finite Galois, hence has finitely many intermediate extensions;
therefore, E
k has finitely many subextensions and by Theorem 3.79, E � k�α� for some α � E. �

11/14/2008

Theorem 3.81 (4.50, Hilbert’s Theorem 90) Let E
k be a finite Galois extension with G � Gal�E
k� a
cyclic group of order n. Say G � �σ�, let norm N : E� � E� defined by N�u� ��

τ
G τ�u�. Then N�u� � 1
if and only if u � v

σ�v� , for some v � E�.

Proof. Let
N : E� � E� D : E� � E�

N�u� �
�
τ
G

τ�u� D�v� � v
σ�v�

the claim is then equivalent to the statement

ker N � imD

(N and D are both homomorphisms w.r.t. multiplication)

(�) Assume u � v
σ�v� � imD,

N�u� �
�

τ
G τ�v��
τ
G τ�σ�v�� �

�
τ
G τ�v��
τ
G τ�v� � 1
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(�) Assume N�u� � 1, since E� � �σ�, let

a0 � u, a1 � u � σ�u�, . . . , an�1 � u � σ�u� . . . σn�1�u� � N�u� � 1, ai � E

For any α � E, σ�aiσ
i�α�� � ai�1

u
σi�1�α� � ai�1σ

i�1�α�
u

, for i � 0, . . . , n � 1 modulo n. Let β ��n�1
i�0 aiσ

i�α�, then σ�β� � β
u and u � β

σ�β� , provided that β 	 0.

The automorphisms 1, σ, . . . , σn�1 are independent over E. Thus, a0 � a1σ � . . . � an�1σ
n�1 	 0 and there

exists α, s.t. β � �n�1
i�0 aiσ

i�α� 	 0. �

Remark. Properties of norm N�u�.

(i) If u � E�, then N�u� � k� since N�u� is fixed by G: *τ � G, τ�N�u�� � N�u�.
(ii) N�uv� � N�u�N�v� (the multiplication in E� is commutative since E is a field), so N : E� � k� is a

homomorphism.

(iii) If a � k, then N�a� � an, where n � �E : k�.
(iv) If σ � G and u � E�, then N�σ�u�� � N�u�.

Remark. Additional information is given on complex and Hilbert 90 briefly in the notes.

Corollary 3.82 (4.51) Let E
k be a Galois extension of degree �E : k� � p, p a prime, s.t. k contains the
pth roots of unity. Then E
k is a pure extension, E � k�z�, zp � k.

Proof. Let ω be a primitive pth root, ω � k,

N�ω� �
�
τ
G

τ�ω� � ω . . . ω � ωp � 1

here τ�ω� � ω, since ω � k, τ � G fixes ω.

Thus (by Theorem 3.81), ω � z
σ�z� for some z � E. But then, 1 � ωp � zp

�σ�z��p � �σ�z��p � σ�zp� �
zp � zp � k.

For z above, z � k, otherwise σ�z� � z � ω � 1. Lastly, E � k�z� since �E : k� � p prime, there are
no intermediate fields in between. �

Theorem 3.83 (4.53) Let k be a field with characteristic k � 0. Let E
k be Galois with G � Gal�E
k� a
solvable group, then E can be embedded in a radical extension of k (therefore, the Galois group of a polynomial
f�x� � k�x�, characteristic k � 0 is solvable % f is solvable by radicals).

Proof. Let E
k be Galois, G � Gal�E
k�. a solvable group. From the composition series of G, we see that
there exists H �G of index �G : H� � p. Let k� � k�w� be an extension of k that contains pth roots of unity.
E
EH is Galois of degree �E : EH � 
 �E : k�. H � Gal�E
EH� �G is solvable. We may use induction to get
that there exists a radical extension EH � R1 � . . . � Rt s.t. E � Rt.
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Consider EH
k, if k� � k, then k � EH is a pure extension of degree p by Theorem 3.82 and we are
done. If not, we build a tower

E�

�����

E EH�

���
��

EH k�

��
���

�

k

Let E
k be a splitting field for some f�x� � k�x�, then E�
k is a splitting field for f�x��xp � 1�. Since p is
prime, E�
k is Galois. But then E�
k� is Galois with group G� � Gal�E�
k��. Let αi be roots of f�x�,

E� � k��α1, . . . , αn�
E � k�α1, . . . , αn�

The restriction map ρ : Gal�E�
k�� � Gal�E
k� is well defined group homomorphism. ρ is injective since
ρ�ϕ� � idE % ϕ fixes α1, . . . , αn % ϕ � idE� . Thus G� is isomorphic to a subgroup of G. In particular, G�

is solvable. As before, E� can be embedded in a radical extension of k�. That is, exists k� � T1, � . . . � T �
s

s.t. E� � T �
S (thus E � T �

s ). Add k � k� � k�ω� gives us a radical extension that starts at k. �
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Remark. Some isolated topics will now be covered that is in the curriculum but not that cohorent with
other materials.

11/19/2008 - 11/21/2008

Remark. Quartics and resolvent polynomial were discussed. In particular, methods were given as how to
tell the Galois group of an irreducible quartic. See notes for detail.

12/01/2008

Remark. Algebraic closure will now be dicussed. In particular, it will be shown that � is algebraically
closed.

Definition 3.84 A field k is algebraically closed if every nonsonstant f�x� � k�x� has a root in k. An algebraic
closure k of a field k is an algebraic extension k
k such that k is algebraically closed.

Proposition 3.85 Every polynormial f�x� � ��x� of odd degree has a root in �.

Corollary 3.86 There exists no extension E
� of odd degree larger than 1.

Proposition 3.87 Every polynomial f�x� � ��x� of degree two has a root in �.

Theorem 3.88 [Fundamental Theorem of Algebra] Every nonconstant f�x� � ��x� has a root in �.

12/03/2008 - 12/05/2008

Remark. We will prove that every field k has a unique (up to isomorphism) algebraic closure k.

Proposition 3.89 (6.54) Let K
k be an extension of fields

(1) For z � K, z is algebraic over k if and only if k�z�
k is finite.

(2) For z1, . . . , zn � K, z1, . . . , zn are algebraic over k % k�z1, . . . , zn�
k is finite.

(3) For y, z � K, K
k algebraic, y � z, yz, y�1�y 	 0� are all algebraic over k.

(4) Kalg � �z � K : z algebraic over k� is a subfield of K.

Proposition 3.90 (6.56)

(1) k � K � E, E
K,K
k algebraic, then E
k algebraic.

(2) Let k0 � k1 � . . . kn � . . . be a tower of fields such that kn�1
kn is algebraic for all n � 0. Then�k � �n
0kn is a field and algebraic over k0.

(3) Let K � k�A� be obtained from k by adjoining α for all α � A. If all α’s are algebraic over k, then K
is algebraic over k.
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Lemma 3.91 (6.57) Let k be a field and let k�T � be the ring of polynomials in the variables �t : t � T �.
If t1, . . . , tn � T are distinct and if fi�ti� � k�ti� � k�T � is a nonconstant plynomial for i � 1, . . . , n, then
I � �f1�t1�, . . . , fn�tn�� is a proper ideal in k�T �.

Theorem 3.92 (6.58) Given a field k, there exits an algebraic closure k of k.

Lemma 3.93 (6.61) Let k
k be an algebraic closure for k and let F 
k be an algebraic extension. Then there
exists an embedding f : F � k.

49


