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Shadow Information Spaces: Combinatorial Filters
for Tracking Targets
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Abstract—This paper introduces and solves a problem of main-
taining the distribution of hidden targets that move outside the field
of view while a sensor sweep is being performed, resulting in a gen-
eralization of the sensing aspect of visibility-based pursuit-evasion
games. Our solution first applies information space concepts to
significantly reduce the general complexity so that information is
processed only when the shadow region (all points invisible to the
sensors) changes combinatorially or targets pass in and out of the
field of view. The cases of distinguishable, partially distinguishable,
and completely indistinguishable targets are handled. Depending
on whether the targets move nondeterministically or probabilisti-
cally, more specific classes of problems are formulated. For each
case, efficient filtering algorithms are introduced, implemented,
and demonstrated that provide critical information for tasks such
as counting, herding, pursuit evasion, and situational awareness.

Index Terms—Combinatorial filters, integer linear program-
ming, shadow information spaces, target tracking, visibility based
pursuit evasion.

I. INTRODUCTION

IMAGINE a game of hide-and-seek is being played. After
the hiders conceal themselves (subsequent relocations are

allowed), the seekers, familiar with the environment, start to
search for the hiders. Most people who played the game as
school children know that an effective search begins with the
seekers checking places having high probabilities of contain-
ing a hider, from previous experience: a closet, an attic, a thick
bush, and so on. After the most likely locations are exhausted,
the next step is to carry out a systematic search of the envi-
ronment, possibly with some seekers guarding certain escape
routes. Occasionally, during the game, hiders may attempt to
relocate themselves to avoid being found. While the hiders suc-
ceed sometimes, they may end up being spotted by the seekers
and are instead getting found earlier.
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Although it is child’s play, this game captures the two key
interacting ingredients of pursuit evasion (PE) games: passively
estimating the distribution of hidden targets and actively planing
to reduce the uncertainty of this distribution. The general goal
in PE research is to algorithmically clear evading targets from
a workspace. As pursuers try to ensure that the workspace is
evader free, they always need to maintain the pursuit status,
remembering whether a region outside of the pursuers’ field-of-
view (FOV) is contaminated or cleared (one bit of information
per region).

This paper, expanding upon [51] and [52], studies exactly this
passive ingredient of PE games, i.e., reasoning about the infor-
mation residing in unobservable regions of the environment. In
particular, we introduce the notion of filters over shadow in-
formation spaces for tracking moving targets in unobservable
regions, as a generalization of this aspect of PE. To achieve this,
we first process sensor observation history and compress it in
a lossless fashion for our task classes, for storage and effective
computation. Next, depending on whether the targets of interest
are moving nondeterministically or probabilistically, concrete
problems are formulated and solved by carefully manipulating
and fusing observation and data. At a higher level, at any time,
our algorithm can estimate the number of targets hidden in re-
gions that are not directly observable. We note that, although the
active problem of planning a pursuit path is not addressed in this
paper, heuristic search strategies can be readily implemented on
the space of filter outputs.

The mathematical study of PE games dates back to at least
four decades ago, with its roots in differential games [15]–[17].
Although optimal strategies for differential PE games are still
actively pursued [2], [25], [29], [46], a variant of differential
PE games, i.e., visibility-based PE, has received much atten-
tion recently. Development of visibility-based PE games can
be traced back to [32], in which a PE game on discrete graphs
is introduced with the goal of sweeping evaders residing on
continuous edges of a graph. The evaders can move arbitrarily
fast, but must move continuously. The Watchman Route prob-
lem [8], [9], which was formulated 12 years later as a variant
of the Art Gallery problems [27], [38], involves finding shortest
route to clear static intruders. An intruder is considered cleared
if a line of sight exists between the intruder and a point of the
watchman route.

Influenced by these two threads of research, Suzuki and Ya-
mashita [42] defined what we know today as visibility-based
PE games in which the discrete graph domain is replaced by a
path-connected interior of a 2-D polygon, and a continuously
moving evader is considered to be cleared if it falls into the visi-
ble region of a pursuer (in this case, the pursuer is equipped with
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two flashlights and is called a 2-searcher). Thinking along the
same lines as the Art Gallery problems, it was soon established
that for a pursuer with an omnidirectional infinite range sen-
sor (i.e., an ∞-searcher), it is NP-hard to decide the minimum
number of pursuers needed for the class of simply connected
polygons [14], [24]. The insight that bitangents and inflections
fully capture the critical changes leads to a generalization from
polygons to curved environments [23] and form the basis of
some critical events that are used in our work.

Various sensing and motion capabilities are explored in
visibility-based PE. Interestingly, it turns out that a 2-searcher is
as capable as an ∞-searcher in simple polygons [31]. Pursuers
with a single flashlight/beam (a 1-searcher) are investigated in
detail in [39] and [20], with the latter limiting the pursuer’s mo-
tion to the boundary of the environment. Variations along this
line include limited FOV [11], unknown environments [35], and
bounded speed [44]. Another theme in PE games is to discretize
time and put speed bounds on both pursuers and evaders. In
this setting, sufficient conditions and strategies for a single pur-
suer to capture an evader are given to the classical lion-and-man
problem in the first quadrant of the open plane [37]. This prob-
lem is then extended to R

n and multiple pursuers in [21] and
multiple pursuers with limited range in [5]. Finally, PE is also
studied in the probabilistic context [18], [47] and abstract metric
spaces [1].

Since we provide algorithms for tracking moving targets, our
work is also closely related to target tracking and enumeration.
The problem of accurately counting the number of targets with
overlapping footprints is solved with a novel approach of inte-
grating over Euler characteristics in [3]. With a virtual sensor
that reports visible features of polygonal environment, as well
as indistinguishable targets, static targets are counted under var-
ious setups in [12]. A filtering algorithm is provided in [40]
to count moving targets with a network of binary proximity
sensors. In [48], simultaneous localization and mapping and de-
tection and tracking of moving objects are combined to attack
both problems at the same time. A specialization of our prob-
lem is investigated in [43] in which the sensor FOV becomes
1-D beams. Real-time people counting with a network of image
sensors is studied in [50].

Another research area of relevance to this paper, especially
the probabilistic formulations that we give in Section VI, is the
study of optimal search [41], which proposes a Bayesian ap-
proach to maintain a target distribution and use that information
to guide the planning of optimal search paths. The essential idea
from optimal search is to plan a path to eliminate regions with
highest probability of containing the targets. In doing so, opti-
mal search algorithms allow the prediction of the no-detection
likelihood [4], [7], [26], [49], which is the probability that the
targets remain undiscovered at given stages of a search effort,
even before the actual search is carried out. Although our work
also seeks to maintain a target distribution along a given path,
we focus on the computational problem of how topological
changes of nonobservable components, which are combinato-
rial in nature, can be correctly and efficiently processed as the
target distribution evolves. This topological/combinatorial ele-
ment of target tracking exists whether the problem formulation is

probabilistic or not. In this aspect, the problems that we address
here are mostly orthogonal to classical optimal search problems,
which cover environments (support surfaces of the distribution)
that are mainly 2-D obstacle-less planes such as these appear-
ing in typical maritime applications. As such, the results that
are presented in this paper should benefit the extension of op-
timal search results to covering more diverse workspaces, such
as urban areas and hilly terrains, where topological changes of
nonobservable components are frequent.

The main contributions of this study are twofold. First, as
explained earlier, we generalize visibility-based PE by intro-
ducing a richer class of problems and providing a framework as
a submodule to systematically attack these problems. Second,
the capability of effectively tracking hidden, moving targets,
which is a general type of situation awareness, applies to a
large class of time critical tasks in both civilian and national se-
curity applications. For example, in a fire evacuation scenario,
knowing the possible/expected number of people trapped in var-
ious parts of a building, firefighters can better decide which part
of the building should be given priority when they coordinate
the search-and-rescue effort.

The rest of this paper is organized as follows. Section II pro-
vides a mathematical definition of what we mean by “shadows”
and “component events,” which can be best captured using a
chronological sequence. Section III suggests the general prob-
lem of tracking hidden targets after bringing in moving targets
and FOV events. Section IV formulates the problem of esti-
mating the number of targets hidden in shadows for nondeter-
ministically moving targets and establishes its polynomial time
solvability using results from integer linear programming (ILP)
theory. Section V shows how information spaces [22] can guide
the design of efficient algorithms to solve the nondeterminis-
tic formulation in a more intuitive fashion. Section VI extends
the problem formulation and solutions to probabilistically mov-
ing targets and imperfect sensors. We provide implementation,
simulation results, and algorithmic analysis in Section VII and
conclude this paper in Section VIII.

II. COMPONENT EVENTS, SHADOWS,
AND SHADOW SEQUENCES

Intuitively, in the hide-and-seek game, the part of the world
that is not observable is comprised of many components, each
of which has a life span. To study the information flow in them,
a formal definition of components is first in order; the temporal
relationship among them then comes up naturally.

A. Component Events and Shadows

Let a nonempty set of robots move along continuous tra-
jectories in a workspace, i.e., W = R

2 or W = R
3 . Let the

configuration space of the robots be C. At some time t, there
may be configuration space obstacles Cobs which may vary over
time, leavingCfree := C\Cobs as the free configuration space. Let
q ∈ Cfree be the configuration of the robots at time t. Returning to
the workspace, there is a closed obstacle region O(t) ⊂ W , leav-
ing F (t) := W\O(t) as the free space. The robots are equipped
with sensors that allow them to make shared observations in a
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Fig. 1. (a) Environment and the free space, F . Note that in this example,
the obstacle region is fixed; therefore, F is constant. (b) Visible region: V (q).
(c) Shadow region: S(q), with two path components s1 , s2 .

joint FOV or visible region V (q, t) ⊂ F (t). For convenience,
we take the closure of V (q, t) and assume that the visible region
is always closed. Let S(q, t) := F (t)\V (q, t) be the shadow
region, which may contain zero or more nonempty path con-
nected components (path components for short). A path com-
ponent is assumed to be nonempty unless otherwise specified.
At any instant, O(t), V (q, t), and S(q, t) have disjoint inte-
riors by definition, and W = O(t) ∪ V (q, t) ∪ S(q, t). Fig. 1
shows V (q), S(q) for a point robot holding a flashlight with
F ⊂ W = R

2 , Cfree ⊂ SE(2), which is the set of 2-D transla-
tions and rotations (here, we omit the parameter t from F, V ,
and S, since the obstacle region does not vary over time).

To observe how path components of the shadow region evolve
over time, let the robots follow some path τ : [t0 , tf ] → C, where
[t0 , tf ] ⊂ T ⊂ R is a time interval. Let Z = W × T . We may
let O : T → Pow(Z) be the map that yields the obstacle region
and define V, S as: V, S : C × T → Pow(Z). Since a path τ ,
parameterized over t ∈ T , is always assumed in the paper, we
abusively write V (t), S(t) in place of V (τ(t), t), S(τ(t), t), re-
spectively. In particular, we are interested in S(t) and call it a
slice. For any (ta , tb) ⊂ [t0 , tf ], let the union of all slices over
the interval

S(ta , tb) :=
⋃

t∈(ta ,tb )

S(t)

be called a slab, which is an open subset of Z. For any subset z
of Z, define its projection onto the time axis as

πt : Pow(Z) → Pow(T )
z �→ {t | (p, t) ∈ z for some p ∈ W}.

Let st,i ⊂ S(t) denote the ith path component of S(t) (assuming
some arbitrary ordering). Let si ′ denote the i′th path component
of a slab S(ta , tb) (again, assuming some arbitrary ordering).
S(ta , tb) is homogeneous if for all t ∈ (ta , tb) and all i, there
exists i′ such that st,i = S(t) ∩ si ′ and, separately, πt(si ′) =
(ta , tb) for all i′.

A homogeneous slab is called maximal if it is not a proper
subset of another homogeneous slab. The definition, then, par-
titions S(t0 , tf ) into some m disjoint maximally homogeneous
slabs plus some slices

S(t0 , tf ) = S(t0 , t1) ∪ S(t1) ∪ · · · ∪ S(tm−1) ∪ S(tm−1 , tf ).

That is, homogeneity of S(t0 , tf ) is broken at t1 , . . . , tm−1 .
What exactly happens at t1 , . . . , tm−1? Let there be two homo-
geneous slabs S(ta , tb) and S(tb , tc) such that for some k ∈
{1, . . . , m − 1}, tk−1 ≤ ta < tb = tk < tc ≤ tk+1 . Letting si

be an arbitrary path component of S(ta , tb), at t = tb , si may (s
denotes the closure of s)

Fig. 2. Evolution of shadow regions: t1 : s3 appears, t2 : s2 , s3 merge into s4 ,
t3 : s4 splits into s5 , s6 , t4 : s6 disappears. The “sizes” of the shadow regions
have no effect on the critical events.

1) live on, if there exists a path component sj ⊂ S(tb , tc)
such that si ∩ S(tb) = sj ∩ S(tb) �= �;

2) disappear, if si ∩ S(tb) = �.
Similarly, a path component sj ⊂ S(tb , tc) may
3) appear, if sj ∩ S(tb) = �.
Finally, a nonempty set of path components {si} of S(ta , tb)

may
1) evolve, if there is a nonempty set of path components

{sj} of S(tb , tc) such that |{si}| + |{sj}| ≥ 3 and
⋃

i si ∩
S(tb) =

⋃
j sj ∩ S(tb) �= � is a single path component of

S(tb).
By definition, appear, disappear, and evolve are critical

changes that only (and at least one of which must) happen
between two adjacent maximally homogeneous slabs. We call
these changes component events. With component events, ho-
mogeneity and maximality readily extend to path components of
slabs. A path component si ⊂ S(ta , tb) is called homogeneous
if no component events happen to a subset of si in (ta , tb); si is
called maximal if it is not a proper subset of another homoge-
neous path component.

At this point, a type of general position is assumed to avoid
two tedious cases: 1) Four or more path components cannot be
involved in an evolve event; and 2) two or more component
events cannot occur at the same time. In practice, nongeneral
position scenarios form a measure zero set and can be dealt with
via small perturbations to the input if required. With such an
assumption, exactly one component event happens between two
maximally homogeneous slabs. Moreover, the evolve event can
be divided into two sub events: split if |{si}| = 1, |{sj}| = 2
and merge if |{si}| = 2, |{sj}| = 1.

We now piece together the aforementioned definitions using
an example illustrated in Fig. 2. Restricting to the time inter-
val (t0 , tf ), there are five maximally homogeneous slabs, i.e.,
S(t0 , t1), . . . , S(t4 , tf ). Certain proper subsets of one of these,
such as S(t+2 , t−3 ) with t2 < t+2 < t−3 < t3 , are again homoge-
neous but no longer maximal; on the other hand, supersets,
such as S(t−2 , t+3 ) with t−2 < t2 < t3 < t+3 , are no longer ho-
mogeneous. The slab S(t0 , tf ) ⊂ Z has two path components
(s1 and Int(s2 ∪ s3 ∪ s4 ∪ s5 ∪ s6), where Int denotes the inte-
rior of a set) and six maximally homogeneous path components
s1 , . . . , s6 . The intersection of a vertical line at t ∈ (t0 , tf ) with
S(t0 , tf ) corresponds to the slice S(t). For convenience, it is
assumed that t = t0 is not a critical time in the sense that for
each path component st0 ,i ⊂ S(t0), st0 ,i = si ′ ∩ S(t0) for some
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Fig. 3. Example of shadows and their indexing/labeling. (a) Set of spotlights
and the path to be followed by the darker (orange) colored spotlight. (b) Initially,
only shadow s2 and unbounded shadow s1 exist. (c) New shadow s3 appears.
(d) s2 , s3 merge into a single shadow s4 . (e) s4 splits into new shadows s5 , s6 .
(f) s6 disappears.

path component si ′ ⊂ S(t0 , t1). A similar assumption is made
for t = tf . Under this setup, there are four component events:
1) s3 appears at t = t1 ; 2) s2 and s3 merge to form s4 at t = t2 ;
3) s4 splits into s5 , s6 at t = t3 ; and 4) s6 disappears at t = t4 .
In contrast, the path component s1 ∩ S(t0 , t1) lives on through
t1 , . . . , t4 .

Finally, in this section, we define the main concept of the pa-
per: shadow. It is easy to see that maximally homogeneous path
components are pairwise disjoint. Let such a path component
be called a shadow; let {si} be the set of shadows of S(t0 , tf );
note that S(t0 , tf ) is contained in the closure of ∪isi . In the
previous example, {si} = {s1 , . . . , s6}. For some t ∈ (t0 , tf ),
let a path component of S(t) be labeled as st,i if it is a slice of
a shadow si . More precisely, st,i = si ∩ {(p, t) | p ∈ W}. For
t = t0 , st0 ,i is labeled such that st0 ,i = si ∩ S(t0) for some path
component si ⊂ S(t0 , t1). The same applies to the labeling of
stf ,i . A path component of S(t) has no label exactly when it is
the border of two or more shadows of a slab. Since such labeling
is unique, we drop time subscript of st,i if t is fixed. In the rest
of this paper, we use the set {si} to denote both shadows and
slices of shadows; we simply call both types of path components
shadows when no confusion arises from the context. When we
need to distinguish, the former will be called workspace-time
shadows and the latter workspace shadows.

B. Shadows are Everywhere

To promote the intuition behind the mathematical definitions,
let us look at a realistic example shown in Fig. 3(a). With the
intention of guarding a planar region, spotlights are cast on the
ground, creating a set of illuminated disks as shown. Assume
that only the darker (orange) colored disk of light moves and
follows the dashed line. For any position of the moving spotlight,
the combined illuminated set can be thought of as the FOV. Its
complement in the plane is the shadow region, in which targets
cannot be directly observed. Initially, there are two connected
components, which are labeled s1 (unbounded) and s2 , in the
shadow region. As the spotlight moves along the dashed line, we
observe that shadows may appear, disappear, merge, and split,
as illustrated in Fig. 3(b)–(f). We constructed this example so

Fig. 4. (a) Two robots (white disks) carrying omnidirectional, infinite range
sensors. The free space is partitioned into seven shadows. (b) When sensing
range is limited, the topology of shadows changes; only two shadows are left.
(c) Indoor environment guarded by fixed beam sensors (red line segments) and
cameras (yellow cones). There are three connected shadows. (d) Simple mobile
sensor network in which the white disks are mobile sensing nodes, with shaded
regions being their sensing range at the moment. There are two shadows with
s1 being unbounded.

that the events and evolution of shadows match exactly these of
the example from Fig. 2.

The naive example suggests that shadows and component
events arise from very simple setups. Indeed, shadows and com-
ponent events are ubiquitous, showing up whenever moving
sensors are placed inside environments. We provide three ad-
ditional examples to corroborate this point; many others could
be presented. In Fig. 4(a), omnidirectional, infinite range sen-
sors partition the 2-D environment into polygonal shadows. The
component events happen exactly when the sensors make in-
flection and bitangent crossings (see aspect graphs [33]), which
gives rises to the concept of gaps and gap navigation trees as
discussed in [45]. If the sensors have limited viewing angle [11]
or limited range [see Fig. 4(b)], alternate models governing visi-
ble and shadow regions are obtained. In Fig. 4(c), fixed infrared
beams and surveillance cameras are placed inside a building,
creating a set of three fixed shadows s1 , s2 , and s3 . Such a set-
ting is common in offices, museums, and shopping malls. As a
last example, Fig. 4(d) shows a simplified mobile sensor net-
work with coverage holes. In this case, the joint sensing range
of the sensor nodes is the FOV and the coverage holes are the
shadows, which fluctuate continuously even if the sensor nodes
remain stationary (consider cellphone signals).

For some environments, shadows are readily available or can
be effectively computed with high accuracy, such as visibility
sensors placed in 2-D polygonal environments. In some other
cases, shadows are not always easy to extract. As one example,
estimating coverage holes in a wireless sensor network is rather
hard, since it is virtually impossible to know whether a point p is
covered unless a probe is dispatched to p to check. It is also well
known that 3-D visibility structure is difficult to compute [28],
[34]. Even though we do not claim to overcome such inherent
difficulties in acquiring visibility region and/or shadows, the
method presented here applies as long as a reasonably accurate
characterization of the shadows is available.



444 IEEE TRANSACTIONS ON ROBOTICS, VOL. 28, NO. 2, APRIL 2012

Fig. 5. Shadow sequence for the example from Fig. 3. The numbers in the
circles represent the labels of the shadows. The four events marked on the time
line, from top to bottom, are appear, merge, split, and disappear. As one would
expect, this figure closely resembles Fig. 2.

C. Shadow Sequences

We conclude this section with the introduction of a shadow
sequence, of which the importance will become more apparent
in coming sections. When the shadows of S(t0 , tf ) for a fixed
path τ are put together, a sequential structure comes up. This
structure, which we call a shadow sequence, captures the com-
binatorial changes of the labeled shadows through component
events. A graphical illustration of the shadow sequence for the
example in Fig. 3 is given in Fig. 5.

III. TARGETS, FIELD-OF-VIEW EVENTS,
AND IMPERFECT SENSORS

A. Targets

Our interest in shadows lies with maintaining information that
is not directly observable by sensors. To effectively investigate
how to track such information, we briefly characterize what we
mean by information. We assume that there is a nonnegative
integer number of targets in F , which are point entities that
move arbitrarily fast but follow some continuous, unpredictable
trajectories. The robots’ sensors can detect certain attributes
of these targets. We are interested in two types of attributes:
location and identity.

Location: When the targets move in/out the sensors’ FOV,
their appearance/disappearance may be detected. Depending on
the sensors’ capabilities, at least two levels of precision are
possible: 1) The sensors can tell whether the FOV contains no
target or at least one. In other words, each sensor’s output is
binary (motion detector is a sensor of this type). 2) Each target
inside the FOV can be precisely located and counted.

Identity: When multiple targets are present, it may be possible
to tell them apart. That is, the sensors may be able to distinguish
the targets in the FOV. Roughly speaking, the targets may be

1) Fully distinguishable. When targets possess unique IDs
recognizable by the sensors, they are fully distinguishable.

2) Indistinguishable. Although it appears that full distin-
guishability is the most powerful, it is not always avail-
able due to sensor cost constraint or even desirable due to
concerns such as privacy. It is not hard to make targets in-
distinguishable: In the sensor output, erase any attributes
that can be used to distinguish among the targets.

3) Partially distinguishable. Everything between the previ-
ous two notions of distinguishability belongs to this class.

For instance, targets may form teams that are distinguish-
able by color.

Location and identity are related—full distinguishability
implies that the sensors should be able to locate targets in
the FOV. On the other hand, tracking locations over time can
be used to distinguish targets. However, these two attributes
are not identical and it benefits to treat them orthogonally.
For example, when colored teams of targets are present, a
low-resolution overhead camera can easily tell whether a team
is present in the FOV via a color scan, acting as a combination
of binary location sensor and identity sensor. Given sensors
that can detect some subsets of the aforementioned attributes
of targets, each labeled shadow can be assigned one or more
variables that describe these attributes of the targets residing in
the shadow. Note that although we deal mostly with binary and
integer variables in this paper, variables of other forms, such
as real numbers, can also be incorporated over the structure
of shadows and component events introduced here. When we
consider targets in the shadows, a type of invariance arises.

Observation 1 In an environment with only component
events, the number of targets hidden in a workspace-time
shadow is invariant along its span over time; furthermore,
a workspace-time shadow is a maximal set in which such
invariance holds.

By the assumption that a hidden target moves continuously,
its trajectory is contained in the same workspace-time shadow
when no component events happen. Two workspace shadows, as
different time slices of the same workspace-time shadow, must
intersect the same number of such trajectories, since no target en-
ters or exits the component in the time being. This yields the in-
variance. The second claim follows the definition of workspace-
time shadow as a maximal union of all such workspace shadows.

B. Field-of-View Events

If a location sensor also has memory, it will be able to detect
changes to the number of targets in the FOV during a short
time interval. We call such a change a field-of-view event (FOV
event for short), a second type of critical events. Furthermore,
if the sensors know where FOV events happen, such events can
be associated with corresponding shadows. For a shadow si ,
three FOV events are possible: 1) A target enters si from the
FOV. 2) A target exits si into the FOV. 3) Nothing happens at
the boundaries between si and the FOV (for a period of time),
which is a null event. Denoting these events ee , ex , and en ,
respectively, the collection of possible FOV events for a shadow
si is the set

EFOV = {ee , ex , en}.

Some sensors may only detect the enter and exit events explic-
itly, such as a sensing node in a sensor network that only senses
targets passing through the boundary of its sensing range. For
detection beams, the FOV is a line segment, which causes two
FOV events to happen consecutively (see Fig. 6). Certain sys-
tems may not have FOV events at all; an instance is a PE game in
which the evader always avoids appearing in the pursuer’s FOV.
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Fig. 6. FOV events (left) for an environment with obstructed visibility and
for (right) an environment with detection beams. 1) A target is about to exit a
shadow into the FOV of the sensor (yellow disk). 2) A target is about to enter a
shadow from the sensor’s FOV. 3) A target is about to enter and exit the FOV
of a beam sensor.

Fig. 7. Typical sequence of critical events. The circles with numbers represent
the shadows; the labeled arrows associate FOV events to shadows.

The game ends when an evader is found or when it is confirmed
that no evader is in the environment.

Since component events and FOV events both happen as
robots move along some path τ in the free space F , it makes
sense to treat them as a whole. It does not take much to represent
them together: We can simply augment the shadow sequence to
include the FOV events. A typical combined sequence of crit-
ical events is shown in Fig. 7. To incorporate FOV events, the
invariance from Observation 1 needs to be updated.

Observation 2: In an environment with component and FOV
events, the number of targets hidden in a workspace-time
shadow is invariant between FOV events (excluding null events)
associated with the shadow; the time span of such invariance is
again maximal.

To see why the previous statement is true, note that an enter
FOV event can be viewed as an appear component event imme-
diately followed by a merge component event. Same breakdown
holds for exit FOV events. The case is, then, reduced to Obser-
vation 1. Observation 2 establishes that for the task of tracking
hidden targets that move continuously, any sensor data that are
unrelated to critical events can be safety discarded without ad-
verse effects.

C. Problem of Tracking Hidden Targets

With the introduction of component and FOV events, we can
formally define the general problem of tracking hidden targets
that move continuously. The following inputs are assumed: 1) an
initial distribution of targets (in shadows) whose total number
remains invariant; 2) an ordered sequence of component and
FOV events for the time interval [t0 , tf ]; and 3) any target motion
dynamics (e.g., nondeterministic) that may provide additional
information about critical events.

From these inputs, the task is to track the evolution of the
target distribution and, in particular, to estimate at t = tf the
possible number of targets in a given set of shadows. For the
rest of this paper, we focus on two aspects of this problem:
1) a nondeterministic setting in which targets move nondeter-
ministically but critical events are observed without error and
2) a probabilistic setting in which the targets’ movement has a
probabilistic model and there are imperfect sensors.

IV. TRACKING NONDETERMINISTICALLY MOVING TARGETS:
THE FORMULATION AND AN INTEGER LINEAR

PROGRAMMING PERSPECTIVE

A. Problem Formulation

In the nondeterministic setting, we assume that the targets
move nondeterministically. In particular, when a shadow si

splits into shadows sj , sk , the targets inside si can split in any
possible way as long as the numbers of targets in sj and sk are
both nonnegative. The component events and FOV events are
assumed to be observed without error. Given such assumptions,
the observation history can be partitioned into two inputs to our
filter algorithm: 1) a sequence of shadow and FOV events and
2) the initial conditions of targets in the shadows at time t = t0 .
A typical initial condition for a shadow takes the form

{(a1 , l1 , u1), (a2 , l2 , u2), . . . , (ak , lk , uk )} (1)

where ai denotes a subset of target attributes (such as hav-
ing red color). We assume that elements of the set {ai} for
a shadow are pairwise disjoint: If ai has red color, then no
aj , j �= i can include targets with the attribute of having red
color. The corresponding li and ui denote the lower and up-
per bounds on the number of targets in the shadow with at-
tribute ai . For example, we may know that at the beginning, a
shadow have six to nine green targets and five targets that may
be blue or red. In this case, the initial condition can be written
as {(c = green, 6, 9), (c = blue or red, 5, 5)}.

With these inputs, the main task is to determine the lower
and upper bounds on the number of targets in any given set
of shadows at t = tf for any combinations of attributes. These
obtained bounds are always tight in the sense that any target
distribution falling in these bounds is a possible outcome given
the initial condition and the observation history.

To make the explanation of the algorithm clear, we first work
with a single attribute and ignore FOV events. We also assume
for the moment that the initial conditions are tight in the sense
that all possible choices of values must be consistent with the
later observations (e.g., we cannot have a initial condition of
four to six targets in a shadow and later find that it is only
possible to have two targets in it). We will then show how FOV
events, multiple attributes, and other extensions can be handled
incrementally.

B. Integer Linear Programming Perspective

For the simplest case, since there is a single attribute and the
FOV events are ignored, we can represent the number of targets
in a shadow with a single unknown quantity. Let the set of
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shadows be {si}; we denote the set of corresponding unknowns
as {xi}. We can write the initial condition for each shadow at
t = t0 as two constraints

li ≤ xi ≤ ui. (2)

For each event in the sequence of component events, we then
obtain one extra constraint of the following form:

Appear or disappear: xi = di

Split or merge: xi = xj + xk . (3)

Here, we allow that as an appear event happens, di targets may
hide in si at the same time. This is more general than letting
di = 0. To unify notation, we write these in the same way as
the initial conditions by letting li = ui = di . The same applies
to the disappear events. Additionally, we have, for each shadow
si , the constraint

xi ≥ 0. (4)

Finally, the task becomes finding the lower and upper bounds
of targets for a set of shadows at time t = tf indexed by I. For
the upper bound, we can write the problem as maximizing the
sum of the set of unknowns

maximize
∑

i∈I
xi. (5)

Finding the lower bound, then, becomes maximizing the set of
unknowns not indexed by I because the total number of targets
are preserved. We have obtained an ILP problem: All critical
events can be expressed using constraints of forms from (2)–
(4), with the objective function having the form from (5). For
example, if we are to express the ILP problem in the canonical
form, all we need to do is to split each equality constraint [given
by (3)] into two inequality constraints (e.g., xi = di becomes
xi ≤ di and xi ≥ di) and multiply all inequality constraints with
−1 where necessary (xi ≤ di ⇒ −xi ≥ −di). This gives us the
ILP problem in canonical form

minimize
∑

i∈I
−xi, subject to Ax ≥ b, x ≥ 0 (6)

where A is the constraint coefficient matrix accumulated from
initial condition and the critical events; x is the vector of un-
knowns (one for each shadow). The size of A is determined by
the number of shadows and the number of critical events. For
additional discussion on ILP modeling, see [30].

C. Polynomial Time Solvability of the Integer Linear
Programming Problem

It is well known that the class of ILP problems is NP-complete
in general. It turns out, however, that our ILP problem is not only
feasible, but efficiently solvable as well. We point out that an
actual target tracking problem may require solving more than a
pair (upper and lower bounds) of ILP problems, as formulated
in (6). For example, in a fire rescue scenario, it may be neces-
sary to estimate upper and lower bounds on all current shadows
individually. Nevertheless, as long as the number of ILP prob-
lems are manageable (say, linear with respect to the size of the

inputs), the overall problem can also be efficiently solved, as we
now show.

Lemma 3: The matrix A in (6) is totally unimodular.1

Proof: We use induction over the size of square submatrices
of A to prove that all such submatrices must have determinant
0 or ±1. As the base case, every element of A is 0 or ±1.
Suppose that all square submatrices of order n have determinant
0,±1. Denote these matrices Mn . Suppose there is a square
submatrix M of A of order (n + 1) with determinant not in
{0,±1}. Every constraint arising from (2)–(4), except for xi =
xj + xk , introduces rows in A with a single ±1 in them; the
rest of the row contains only 0s. If M contains a row arising
from these types of constraint, then M must have determinant
0,±1 by induction. Suppose not. In this case, all rows of M
are introduced by constraint of type xi = xj + xk . Each such
constraint brings in two rows of A with opposite signs and,
therefore, cannot both appear in M . We can assume that M ’s first
row has coefficients coming from one of the rows introduced by a
split event, xi = xj + xk . As a first case, let the i, j, kth columns
of A correspond to i′, j′, k′th columns of M , respectively. To
make M ’s determinant not in {0,±1}, there needs to be another
row in M that contains exactly two nonzero elements among
i′, j′, k′th columns. This is only possible if sj and sk merge
again, giving a constraint of the form xj + xk = xl . We may
let this row be the second row in M . This suggests that j′, k′th
column of M are all zeros after the second row; but this gives us
that M has determinant 0. The second case is that M includes
only two columns of A’s i, j, kth columns. It can be checked,
similarly, that M must have determinant 0. �

Proposition 4: A polynomial time algorithm exists for the
system described by (6).

Proof of Proposition 4: When the constraint matrix A is totally
unimodular and b is a vector of integers, the minimal faces of the
constraint polytope must assume integer coordinates, making
the solution of the relaxed linear programming (LP) problem
also the solution to the original ILP problem [36]. It is clear that
b in (6) is integer. Lemma 3 gives us that A is totally unimodular.
Therefore, a polynomial time algorithm such as interior point
method can be applied to solve (6). �

V. TRACKING NONDETERMINISTICALLY MOVING TARGETS:
AN INFORMATION SPACE PERSPECTIVE AND EFFICIENT

ALGORITHMS VIA COMBINATORIAL FILTERS

Although Proposition 4 tells us that the nondeterministic for-
mulation can be solved in polynomial time using generic LP
algorithms, it is not clear that these algorithms fully explore the
intrinsic structure of the problem at hand. In this section, we
briefly review the information space (I-space for short; see [22],
ch. 12] for an introduction) and show how the I-space frame-
work can help with the systematic exploration of the structure of
filtering problems that are combinatorial in nature. For our par-
ticular problem, we show that additional information can be dis-
carded from the shadow sequence to yield a further condensed

1An integer square matrix A is unimodular if det A = ±1. A matrix B is
totally unimodular if every non-singular square submatrix of B is unimodular.



YU AND LAVALLE: SHADOW INFORMATION SPACES: COMBINATORIAL FILTERS FOR TRACKING TARGETS 447

information state (I-state). Algorithmic solutions based on max-
flow are then introduced, followed by various extensions.

A. Information Space as a Guiding Principle for Task-Based
Data Filtering

As a shadow sequence is extracted from an observation his-
tory, a much condensed combinatorial structure is left. This
choice is not arbitrary: The general task of tracking unpre-
dictable targets outside the sensor range induces an equivalence
relation over the workspace-time space that yields the space of
shadows; the evolution of these shadows then gives rise to a
space of shadow sequences. In this section, we review I-space/
I-state concepts and explain how shadow sequences can be
viewed as derived I-states and the space formed by them a de-
rived I-space. We also characterize how I-spaces/I-states, tasks,
and filters are closely related.

For any problem, I-space analysis begins with the history
I-space, i.e., Ihist , which is essentially the set of all data that
robots may ever obtain. Formally, for a time period [t0 , tf ] ⊂ T ,
a perfect description of everything that occurred would be a
state trajectory x̃t : [t0 , tf ] → X , where X is the combined
state space of robots and targets. It is impossible to obtain this
because not all target positions are known. What is available
is the robots’ trajectory q̃t = τ and the sensor observation his-
tory ỹt : [t0 , tf ] → Y , which is produced by a sensor mapping
h : X → Y , in which Y is the observation space of the sensors.
Let the robots also have access to some initial information η0
at t = t0 . The history I-state at time, i.e., t, ηt = (η0 , q̃t , ỹt),
represents all information available to the robots. The history
I-space Ihist is the set of all possible history I-states. Ihist is
an unwieldy space; it must be greatly reduced if we expect to
solve interesting problems. Imagine a robot equipped with a
GPS and a video camera moves along some path τ . Without a
specific task, the robot will not be able to decide what informa-
tion it gathers is useful; therefore, it has to store all of q̃t , ỹt .
Even at a relatively low spatial resolution and a frequency of
30 Hz, just keeping the robot’s locations and the camera’s im-
ages in compressed form requires a large amount of storage
space, which presently is not generally possible over a long time
period.

Once a task is fixed, however, it may become possible to
reduce Ihist dramatically. For our specific task of tracking hid-
den targets in shadows, as we have established in Observation
2, all we need to know is the initial distribution of targets, the
component events, and the FOV events. Since targets move un-
predictably, other information contained in ηt does not help:
the robots’ exact location, the shape of the workspace shad-
ows, and what the targets in the FOV are doing are not rel-
evant. Thus, Observation 2 allows us to construct a derived
I-space Iss , called the shadow sequence I-space that discards
the irrelevant information. Consider the information contained
in ηt = (η0 , q̃t , ỹt). To derive Iss , the following reductions are
made over η0 , q̃t , and ỹt .

1) The initial distribution of targets is extracted from η0 .
2) The shadow sequence is extracted via processing q̃t and

ỹt .

Fig. 8. Two shadow sequences that are equivalent for task of estimating lower
and upper bounds on the number of targets in the shadows at time t = tf .

3) The observation history ỹt is compressed so that only
critical events and temporal order between these events
need to be recorded.

The result from this reduction is the shadow sequence I-state
η′

t (Fig. 7 gives an example) that lives in Iss . Iss , as a complete
yet more compact representation, immediately reveals much
more structure that is intrinsic to our task than Ihist does. From
this, we observe a general pattern that we exploit: Given Ihist
and a task, we try to find one or more sufficient derived I-spaces
and work exclusively in these derived I-spaces. In signal pro-
cessing, a filter is defined as a device or process that removes
from a signal unwanted features [19]. In this sense, the process
of extracting shadows from q̃t and ỹt is exactly a filter. More-
over, Ihist and Iss are connected through this filter. From this
perspective, solving a task becomes finding the correct I-space,
applying the associated filter, and performing additional compu-
tation as events happen. For the nondeterministic formulation,
we call such filters combinatorial filters.

B. Bipartite I-Space

As mentioned earlier, generic LP algorithms may not explore
the full structure of our problem. One interesting property of our
problem is that the distribution of targets in the shadows mimics
network commodity flow. Another intrinsic and key property
of our problem is that, in many cases, the relative order of
component events does not affect the possible target distribution
in the shadows. For example, the two shadow sequences in Fig. 8
are equivalent: The set of shadows at t = tf are basically the
same. This allows us to safely discard the intermediate shadows
to obtain a more compact I-space Ibip , the bipartite I-space.
The basic idea behind compressing Iss into Ibip is that, since
the robots’ sensors cannot obtain information from the shadows
as the robots move around, the information that really matters
is how shadows from the beginning and the current time are
related, while discarding the shadows from intermediate times.
By conservation of targets in the environment, the number of
targets in the shadows at t = t0 and appeared shadows must be
equal that in the shadows at t = tf and disappeared shadows.
This hints toward a bipartite graph structure, which is why we
denote the space of such I-states the bipartite I-space. To do
the filtering, the component events are processed individually
according to the procedure shown in Fig. 9. By the construction
of Iss and Ibip , we have shown that Ihist , Iss , and Ibip describe
the same ILP problem:
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Fig. 9. Incrementally computing I-states in Ibip . (a) Appear component event
in which a targets goes into shadow si adds two vertices and an edge, with a
associated with the left vertex. (b) Split event splits a vertex and all edges
pointing to that vertex. (c) Merge event collapses two vertices into one and
collapses their ingoing edges. (d) Disappear event in which si is revealed to
have a targets in it only associates a with the vertex on the right side.

Fig. 10. Although it is possible to obtain η ′
t+1 ∈ Iss from ηt+1 ∈ Ihist , it

is also possible to derive it from η ′
t and qt ,t+1 , yt ,t+1 , which also holds for

η ′′
t+1 ∈ Ibip .

Proposition 5 Given that targets move nondeterministically,
information from Ihist and the corresponding Iss , Ibip describe
the same ILP problem of form (6).

Proof: The invariance from Observation 2 gives us that Ihist
and Iss are equivalent in capturing the distribution of hidden
targets. To see that Iss and Ibip are equivalent, we may con-
sider each hidden target individually: Any flow of a target along
a shadow sequence is possible in the corresponding bipartite
structure, by construction. �

A graphical illustration of relationship between I-spaces and
I-states, which summarizes the I-space discussion, is given in
Fig. 10. We point out that such hierarchical structures exist
regardless of whether the formulation is nondeterministic or
probabilistic; it so happens that for our filtering problem, the
nondeterministic formulation leads to one more level of natural
structure than the probabilistic formulation (see Section VI)

C. Tracking Targets as a Max-Flow Problem

With the bipartite I-state structure, we are ready to illustrate
the complete combinatorial filtering process with a concrete
example (the procedure was first introduced in [51]). After ob-
taining the bipartite structure, the rest of the algorithm is noth-
ing more than applying a maximum flow subroutine (such as
Edmonds–Karp) [10]. For the environment given in Fig. 11(a),
a visibility cell decomposition procedure [6] will give us the
shadow sequence I-state in Fig. 11(b). Applying the Ibip filter

Fig. 11. (a) Two-dimensional office like environment. A single robot follows
the green path. Red dots are illustrations of possible targets in the environment.
(b) Shadow sequence I-state for the environment and path. The orange indexed
shadows are these at t = t0 or appearing; the green ones are these at t =
tf or disappearing. Shadow s18 are both appearing and existing at t = tf .
(c) Bipartite I-state. (d) Augmented graph for running max-flow algorithm.

then gives us the bipartite graph in Fig. 11(c). Note that each
shadow becomes a vertex (sometimes two vertices) of the bi-
partite graph. Once the bipartite graph is constructed, the task
of determining lower and upper bounds on shadows at t = tf
can be transformed into a max-flow problem. To achieve this,
we first augment the graph by adding a source vertex S and
sink vertex T . An edge is added between S and each shadow at
t = t0 , as well as each appeared shadow, and an edge is added
between T and each shadow at t = tf , as well as each disap-
peared shadow. The end result of doing this to the graph in
Fig. 11(c) is Fig. 11(d).

After obtaining the extended graph, capacities need to be
assigned to edges of the graph before running max-flow. Let
e(v1 , v2) be an edge in the graph from vertex v1 to vertex v2 , and
denote the capacity and flow on the edge as c(v1 , v2), f(v1 , v2),
respectively. Suppose that we want to obtain the upper bound on
the number of targets in shadow s19 . The edges of the original
bipartite graph will always have infinite capacities, which we
will not mention again. For each edge between S and a shadow
indexed i, let c(S, i) = ui . In our example, these indices are 1–
5, 10, 12, and 18. For each edge between a disappearing shadow
indexed i, and T , let c(i, T ) = li . These are 9 and 14 in our
example. Since we want as many targets to go to s19 as possible,
we let c(i, T ) = 0 for i = 13, 15, 18 and c(19, T ) = +∞. After
running the max-flow algorithm, the maximum possible number
of targets that can end up in s19 is given by

f(19, T ) +
∑

i

f(i, T ) −
∑

i

c(i, T ) (7)

in which the summations are over indices of disappearing shad-
ows. We need to consider disappearing shadows, since these
shadows should have flow equal to their capacity, which is not
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guaranteed by a max-flow algorithm. Filling in numbers into this
example, assuming that the input lower/upper bound pairs for
shadows 1–5, 9, 10, 12, 14, 18 are (2, 4), (0, 3), (5, 5), (2, 6), (4,
5), (2, 3), (1, 3), (3, 8), (2, 4), (5, 7), respectively, then, (7) gives
us that shadow 19 can have at most 24 targets. One possible
set of flow values yielding this results is f(9, T ) = f(14, T ) =
2, f(13, T ) = f(15, T ) = 0, f(18, T ) = 7, and f(19, T ) = 24.
If we instead want the lower bound on the number of targets
in s19 , we should let c(S, i) = li , c(i, T ) = li for i = 9, 14,
c(i, T ) = +∞ for i = 13, 15, 18, and c(19, T ) = 0. After run-
ning the max-flow algorithm, s19’s lower bound is given by

∑

i

c(S, i) −
∑

j

f(j, T ) (8)

in which the first summation is over all shadows connected
to S, and the second summation is over all shadows con-
nected to T . Using the earlier numbers, this minimum is
10 for shadow 19. A possible set of flow values yielding
this is f(9, T ) = f(14, T ) = f(15, T ) = 1, f(13, T ) = 4, and
f(18, T ) = 5. The same procedure applies to an arbitrary set of
shadows.

D. Incorporating Field-of-View Events

In the nondeterministic setting, there is no null FOV event. As
mentioned in Observation 2, exit and enter FOV events can be
handled by converting them into component events. To convert
an enter FOV event of shadow si into component events, we
simply create an appear component event of a single target
and, then, merge the newly created shadow into si . Similarly,
an exit FOV event can be converted into a split component
event followed by a disappear component event. The rest of the
algorithm stays the same. The problem is, however, if there is
a large number of FOV events compared with the number of
component events, this approach will slow down later steps of
the algorithm, since it will create two component events per
FOV event. Fortunately, there is no reason to handle each FOV
event individually; since each FOV event is associated with
some shadow, we can group them based on this association.
The only caveat is that we cannot just group all FOV events for
one shadow into a single batch FOV event as this can introduce
information loss. For example, if ex, ex , ee , and ee happens to
shadow si , this is not equivalent to nothing has happened: We
know that si must have at least two targets in it originally (a
“surplus”). On the other hand, the just mentioned surplus and
net target flow are the only two pieces of information that FOV
events of a shadow give us; hence, up to two batch FOV events
can summarize all information contained in all FOV events for
a given shadow. Let 〈ej 〉 be the sequence of FOV events for a
shadow si in which ej is either ee or ex ; we build a counter to
track the surplus of si as dmin = min{dj}, where dj is defined
as

dj =

⎧
⎨

⎩

dj−1 + 1, if ej = ee

dj−1 − 1, if ej = ex

0, if j = 0.

Let dtot be dj for the last j, i.e., the net target flow from FOV
events. We have four cases. If dmin = dtot = 0, we do nothing.

If dmin ≥ 0 and dtot > 0, we only need to create one batch enter
FOV event for si with dtot number of targets. If dmin < 0 and
dtot = dmin , we only need to create one batch exit FOV event
with |dmin | number of targets. In the last case, we need to create
one batch exit FOV event with |dmin | number of targets and,
then, an enter FOV event with dtot − dmin number of targets.
We can, then, apply the naive approach from the beginning of
this section to convert these batch FOV events into component
events. With this construction, we never need to handle more
than 5n events, where n is the maximum number of shadows.

E. Solving a Variety of Other Tasks

The ability to obtain lower and upper bounds of the number
of targets hiding inside a shadow easily extends to other useful
tasks. We briefly cover a few of these variations.

Refining initial bounds: Max-flow computations can also be
used to refine the lower and upper bounds from initial conditions
if they are not tight. To get a refined lower bound for a shadow at
t = t0 , say s1 from Fig. 11(b), let c(S, 1) = l1 , c(S, i) = ui for
i �= 1, c(i, T ) = ui for disappearing shadows, and c(i, T ) = 0
for the rest. After running max-flow on this network, a tighter
lower bound, if there is one, is given by

l′1 = l1 +
∑

i

c(i, T ) −
∑

j

f(j, T ). (9)

The summations are done similar to that of (8). To refine u1 , let
c(S, 1) = u1 , c(S, i) = li for i �= 1, c(i, T ) = ui for disappear-
ing shadows and c(i, T ) = +∞. After running max-flow

u′
1 = f(S, 1). (10)

This procedure also applies to a set of shadows.
Counting: In this case, the total number of targets, i.e., n,

is unknown. For determining n, the lower and upper bounds
on each shadow at t = t0 are set as li = 0, ui = +∞. As new
component or FOV events are observed by the robots moving in
the environment, the previous procedure is run to keep refining
the initial bounds. Once we have li = ui for each initial condi-
tion, n has been determined. Note that if the free space is not
completely explored, then the upper bound remains at infinity.
Another instance of counting is knowing n. For example, in a
wild animal preserve, it may be required that the total number
of a species is verified periodically. This reduces to the problem
of being given n and wanting to account for all of them. To
verify the count, we can keep track of the lower bounds on the
total number of targets, and if the number agrees with n, then
the task has been accomplished.

PE: Suppose there is a single evader and the task is to deter-
mine where it might be. In this case, li = 0 and ui = 1 for each
shadow at t = t0 . There are three possibilities for each shadow
at t = tf : 1) li = ui = 0 (the evader is not in si); 2) li = ui = 1
(the evader is definitely in si); and 3) li = 0, ui = 1 (the evader
may or may not be in si). Note that this is a passive version of the
PE problem. We do not determine a trajectory that is guaranteed
to detect the evader. In general, this problem is NP-hard [14].
Nevertheless, the calculation method that is proposed in this
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paper can be used with heuristic search techniques (or even
human operators) to correctly maintain the status of the pursuit.

F. Incorporating Distinguishability

So far, we only considered the case of a single attribute,
which is the fully indistinguishable case. What about multiple
attributes? We consider two important cases of distinguishability
based on whether attributes get mixed up or not. If attributes are
not intertwined, i.e., each ai in (1) is a single attribute, it is
straightforward to see that for m attributes, all we need to do
is to run the algorithm for a single attribute m times, once for
each attribute. Additional computation can, then, be performed
to calculate more complicated combinations. For example, if we
want the lower and upper bounds on the number of all targets
for a shadow, then we can simply add up individual lower and
upper bounds.

For the second case in which we may have multiple attributes
for some ai , the aforementioned approach does not work. Using
the example from Fig. 11, suppose that there are two teams, i.e.,
red and blue, and the initial conditions of shadows at t = t0 are
of the form (red or blue, li , ui). Suppose that we want to get the
lower and upper bounds of the number of targets in s19 again.
For lower bounds, four computations are needed: first, we set
red capacities to 0 and blue capacities to li for all edges starting
from S. The capacities for each color for edges ending in T
are set as earlier. Running two max-flow computations, i.e., one
for red and one for blue, gives us one possible lower bound
lr1 , lb1 . Switching red and blue and repeat the aforementioned
procedure gives us another lower bound lr2 , lb2 . We should have
lr1 + lb1 = lr2 + lb2 . The lower bound on s19 is then lr1 + lb1
red or blue targets with between lr1 and lr2 red targets. The
upper bound can be obtained similarly.

VI. IMPERFECT SENSORS, PROBABILISTIC EVENTS, AND

BAYESIAN FILTERS

Now consider the case of probabilistic uncertainty. So far,
we have assumed that shadows and events are always reported
without any error, which is unrealistic in practice. For detecting
shadows, we already mentioned that true sensing range may
be unavailable for some sensors, and sometimes, it is simply
computationally impractical to obtain the exact visible/shadow
region. However, if we settle for partial correctness, then prob-
abilistic models can be applied. For example, when we deal
with sensor networks, conservative, probabilistic estimates of
sensing range may suffice.

The same principle applies to FOV events. For each of the
three FOV events, we assume that the sensors on the robots may
correctly observe it or mistake it for the other two events. An
enter event for a component may be reported by the sensor as an
enter, exit, or null event; the same applies to exit and null events.
That is, the sensor mapping is given by h : EFOV → YFOV , with
YFOV being the set of FOV observations YFOV = {ye, yx , yn},
where ye, yx , and yn are enter, exit, and null observations. The
map h can be deterministic, nondeterministic, or probabilistic.
In this section, the case of a probabilistic FOV event-sensor

mapping is investigated, together with the assumption that the
dynamics of a split event is provided.

Before moving on, we introduce some notations to facilitate
the discussion of the probabilistic formulation. We use si to
denote the shadow with label i, as well as the random variable
for that shadow in the joint/multivariate distribution. For shad-
ows s1 , . . . , sn , the joint distribution is then P (s1 , . . . , sn ), in
which a specific entry is P (s1 = x1 , . . . , sn = xn ) ∈ [0, 1]. In
writing formulas and outlining algorithms, we shorten the re-
peated variables to “. . .” on both the left-hand side (LHS) and the
right-hand side (RHS) of an expression. In such cases, the com-
bined “. . .” on the LHS and RHS denote the same set of random
variables. For example, P (s1 , s2 , s3 , s4) = P (s1 , s2 , sk , s3 , s4)
is shortened to P (. . .) = P (. . . , sk , . . .).

A. Problem Formulation

In the basic setup, besides the availability of a sequence of
component and FOV event observations (see, e.g., Fig. 7), the
following assumptions are made.

1) Component events are observed without error.
2) Targets are indistinguishable. The initial condition is given

as a joint probability distribution P (s1 , . . . , sn ) of targets
in the n shadows at t = t0 .

3) When a split component event happens, a probabilistic
split rule decides how the targets should redistribute.

4) Observations of FOV events follows distribution given by
P (e = e|y = y), e ∈ EFOV , y ∈ YFOV .

After general algorithms are presented, we discuss exten-
sions relaxing the first two assumptions. The last two assump-
tions can be satisfied by collecting and analyzing sensor data
from the same environment; the necessity of these two assump-
tions will become self-evident shortly. Given these assumptions,
we want to obtain the target distribution in the m shadows,
P (s′1 , . . . , s

′
m ), at time t = tf .

The resulting joint probability distribution is useful in solving
many decision-making problems; for example, in a fire evacua-
tion scenario, knowing the expected number of people trapped
in various parts (shadows) of a building (possibly estimated
through observations from infrared beam sensors or security
cameras), firefighters can better decide which region of the
building should be given priority when they look around. The
expected number of people in each shadow is readily available
from the joint probability distribution.

B. Processing Component Events

To understand how observations affect target distributions in
a probabilistic setting, let us first look at the component events
(we do not distinguish between events and observations for
these, since they are the same by assumption). Among the four
types of component events, split and disappear events are more
important than appear and merge events.

1) Split: A split event introduces more uncertainty. As a
shadow splits into two disjoint shadows, the probability masses
in the newly spawned shadows cannot be predicted without ad-
ditional information because the sensors cannot see what hap-
pens within the shadow region during a split event. The issue is
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TABLE I
EXAMPLE OF A MERGE EVENT

resolved by the introduction of a split rule that is obtained from
supporting data or an oracle, which dictates how the originating
shadow’s probability mass should be redistributed. For example,
statistical data may support that the number of targets in the child
shadows are proportional to their respective areas.

2) Disappear: When a shadow disappears, the targets hiding
behind it are revealed. This information can be used to update
our belief about the target distribution by eliminating some im-
probable distributions of targets. In particular, it can reduce the
uncertainty created by split events. For example, suppose that
a shadow si , having di targets in it (with 100% probability),
splits into shadows sj and sk . It is possible that sj has 0 to di

targets in it, as does sk . However, if sk later disappears to reveal
dk targets in it and no other events happen to sj and sk , then
sj must have exactly di − dk targets in it. In general, assuming
that shadow sk disappears with a target distribution P (sk ), the
update rule is given by

P ′(s1 = x1 , . . . , sn = xn )

∝
∑

P (s1 = x1 , . . . , sk = xk , . . . , sn = xn )P (sk = xk )

in which the summation is over all joint probability entries of
P (s1 , . . . , sn ) such that sk = xk . Normalization is required.

3) Appear: An appearing shadow sk , with distribution P (sk ),
can be joined with the rest via combining the independent dis-
tributions P (sk ) with P (s1 , . . . , sn ):

P ′(s1 = x1 , . . . , sn = xn , sk = xk )

= P (s1 = x1 , . . . , sn = xn )P (sk = xk ).

4) Merge: In this case, two probability masses are collapsed.
We simply collect the joint distribution to form a single one

P ′(. . . , sk = xk ) =
∑

xi +xj =xk

P (. . . , si = xi, . . . , sj = xj , . . .)

where sk is the merged shadow of shadows si and sj . A detailed
example is given in Table I in which the original shadows are
s1 , s2 , and s3 , and s2 , s3 merge to form shadow s4 .

C. Processing Field-of-View Events and Observations

Shifting to FOV events, we observe that an enter event only
affects the shadow being entered by increasing the expected
number of targets in the shadow. If there is a single shadow s
and an enter event happens, we merely update P (s = di) = pi

to P (s = di + 1) = pi . On the other hand, an exit event does the
opposite, and we change P (s = di) = pi to P (s = di − 1) =
pi . A complication arises here: If shadow si splits into shadows
sj , sk , and an ex event happens to shadow sj , it suggests that

it is impossible for sj to have 0 target before the ex event. The
affected probability mass needs to be removed and the remaining
values renormalized. The null event does not change the target
distribution.

Now, to propagate a probability mass through an FOV obser-
vation, i.e., y, we essentially break the entry into three pieces
according to the aforementioned rules, multiplying each result-
ing entries with the probability P (e = ee | y = y), P (e = ex |
y = y), and P (e = en | y = y), respectively. If an enter event
is not possible for the observation, the two remaining entries are
renormalized.

D. Accurately Propagating Probability Masses

The first algorithm that we introduce in this section is one that
solves the probabilistic formulation from Section VI-A exactly.
As events happen, the probability mass, i.e., P (s1 , . . . , sn ),
is updated according to Algorithms 1 and 2 based on earlier
analysis, in which the observation data structure is defined in
Table II.
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TABLE II
DATA STRUCTURES

Fig. 12. Simple event observation sequence is generated (on the left, with
only two FOV observations marked with bold faced font) when a robot carrying
omnidirectional, infinite range sensor follows the dotted path in a polygonal
environment with a hole (the four figures on the right). The last event, i.e.,
disappearing of shadow s5 , is not shown on the right; we note that additional
resources are needed to make s5 disappear (say, a subsearch team). A slightly
more complicated sequence is also possible with six additional FOV observa-
tions (on the left, marked with lightened font).

As a demonstration, we work through the observation se-
quence given by Fig. 12, with the following assumptions: 1)
Initially there are two targets each in shadow s1 , s2 ; 2) the split
rule is that each target has 0.5 probability of going into each of
the two split shadows; 3) there is no null event or observation,
with the true positive rate for any observation being p = 0.9;
and 4) a5 = 1 with probability 0.5 and a5 = 2 with probabil-
ity 0.5. The extra assumptions are made so that the calculation
of the probability mass entries is limited and the entries can
be listed in a table. The iterative processing of observations is
shown in Table III. The distribution is represented using a table
of joint probabilities, which is always practical when there are
not too many targets and events. Renormalization is performed
in the third step for the first and sixth entries, as well as in the
last step. In the merge step, the third and seventh entries from
previous step are combined, as are the fifth and ninth entries. A
graphical illustration of the probability masses during each step
of the run is given in Fig. 13. Note that the dimensions change
as component events happen.

To verify the correctness of the outcome, Monte Carlo trials
are also run, in which individual targets are propagated through
the observation one by one. Since it is not an exact method, we
leave the details of it to the next section. After 1000 successful

TABLE III
EXAMPLE OF THE EVOLUTION OF THE TARGET DISTRIBUTION THROUGH

EVENT OBSERVATIONS

random trials (this is the number of trials used for all Monte
Carlo simulations in this paper), we obtained P (s4 = 0) =
0.079, P (s4 = 1) = 0.154, and P (s4 = 2) = 0.767, which
matches closely the results of the exact algorithm.

E. Efficiently Propagating Probability Masses

Although the algorithm PROCESSPROBABILITYMASS is exact,
its performance directly depends on the number of probability
mass entries of a particular problem. When there are few tar-
gets and events, this is not a problem; but what if this is not
the case? For a slightly more complicated event observation se-
quence (see Fig. 12), with five targets each in shadow s1 and
s2 to start, 135 joint probability table entries are obtained be-
fore the merge step, as shown in Fig. 14. The probability mass
entries increase rapidly because of the split events and the FOV
events. For a split event, if the originating shadow contains n
targets, the number of probability mass entries can multiply by
up to a factor of n + 1. For FOV observations, each has certain
probability to be enter, exit, and null events, which may cause
the number of probability mass entries to triple in the worst
case. Therefore, as the number of targets and events increase,
the number of probability mass entries may grow exponentially.
Since processing each observation requires going through all
the entries, computation time will also explode, suggesting that
the exact algorithm will not work efficiently. On the bright side,
when a large number of probability mass entries are present,
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Fig. 13. Graphical display of the target probability mass as the algorithm
PROCESSPROBABILITYMASS is run over the simple event observation sequence
in Fig. 12. Each figure corresponds to one step in Table III. Lighter (if any) and
darker balls represent probability masses before and after an event, respectively.
The volumes are proportional to the magnitude of the probability mass entries.

Fig. 14. Probability masses for the slightly more complicated observation
sequence in Fig. 12 before shadows s1 , s3 merge to form s5 . The axes s1 , s3 ,
and s4 , as shown in the figure, have ranges [1, 9], [0, 7], and [0, 5], respectively,
starting from the origin.

some of these entries must have very low weights; approxima-
tions become feasible.

Monte Carlo trials: Since our task is to probabilistically track
targets, sequential Monte Carlo methods are a natural choice.
As a first heuristic, we perform simple trials such that each trial
starts with the initial distribution of targets. These targets are
propagated through the event observations by querying a Monte
Carlo simulator. During each trial, the outcome of simulation
may contradict an observation, in which case the trial is simply
discarded. After a certain number of successful trials are com-
pleted, the final target distribution is obtained. For example, the
mean of the number of targets in a shadow at t = tf is simply
the average of the number of targets in that shadow over all
successful runs. For simulations in this paper, we require 1000
successful trials. Note that since the particular Monte Carlo sim-
ulation that we perform in this paper does not depend on data,

its result is probabilistically correct and, therefore, can serve as
baselines to verify results from other algorithms.

Improving the ProcessProbabilityMass algorithm: Ob-
serving that the computation is burdened by storing the sheer
amount of probability mass entries when there are many tar-
gets and observations, an obvious simplification is to resample
the entries and keep the important ones. For example, we may
choose to retain the first 1000 probability mass entries of largest
value. With each step of processing looking at each entry once,
the processing time per step becomes a constant, albeit a large
one. With this approximation, the earlier algorithm then runs in
time linear in the number of observations. We call this heuristic
basic truncation.

The problem with basic truncation, however, is that the
trimmed away entries may turn out to be important. Take the
processing in Table III; for example, if the fourth entry after the
merge step, i.e., P (s4 = 0; s5 = 2) = 0.0225, is truncated, then
the second entry in the end, i.e., P (s4 = 0) = 0.0769, will be
lost, which is significant. The issue becomes problematic very
quickly as the number of coexisting shadows increases, since
each shadow creates one dimension in the joint distribution,
and sampling a high-dimensional space is inherently inefficient.
To alleviate this problem, in addition to the basic truncation
approach of keeping fixed amount of entries with highest prob-
ability after each update, we also employ the following.

1) Randomly allow probability mass entries with low value to
survive truncation. In doing this, we hope to allow enough
low probability yet important entries to survive truncation.
We denote this heuristic as random truncation.

2) Retain more entries during update steps right before merge
and disappear events. Since disappear events usually cause
the number of probability mass entries to decrease dramat-
ically, we can afford to keep more entries right before these
events, without incurring much extra computational cost.
Merge events also cause the number to decrease as some
entries can be combined after merging. We combine this
with random truncation and denote the resulting heuristic
random truncation with event lookahead.

By construction, the additional heuristics do not incur more
time complexity. There is a clear similarity between these heuris-
tics and particle filtering: They all begin with a discrete set of
probability masses, push the set through an update rule, and re-
sample when necessary. They also share the same weakness: If
the key sample points with low probabilities are truncated, the
end result may be severely skewed. Unlike in typical particle
filter problems, the number of random variables in our problem
keeps changing with split and merge events.

F. Extensions

In Section VI-A, assumptions 1 and 2 are made to sim-
plify the presentation of the probabilistic algorithms. The first
assumption is that component events are observed without er-
ror, which is relatively straightforward to compensate if it fails
to hold, at least in theory: All we need to do is to maintain
a probability distribution over all possible sequence of shad-
ows that are consistent with the robot’s observations. Obtaining
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Fig. 15. Complicated examples that were used to test our approach. The given
robot trajectories are shown as green lines in the direction of the arrow.

expectations of the number of targets in any shadow can then
be done by also calculating the expectation over all possible
sequences of shadows that contain the target shadow. The com-
putation effort will certainly increase; resampling can alleviate
the burden somewhat.

Various distinguishability assumptions can be handled as
well. Recall that in the nondeterministic formulation, two distin-
guishability cases are investigated. When there are only teams
with single attributes, the approach from the nondeterministic
setting applies by simply carrying out one computation per team.
If the teams have multiple attributes (e.g., the initial condition
may be given as a joint distribution of red and blue teams), a
direct extension is performing one computation for each joint
probability entries in the initial condition. This is clearly more
work, and resampling may be necessary, depending on the gran-
ularity of the initial target distribution. On the plus side, although
we lose some accuracy with resampling (to save computation
time), a richer class of problems can now be handled because
any initial condition can be described as a joint probability dis-
tribution.

VII. SIMULATION RESULTS AND COMPLEXITY ANALYSIS

The simulation programs were developed adhering to the
Java 1.6 language standard under the Eclipse environment. The
computations were performed on a workstation with an Intel
Core 2 Quad processor running at 3.0 GHz. The JavaVM has a
maximum memory of 1.5 Gb.

A. Nondeterministically Moving Targets

For the nondeterministic case, we implemented and tested the
algorithms for a single robot that moves in a simply connected
polygonal region in R

2 using an omnidirectional visibility sen-
sor. We choose these environments, since efficient 2-D cell de-
composition routines exist to allow us to continuously track
the shadows. The setup also enables us to construct an oracle
(not available to the algorithm) for distributing targets inside
the free space to simulate their nondeterministic behavior. For
max-flow, we implemented the O(V E2)-time Edmonds-Karp
max-flow algorithm [10], in which V and E are the numbers of
vertices and edges in the flow graph, respectively.

For the environment in Fig. 15(a), the trajectory generates 85
component events. Our oracle randomly distributed 100 targets
in the free space as the component events occur. This setting
yields a bipartite graph that has 41 vertices and 60 edges. Cal-

Fig. 16. Event observation sequence with a total of 20 shadows in its life
cycle. The FOV observations are not marked.

culating the lower and upper bounds for the 18 final shadows
for a single team took 0.1 s. The second setup, which is shown
in Fig. 15(b), has 385 component events, 491 total shadows, and
124 vertices in the bipartite graph with 339 edges. The example
involves 1 million targets with five teams that intersperse. The
bounds on the 12 final shadow components for all five teams
were computed under 1 s.

The inputs to the base algorithm (single attribute, no FOV
events) are the following: 1) a sequence of n shadows and 2)
the initial condition which takes the form of a pair of lower
and upper bounds for each shadow at t = t0 . In the worst case,
there are O(n) vertices and O(n2) edges in the bipartite graph.
Edmonds–Karp max-flow, then, gives us O(n5) running time
in the worst case. Applying a push-relabel algorithm with first-
in-first-out vertex selection rule will cut the running time to
O(n3) [13]. Adding FOV events does not increase time com-
plexity asymptotically, as discussed in Section V-D. Adding
partial distinguishability, on the other hand, will introduce an-
other input parameter m, which is the number of teams, that
contributes linearly to time complexity. The typical worst case
running time for the nondeterministic case is then O(n3m).
The number of targets in the system does not directly affect the
performance.

B. Probabilistic Setup

For the probabilistic case, we ran a simulation with the ob-
servation sequence in Fig. 16. The sequence contains 14 com-
ponent event observations. We also included 32 FOV events
scattered along the sequence, which are not marked in the
figure. Shadows 1, 2, 3, 11, 13, 16, and 20 are associated with
10, 7, 8, 9, 6, 9, and 4 targets (with probability 1), respectively.
For performance measures, we look at the time for one run of
the algorithm to complete, as well as the expectation (mean
and standard deviation for randomized methods) of targets in
individual shadows at the end (s17 , s18 , and s19). When we ran-
domly pick entries to keep, the time result is averaged over ten
runs, and the accuracy is given in the form of mean and standard
deviation. In our implementation, we also make the following
choices: 1) For random truncation, the entries are kept based
on their probability multiplied by a random number in (0, 1);
and 2) for event lookahead, we will not truncate the entries if
there is a disappear event within the next four events or a merge
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TABLE IV
SIMULATION RESULTS OF DIFFERENT PROBABILISTIC METHODS

TABLE V
SIMULATION RESULTS OF SELECTED PROBABILISTIC METHODS OVER A LARGE

PROBLEM INSTANCE

event within the next two events. The outcome is summarized
in Table IV. The heuristics basic truncation, random truncation,
and random truncation with event lookahead are shortened as
TR, RT, and RT-LA, respectively. The number following the
method is the number of entries kept. By frequent failure, we
mean that more than one third of the time, the heuristic fails to
give a valid result. These are indicative of minimum number of
entries needed for the method to work.

The result shows that when no heuristic is used, the algorithm
takes much more time to finish. This is not surprising since
the time complexity is induced by the space requirement for
storing the probability mass entries. On the other hand, all of the
truncation heuristics work reasonably well, with the randomized
truncation plus event lookahead greatly reduces the number of
entries to retain. The RT-LA-50000 run compares well with the
TR-100 000 run on accuracy but uses one third less time. We
expect the advantage to become more obvious as more targets
are present in the system.

For a second test, we change the number of targets in shadows
1, 2, 3, 13, 16, and 20 to 25, 22, 23, 8, 15, and 9, while leaving
other observations unchanged. With the increased number of
targets, the basic algorithm runs out of memory after ten min,
before the third split is completed. At the peak of its memory us-
age during the failed run, there are more than 2 × 107 probability
mass entries. On the other hand, the randomized methods do not
have this problem: Both RT-100 000 and RT-LA-50 000 yield
good results, compared with Monte Carlo trials, with similar
running time. The result is summarized in Table V. Compre-
hensive performance analysis of probabilistic algorithm is hard,
since the performance depends on external factors, such as the
implementation of the specific split rule, random number gen-
erator, and so on. Nevertheless, for completeness, we discuss
the performance at a higher level. To avoid the issue of exter-

nal factors, we assume that at each step, each probability mass
takes constant time to process. Unlike the nondeterministic case,
running time of the PROCESSPROBABILITYMASS algorithm may
depend heavily on the number of targets in the system via the
split rule. If there are n split events with an average number of
targets in the originating shadow being p as well as nf FOV
events, with the reasonable additional assumption that merge,
appear, and disappear events are on the same order as split
events, the PROCESSPROBABILITYMASS algorithm can take time
O(pn3nf ). The running time of the resampling based algorithms
has a big constant depending on the number of entries to keep
but otherwise depends only linearly on the number of critical
events.

VIII. CONCLUSION

In conclusion, we have formulated and solved, at a very gen-
eral level, the problem of tracking targets moving in and out of
the FOV of moving sensors. The resulting filters may be applied
in numerous settings, such as PE, target enumeration, and sit-
uational awareness. When targets move nondeterministically, a
combinatorial filter is proposed for the tracking task: We show
that the naturally emerging ILP problem is, in fact, solvable in
polynomial time and provide an efficient max-flow-based solu-
tion for it. For the probabilistic filtering problem in which targets
move probabilistically and sensors are not reliable, we give both
exact and efficient algorithms that handle the several possible
scenarios, depending on the number of targets and observations
in a system. In solving the more general, probabilistic version
of the tracking problem, a clear link is also established between
combinatorial filtering and Bayesian filtering methods: The fi-
nal target distribution is in essence associating the combinatorial
solution, i.e., a polytope structure, with appropriate probabili-
ties. Viewing it from another angle, the probabilistic shadow
I-space extends naturally from its nondeterministic counterpart
by merely adding dimensions to record probabilities.
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