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Abstract

In this paper, we introduce Recipe1M, a new large-scale,
structured corpus of over 1m cooking recipes and 800k food
images. As the largest publicly available collection of recipe
data, Recipe1M affords the ability to train high-capacity
models on aligned, multi-modal data. Using these data, we
train a neural network to find a joint embedding of recipes
and images that yields impressive results on an image-recipe
retrieval task. Additionally, we demonstrate that regulariza-
tion via the addition of a high-level classification objective
both improves retrieval performance to rival that of humans
and enables semantic vector arithmetic. We postulate that
these embeddings will provide a basis for further exploration
of the Recipe1M dataset and food and cooking in general.
Code, data and models are publicly available1.

1. Introduction

There are few things so fundamental to the human expe-
rience as food. Its consumption is intricately linked to our
health, our feelings and our culture. Even migrants starting
a new life in a foreign country often hold on to their ethnic
food longer than to their native language. Vital as it is to
our lives, food also offers new perspectives on topical chal-
lenges in computer vision like finding representations that
are robust to occlusion and deformation (as occur during
ingredient processing).

The profusion of online recipe collections with user-
submitted photos presents the possibility of training ma-
chines to automatically understand food preparation by
jointly analyzing ingredient lists, cooking instructions and
food images. Far beyond applications solely in the realm of
culinary arts, such a tool may also be applied to the plethora
of food images shared on social media to achieve insight
into the significance of food and its preparation on public

∗contributed equally.
1http://im2recipe.csail.mit.edu

Figure 1: Learning cross-modal embeddings from recipe-
image pairs collected from online resources. These enable
us to achieve in-depth understanding of food from its ingre-
dients to its preparation.

health [4] and cultural heritage [14]. Developing a tool for
automated analysis requires large and well-curated datasets.

The emergence of massive labeled datasets [19, 26] and
deeply-learned representations [10, 20, 5] have redefined the
state-of-the-art in object recognition and scene classification.
Moreover, the same techniques have enabled progress in
new domains like dense labeling and image segmentation.
Perhaps the introduction of a new large-scale food dataset–
complete with its own intrinsic challenges–will yield a simi-
lar advancement of the field. For instance, categorizing an
ingredient’s state (e.g., sliced, diced, raw, baked, grilled, or
boiled) provides a unique challenge in attribute recognition–
one that is not well posed by existing datasets. Furthermore,
the free-form nature of food suggests a departure from the
concrete task of classification in favor of a more nuanced
objective that integrates variation in a recipe’s structure.

Existing work, however, has focused largely on the use
of medium-scale datasets for performing categorization
[1, 8, 16, 13]. For instance, Bossard et al. [1] introduced the
Food-101 visual classification dataset and set a baseline of
50.8% accuracy. Even with the impetus for food image cat-
egorization, subsequent work by [13], [16] and [17] could
only improve this result to 77.4%, 79% and 80.9%, respec-
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Figure 2: Dataset statistics. Prevalence of course categories and number of instructions and ingredients per recipe.

Partition # Recipes # Images

Training 720,639 619,508
Validation 155,036 133,860
Test 154,045 134,338

Total 1,029,720 887,706

Table 1: Recipe1M dataset. Number of samples in training,
validation and test sets.

tively, which indicates that the size of the dataset may be
the limiting factor. Although Myers et al. [16] build upon
Food-101 to tackle the novel challenge of estimating a meal’s
energy content, the segmentation and depth information used
in their work are not made available for further exploration.

In this work, we address data limitations by introducing
the large-scale Recipe1M dataset which contains one million
structured cooking recipes and their images. Additionally, to
demonstrate its utility, we present the im2recipe retrieval task
which leverages the full dataset–images and text–to solve
the practical and socially relevant problem of demystifying
the creation of a dish that can be seen but not necessarily de-
scribed. To this end, we have developed a multi-modal neural
model which jointly learns to embed images and recipes in
a common space which is semantically regularized by the
addition of a high-level classification task. The performance
of the resulting embeddings is thoroughly evaluated against
baselines and humans, showing remarkable improvement
over the former while faring comparably to the latter. With
the release of Recipe1M, we hope to spur advancement on
not only the im2recipe task but also heretofore unimagined
objectives which require a deep understanding of the domain
and its modalities.

2. Dataset

Given the relevance of understanding recipes, it is surpris-
ing that there is not a larger body of work on the topic. We
estimate that this is due to the absence of a large, general
collection of recipe data. To our knowledge, virtually all of
the readily available food-related datasets either contain only

categorized images [16, 1, 8, 24] or simply recipe text [11].
Only recently have a few datasets been released that include
both recipes and images. The first of which [23] has 101k
images divided equally among 101 categories; the recipes
for each are however raw HTML. In a later work, Chen and
Ngo [6] present a dataset containing 110,241 images anno-
tated with 353 ingredient labels and 65,284 recipes, each
with a brief introduction, ingredient list, and preparation
instructions. Of note is that the dataset only contains recipes
for Chinese cuisine.

Although the aforementioned datasets constitute a large
step towards learning richer recipe representations, they are
still limited in either generality or size. As the ability to
learn effective representations is largely a function of the
quantity and quality of the available data, we create and
release publicly a new, large-scale corpus of structured recipe
data that includes over 1m recipes and 800k images. In
comparison to the current largest dataset in this domain,
Recipe1M includes twice as many recipes as [11] and eight
times as many images as [6]. In the following subsections
we outline how the dataset was collected and organized and
provide an analysis of its contents.

2.1. Data Collection

The recipes were scraped from over two dozen popu-
lar cooking websites and processed through a pipeline that
extracted relevant text from the raw HTML, downloaded
linked images, and assembled the data into a compact JSON
schema in which each datum was uniquely identified. As
part of the extraction process, excessive whitespace, HTML
entities, and non-ASCII characters were removed from the
recipe text.

2.2. Data Structure

The contents of the Recipe1M dataset may logically be
grouped into two layers. The first contains basic information
including title, a list of ingredients, and a sequence of instruc-
tions for preparing the dish; all of these data are provided as
free text. The second layer builds upon the first and includes
any images with which the recipe is associated–these are
provided as RGB in JPEG format. Additionally, a subset of



recipes are annotated with course labels (e.g., appetizer, side
dish, dessert), the prevalence of which are summarized in
Figure 2.

2.3. Analysis

The average recipe in the dataset consists of nine ingre-
dients which are transformed over the course of ten instruc-
tions. Approximately half of the recipes have images which,
due to the nature of the data sources, depict the fully pre-
pared dish. Recipe1M includes approximately 0.4% dupli-
cate recipes and 2% duplicate images (different recipes may
share same image). Excluding those 0.4% recipes, 20%
of recipes have non-unique titles but symmetrically differ
by a median of 16 ingredients. 0.2% of recipes share the
same ingredients but are relatively simple (e.g., spaghetti,
granola), having a median of six ingredients. Regarding
our experiments, we carefully removed any exact duplicates
or recipes sharing the same image in order to avoid over-
lapping between training and test subsets. As detailed in
Table 1, around 70% of the data is labeled as training, and
the remainder is split equally between the validation and test
sets.

In Figure 2, one can easily observe that the distributions of
data are heavy tailed. For instance, of the 16k unique ingredi-
ents that have been identified, only 4,000 account for 95% of
occurrences. At the low end of instruction count–particularly
those with one step–one will find the dreaded Combine all
ingredients. At the other end are lengthy recipes and ingredi-
ent lists associated with recipes that include sub-recipes. A
similar issue of outliers exists also for images: as several of
the included recipe collections curate user-submitted images,
popular recipes like chocolate chip cookies have orders of
magnitude more images than the average. Notably, 25% of
images are associated with 1% of recipes while half of all
images belong to 10% of recipes; the size of the second layer
in number of unique recipes is 333k.

3. Learning Embeddings
In this section we introduce our neural joint embedding

model. Here we utilize the paired (recipe and image) data
in order to learn a common embedding space as sketched in
Figure 1. Next, we discuss recipe and image representations
and then we introduce our neural joint embedding model
that builds upon recipe and image representations.

3.1. Representation of recipes

There are two major components of a recipe: its ingredi-
ents and cooking instructions. We develop a suitable repre-
sentation for each of these components.

Ingredients. Each recipe contains a set of ingredient text as
shown in Figure 1. For each ingredient we learn an ingre-
dient level word2vec [15] representation. In order to do so,

the actual ingredient names are extracted from each ingre-
dient text. For instance in “2 tbsp of olive oil” the olive oil
is extracted as the ingredient name and treated as a single
word for word2vec computation. The initial ingredient name
extraction task is solved by a bi-directional LSTM that per-
forms logistic regression on each word in the ingredient text.
Training is performed on a subset of our training set for
which we have the annotation for actual ingredient names.
Ingredient name extraction module works with 99.5% accu-
racy tested on a held-out set.

Cooking Instructions. Each recipe also has a list of cooking
instructions. As the instructions are quite lengthy (averaging
208 words) a single LSTM is not well suited to their rep-
resentation as gradients are diminished over the many time
steps. Instead we propose a two-stage LSTM model which
is designed to encode a sequence of sequences. First, each
instruction/sentence is represented as a skip-instructions vec-
tor and then an LSTM is trained over the sequence of these
vectors to obtain the representation of all instructions. The
resulting fixed-length representation is fed into to our joint
embedding model (see instructions-encoder in Figure 3).

Skip-instructions. Our cooking instruction representation,
referred as skip-instructions, is the product of a sequence-
to-sequence model [21]. Specifically, we build upon the
technique of skip-thoughts [9] which encodes a sentence
and uses that encoding as context when decoding/predicting
the previous and next sentences. Our modifications to this
method include adding start- and end-of-recipe “instructions”
and using an LSTM instead of a GRU. In either case, the
representation of a single instruction is the final output of
the encoder. As before, this is used as the instructions input
to our embedding model.

3.2. Representation of food images

For the image representation we adopt two major state-of-
the-art deep convolutional networks, namely VGG-16 [20]
and Resnet-50 [5] models. In particular, the deep resid-
ual networks have a proven record of success on a variety
of benchmarks [5]. Although [20] suggests training very
deep networks with small convolutional filters, deep residual
networks take it to another level using ubiquitous identity
mappings that enable training of much deeper architectures
(e.g., with 50, 101, 152 layers) with better performance. We
incorporate these models by removing the last softmax classi-
fication layer and connecting the rest to our joint embedding
model as shown in the right side of Figure 3.

4. Joint Neural Embedding
Building upon the previously described recipe and im-

age representations, we now introduce our joint embedding
method. The recipe model, displayed in Figure 3, includes
two encoders: one for ingredients and one for instructions,



Figure 3: Joint neural embedding model with semantic regularization. Our model learns a joint embedding space for food
images and cooking recipes.

the combination of which are designed to learn a recipe
level representation. The ingredients encoder combines the
sequence of ingredient word vectors. Since the ingredient
list is an unordered set, we choose to utilize a bidirectional
LSTM model, which considers both forward and backward
orderings. The instructions encoder is implemented as a
forward LSTM model over skip-instructions vectors. The
outputs of both encoders are concatenated and embedded
into a recipe-image joint space. The image representation
is simply projected into this space through a linear transfor-
mation. The goal is to learn transformations to make the
embeddings for a given recipe-image pair “close.”

Formally, assume that we are given a set of the recipe-
image pairs, (Rk, vk) in which Rk is the kth recipe
and vk is the associated image. Further, let Rk =
({stk}

nk
t=1, {gtk}

mk
t=1, vk), where {stk}

nk
t=1 is the sequence of

nk cooking instructions, {gtk}
mk
t=1 is the sequence of mk in-

gredient tokens. The objective is to maximize the cosine
similarity between positive recipe-image pairs, and mini-
mize it between all non-matching recipe-image pairs, up to
a specified margin.

The ingredients encoder is implemented using a bi-
directional LSTM: at each time step it takes two ingredient-
word2vec representations of gtk and gm−t+1

k , and eventually
it produces the fixed-length representation hgk for ingredi-
ents. The instructions encoder is implemented through a
regular LSTM. At each time step it receives an instruction
representation from the skip-instructions encoder, and finally
it produces the fixed-length representation hsk. hgk and hsk
are concatenated in order to obtain the recipe representation
hRk . Then the recipe and image representations are mapped
into the joint embedding space as: φR =WRhRk + bR and
φv =W vvk+ b

v , respectively. WR and W v are embedding

matrices which are also learned. Finally the complete model
is trained end-to-end with positive and negative recipe-image
pairs (φR, φv) using the cosine similarity loss with margin
defined as follows:

Lcos((φ
R, φv), y) =

{
1 − cos(φR, φv), if y = 1

max(0, cos(φR, φv) − α), if y = −1

where cos(.) is the normalized cosine similarity and α is the
margin.

5. Semantic Regularization
We incorporate additional regularization on our embed-

ding through solving the same high-level classification prob-
lem in multiple modalities with shared high-level weights.
We refer to this method as semantic regularization. The key
idea is that if high-level discriminative weights are shared,
then both of the modalities (recipe and image embeddings)
should utilize these weights in a similar way which brings
another level of alignment based on discrimination. We
optimize this objective together with our joint embedding
loss. Essentially the model also learns to classify any image
or recipe embedding into one of the food-related semantic
categories. We limit the effect of semantic regularization as
it is not the main problem that we aim to solve.

Semantic Categories. We start by assigning Food-101 cate-
gories to those recipes that contain them in their title. How-
ever, after this procedure we are only able to annotate 13%
of our dataset, which we argue is not enough labeled data
for a good regularization. Hence, we compose a larger set of
semantic categories purely extracted from recipe titles. We
first obtain the top 2,000 most frequent bigrams in recipe
titles from our training set. We manually remove those that



im2recipe recipe2im

medR R@1 R@5 R@10 medR R@1 R@5 R@10

random ranking 500 0.001 0.005 0.01 500 0.001 0.005 0.01
CCA w/ skip-thoughts + word2vec (GoogleNews) + image features 25.2 0.11 0.26 0.35 37.0 0.07 0.20 0.29
CCA w/ skip-instructions + ingredient word2vec + image features 15.7 0.14 0.32 0.43 24.8 0.09 0.24 0.35

joint emb. only 7.2 0.20 0.45 0.58 6.9 0.20 0.46 0.58
joint emb. + semantic 5.2 0.24 0.51 0.65 5.1 0.25 0.52 0.65

Table 2: im2recipe retrieval comparisons. Median ranks and recall rate at top K are reported for baselines and our method.
Note that the joint neural embedding models consistently outperform all the baseline methods.

Joint emb. methods im2recipe recipe2im

medR-1K medR-5K medR-10K medR-1K medR-5K medR-10K

VGG-16
fixed vision 15.3 71.8 143.6 16.4 76.8 152.8
finetuning (ft) 12.1 56.1 111.4 10.5 51.0 101.4
ft + semantic reg. 8.2 36.4 72.4 7.3 33.4 64.9

ResNet-50
fixed vision 7.9 35.7 71.2 9.3 41.9 83.1
finetuning (ft) 7.2 31.5 62.8 6.9 29.8 58.8
ft + semantic reg. 5.2 21.2 41.9 5.1 20.2 39.2

Table 3: Ablation studies. Effect of the different model components to the median rank (the lower is better).

contain unwanted characters (e.g., n’, !, ? or &) and those
that do not have discriminative food properties (e.g., best
pizza, super easy or 5 minutes). We then assign each of the
remaining bigrams as the semantic category to all recipes
that include it in their title. By using bigrams and Food-101
categories together we obtain a total of 1,047 categories,
which cover 50% of the dataset. chicken salad, grilled veg-
etable, chocolate cake and fried fish are some examples
among the categories we collect using this procedure. All
those recipes without a semantic category are assigned to an
additional background class. Although there is some overlap
in the generated categories, 73% of the recipes in our dataset
(excluding those in the background class) belong to a single
category (i.e., only one of the generated classes appears in
their title). For recipes where two or more categories appear
in the title, the category with highest frequency rate in the
dataset is chosen.

Classification. To incorporate semantic regularization to the
joint embedding we use a single fully connected layer. Given
the embeddings φv and φr, class probabilities are obtained
with pr = W cφr and pv = W cφv followed by a softmax
activation. W c is the matrix of learned weights, which are
shared between image and recipe embeddings to promote
semantic alignment between them. Formally, we express the
semantic regularization loss as Lreg(φr, φv, cr, cv) where
cr,cv are the semantic category labels for recipe and image,
respectively. Note that cr and cv are the same if (φr, φv) is
a positive pair. Then we can write the final objective as:

L(φr, φv, cr, cv, y) = Lcos((φ
r, φv), y)+

λLreg(φ
r, φv, cr, cv)

Optimization. We follow a two-stage optimization proce-
dure while learning the model. If we update both the recipe
encoding and image network at the same time, optimiza-
tion becomes oscillatory and even divergent. Previous work
on cross-modality training [2] suggests training models for
different modalities separately and fine tuning them jointly
afterwards to allow alignment. Following this insight, we
adopt a similar procedure when training our model. We
first fix the weights of the image network, which are found
from pre-training on the ImageNet object classification task,
and learn the recipe encodings. This way the recipe net-
work learns to align itself to the image representations and
also learns semantic regularization parameters (W c). Then
we freeze the recipe encoding and semantic regularization
weights, and learn the image network. This two-stage pro-
cess is crucial for successful optimization of the objective
function. After this initial alignment stage, we release all the
weights to be learned. However, the results do not change
much in this final, joint optimization.
Implementation Details All the neural models are imple-
mented using the Torch7 framework2. The margin α is

2http://torch.ch/
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Figure 4: Retrieval examples. From left to right: (1) the
query image, (2) its associated ingredient list, (3) the re-
trieved ingredients and (4) the image associated to the re-
trieved recipe.

selected as 0.1 in joint neural embedding models. The reg-
ularization hyperparameter is set as λ = 0.02 in all our
experiments. While optimizing the cosine loss we pick a
positive recipe-image pairs with 20% probability and a ran-
dom negative recipe-image pair with 80% probability from
the training set. The models are trained on 4 NVIDIA Titan
X with 12GB of memory for three days.

6. Experiments
We begin with the evaluation of our learned embeddings

for the im2recipe retrieval task. We then study the effect of
each component of our model and compare our final system
against human performance. We also analyze the properties
of our learned embeddings through unit visualizations and
vector arithmetics in the embedding space.

6.1. im2recipe retrieval

We evaluate all the recipe representations for im2recipe
retrieval. Given a food image, the task is to retrieve its recipe
from a collection of test recipes. We also perform recipe2im
retrieval using the same setting. All results are reported for
the test set.
Comparison with the baselines. Canonical Correlation
Analysis (CCA) is one of the strongest statistical models for
learning joint embeddings for different feature spaces when
paired data are provided. We use CCA over many high-level
recipe and image representations as our baseline. These
CCA embeddings are learned using recipe-image pairs from
the training data. In each recipe, the ingredients are repre-

sented with the mean word2vec across all its ingredients in
the manner of [12]. The cooking instructions are represented
with mean skip-thoughts vectors [9] across the cooking in-
structions. A recipe is then represented as concatenation of
these two features. We also evaluate CCA over mean in-
gredient word2vec and skip-instructions features as another
baseline. The image features utilized in the CCA baselines
are the ResNet-50 features before the softmax layer. Al-
though they are learned for visual object categorization tasks
on ImageNet dataset, these features are widely adopted by
the computer vision community, and they have been shown
to generalize well to different visual recognition tasks [3].

For evaluation, given a test query image, we use cosine
similarity in the common space for ranking the relevant
recipes and perform im2recipe retrieval. The recipe2im
retrieval setting is evaluated likewise. We adopt the test
procedure from image2caption retrieval task [7, 22]. We
report results on a subset of randomly selected 1,000 recipe-
image pairs from the test set. We repeat the experiments
10 times and report the mean results. We report median
rank (MedR), and recall rate at top K (R@K) for all the
retrieval experiments. To clarify, R@5 in the im2recipe task
represents the percentage of all the image queries where the
corresponding recipe is retrieved in the top 5, hence higher
is better. The quantitative results for im2recipe retrieval are
shown in Table 2.

Our model greatly outperforms the CCA baselines in all
measures. As expected, CCA over ingredient word2vec and
skip-instructions perform better than CCA over word2vec
trained on GoogleNews [15] and skip-thoughts vectors that
are learned over a large-scale book corpus [9]. In 65% of all
evaluated queries, our method can retrieve the correct recipe
given a food image. The semantic regularization notably
improves the quality of our embedding for im2recipe task
which is quantified with the medR drop from 7.2 to 5.2 in Ta-
ble 2. The results for recipe2im task are also similar to those
in the im2recipe retrieval setting. Figure 4 compares the
ingredients from the original recipes (true recipes) with the
retrieved recipes (coupled with their corresponding image)
for different image queries. As can be observed in Figure 4,
our embeddings generalize well and allow overall satisfac-
tory recipe retrieval results. However, at the ingredient level,
one can find that in some cases our model retrieves recipes
with missing ingredients. This usually occurs due to the lack
of fine-grained features (e.g., confusion between shrimps
and salmon) or simply because the ingredients are not vis-
ible in the query image (e.g., blueberries in a smoothie or
beef in a lasagna).
Ablation studies. We also analyze the effect of each com-
ponent in our our model in several optimization stages. The
results are reported in Table 3. Note that here we also report
medR with 1K, 5K and 10K random selections to show how
the results scale in larger retrieval problems. As expected,



Figure 5: Localized unit activations. We find that ingredient detectors emerge in different units in our embeddings, which
are aligned across modalities (e.g., unit 352: “cream”, unit 22: “sponge cake” or unit 571: “steak”).

visual features from the ResNet-50 model show a substan-
tial improvement in retrieval performance when compared
to VGG-16 features. Even with “fixed vision” networks
the joint embedding achieved 7.9 medR using ResNet-50
architecture (see Table 3). Further “finetuning” of vision net-
works slightly improves the results. Although it becomes a
lot harder to decrease the medR in small numbers, additional
“semantic regularization” improves the medR in both cases.

6.2. Comparison with human performance

In order to better assess the quality of our embeddings we
also evaluate the performance of humans on the im2recipe
task. The experiments are performed through Amazon Me-
chanical Turk (AMT) service3. For quality purposes, we
require each AMT worker to have at least 97% approval rate
and have performed at least 500 tasks before our experiment.
In a single evaluation batch, we first randomly choose 10
recipes and their corresponding images. We then ask an
AMT worker to choose the correct recipe, out of the 10 pro-
vided recipes, for the given food image. This multiple choice
selection task is performed 10 times for each food image in
the batch. The accuracy of an evaluation batch is defined as
the percentage of image queries correctly assigned to their
corresponding recipe.

The evaluations are performed for three levels of diffi-
culty. The batches (of 10 recipes) are randomly chosen
from either all the test recipes (easy), recipes sharing the
same course (e.g., soup, salad, or beverage; medium), or
recipes sharing the name of the dish (e.g., salmon, pizza,
or ravioli; hard). As expected–for our model as well as the
AMT workers–the accuracies decrease as tasks become more

3http://mturk.com

specific. In both coarse and fine-grained tests, our method
performs comparably to or better than the AMT workers. As
hypothesized, semantic regularization further improves the
results (see Table 4).

In the “all recipes” condition, 25 random evaluation
batches (25× 10 individual tasks in total) are selected from
the entire test set. Joint embedding with semantic regulariza-
tion performs the best with 3.2 percentage points improve-
ment over average human accuracy. For the course-specific
tests, 5 batches are randomly selected within each given
meal course. Although, on average, our joint embedding’s
performance is slightly lower than the humans’, with seman-
tic regularization our joint embedding surpasses humans’
performance by 6.8 percentage points. In dish-specific tests,
five random batches are selected if they have the dish name
(e.g., pizza) in their title. With slightly lower accuracies in
general, dish-specific results also show similar behavior. Par-
ticularly for the “beverage” and “smoothie” results, human
performance is better than our method, possibly because
detailed analysis is needed to elicit the homogenized ingre-
dients in drinks. Similar behavior is also observed for the
“sushi” results where fine-grained features of the sushi roll’s
center are crucial to identify the correct sushi recipe.

6.3. Analysis of the learned embedding

To gain further insight into our neural embedding, we
perform a series of qualitative analysis experiments. We
explore whether any semantic concepts emerge in the neuron
activations and whether the embedding space has certain
arithmetic properties.

Neuron Visualizations. Through neural activation visual-
ization we investigate if any semantic concepts emerge in the

http://mturk.com


all recipes course-specific recipes dish-specific recipes

dessert salad bread beverage soup-stew course-mean pasta pizza steak salmon smoothie hamburger ravioli sushi dish-mean

human 81.6 ± 8.9 52.0 70.0 34.0 58.0 56.0 54.0 ± 13.0 54.0 48.0 58.0 52.0 48.0 46.0 54.0 58.0 52.2 ± 04.6
joint-emb. only 83.6 ± 3.0 76.0 68.0 38.0 24.0 62.0 53.6 ± 21.8 58.0 58.0 58.0 64.0 38.0 58.0 62.0 42.0 54.8 ± 09.4
joint-emb.+semantic 84.8 ± 2.7 74.0 82.0 56.0 30.0 62.0 60.8 ± 20.0 52.0 60.0 62.0 68.0 42.0 68.0 62.0 44.0 57.2 ± 10.1

Table 4: Comparison with human performance on im2recipe task. The mean results are highlighted as bold for better
visualization. Note that on average our method with semantic regularization performs better than average AMT worker.
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Figure 6: Arithmetics using image embeddings (left), recipe embeddings (middle) and cross-modal arithmetics between
image and recipe embeddings (right). We represent the average vector of a query with the images from its 4 nearest neighbors.
In the case of the arithmetic result, we show the nearest neighbor only.

neurons in our embedding vector despite not being explicitly
trained for that purpose. We pick the top activating images,
ingredient lists, and cooking instructions for a given neuron.
Then we use the methodology introduced by Zhou et al. [25]
to visualize image regions that contribute the most to the
activation of specific units in our learned visual embeddings.
We apply the same procedure on the recipe side to also obtain
those ingredients and recipe instructions to which certain
units react the most. Figure 5 shows the results for the same
unit in both the image and recipe embedding. We find that
certain units display localized semantic alignment between
the embeddings of the two modalities.

Semantic Vector Arithmetic. Different works in the lit-
erature [15, 18] have used simple arithmetic operations
to demonstrate the capabilities of their learned represen-
tations. In the context of food recipes, one would expect that
v(“chicken pizza”)−v(“pizza”)+v(“salad”) = v(“chicken
salad”), where v represents the map into the embedding
space. We investigate whether our learned embeddings have
such properties by applying the previous equation template
to the averaged vectors of recipes that contain the queried
words in their title. We apply this procedure in the image and
recipe embedding spaces and show results in Figures 6(a)
and 6(b), respectively. Our findings suggest that the learned
embeddings have semantic properties that translate to simple
geometric transformations in the learned space.

Finally, we apply the same arithmetic operation to em-
beddings across modalities. In particular, we explore the
case of modifying a recipe by linearly combining its image
embedding with a variety of text-originated embeddings. For

example, given an image of a chocolate cake, we try to trans-
form it into a chocolate cupcake by removing and adding the
mean recipe embeddings of cake and cupcake, respectively.
Figure 6(c) shows the results, which we find to be compa-
rable to those using embeddings within the same modality.
This suggests that the recipe and image embeddings learned
in our model are semantically aligned, which broaches the
possibility of applications in recipe modification (e.g., ingre-
dient replacement, calorie adjustment) or even cross-modal
generation.

7. Conclusion
In this paper, we present Recipe1M, the largest structured

recipe dataset to date, the im2recipe problem, and neural em-
bedding models with semantic regularization which achieve
impressive results for the im2recipe task. More generally,
the methods presented here could be gainfully applied to
other “recipes” like assembly instructions, tutorials, and in-
dustrial processes. Further, we hope that our contributions
will support the creation of automated tools for food and
recipe understanding and open doors for many less explored
aspects of learning such as compositional creativity and pre-
dicting visual outcomes of action sequences.
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