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Abstract— State-of-the-art deformable part-based models
based on latent SVM have shown excellent results on human
detection. In this paper, we propose to train a multiview
deformable part-based model with automatically generated part
examples from virtual-world data. The method is efficient as: (i)
the part detectors are trained with precisely extracted virtual
examples, thus no latent learning is needed, (ii) the multiview
pedestrian detector enhances the performance of the pedestrian
root model, (iii) a top-down approach is used for part detection
which reduces the searching space. We evaluate our model on
Daimler and Karlsruhe Pedestrian Benchmarks with publicly
available Caltech pedestrian detection evaluation framework
and the result outperforms the state-of-the-art latent SVM V4.0,
on both average miss rate and speed (our detector is ten times
faster).

I. INTRODUCTION

Advanced Driver Assistance Systems (ADAS) aim at
improving traffic safety by providing warnings and perform-
ing counteractive measures in dangerous situations. Reliable
image-based pedestrian detection is the major challenge of a
pedestrian protection system, a type of ADAS, because the
pedestrians present high variability in clothes, pose, view-
point and distance to camera, all under uncontrolled outdoor
illumination [1]. Multiresolution pyramidal detection tries to
cope with the variability in distance to the camera, proper
features/descriptors address variability due to clothes, and
illumination changes (e.g., HOG [2]), while multiview and
part-based models focus on robustness to imaging viewpoint
and pose variability respectively. Multiview and part-based
models for pedestrian detection are the focus of this paper.

For instance, multiview models have proven to be effective
for face recognition as well as pedestrian detection. The
rational behind this is that mixing views for model training
turns out on more blurred models than by somehow train-
ing a model per view. Training multiview models requires
clustering the object examples according to the considered
views. This can be done manually or automatically, thought
depending on the view granularity and object complexity,
it is not a trivial procedure. Shape (or contour) has been
effective for viewpoint and pose clustering, and widely used
for pedestrian classification [3], [4], detection and tracking
[5], direction estimation [6].

The changing pose and articulation of the limbs suggests
a classifier based on the integration of local image rep-

Fig. 1. Virtual-world data: (a) image; (b)-(d) pedestrian examples (top)
with their corresponding groundtruth mask (bottom).

resentations as opposed to a holistic representation and a
sub-region method has been demonstrated effective in [7].
Part-based models try to capture the idea that most objects
are composed of parts and these can only be in a set of
possible relative positions. Some part-based models [8], [9],
[10] require manual labelling of object parts in order to
perform supervised training of such models. Since obtaining
manual labels is a tiresome process prone to errors, no
large amounts of reliable examples are usually available
for training. This can eventually limit the generality of the
learnt models, and so their performance. However, the most
promising method up to date for training part-based object
models seems to be the structural latent SVM [11], which is
giving excellent results for pedestrian detection [12] and does
not require labelled body parts for performing the training
of the pedestrian model. Moreover, latent SVM also includes
view point as latent information, thus allowing learning more
general object models. The price to pay, however, is that this
method turns out to be complicated in training and sensitive
to initialization.

Focusing on the problem of multiview and part-based
pedestrian detection, we think that one of the key issues
is to have reliable labelled examples, i.e., the bounding
box of the pedestrian examples as well as labelled parts.
Obtaining cheap annotated pedestrians has been addressed
in our previous work [13], where we generated virtual-world
data using a video game. No part annotations were used,



just the pedestrians bounding box. The developed pedestrian
detector, based on a holistic HOG/Linear-SVM pedestrian
classifier, showed a performance comparable to analogous
detectors obtained from real-world manually labelled data.

Accordingly, in this paper we further explore the poten-
tial of video game based virtual-world data for training a
multiview deformable part-based pedestrian model. As we
will see, thanks to this type of data we can train and use
such a flexible pedestrian model without the need of latent
variables accounting for pose and view. The consequence is
that we obtain equal or even better performance but speeding
up training, and specially detection (testing). In particular,
our pedestrian detector is ten times faster than the one based
on latent SVM.

The rest of the paper is organized as follows. Section II
illustrates the procedure of multiview clustering of exam-
ples and their automatic parts labelling with virtual-world
dataset. Section III describes our multiview deformable part-
based model and the corresponding training. Performance
assessment and comparison to latent SVM 4.0 are given in
section IV. Finally, section V draws the main conclusions.

II. VIRTUAL-WORLD TRAINING EXAMPLES

The virtual-world dataset is created from the video game
Half-Life 2 based on our previous work in [13]. The sce-
narios contain realistic virtual cities with roads, trees, build-
ings, vehicles, traffic signs, pedestrians as well as different
illumination conditions. The pedestrians and vehicles follow
physical laws and artificial intelligence. We obtained images
containing pedestrians with different poses and backgrounds
as well as pixel-wise groundtruth. The images of the dataset
have resolution of 640×480 pixels. Fig. 1 shows the virtual-
world data: image, pedestrian examples and corresponding
groundtruth.

A. Multiview pedestrian clustering

Our previous dataset in [13] only contains holistic bound-
ing box annotations without viewpoint label while in this
paper we further explore its potential to create a multiview
pedestrian dataset. The pedestrians can be naturally divided
into three relatively separated classes according to their
views: frontal/back, left and right. This is interesting because
mixing all views eventually would give rise to a more blurred
model than using per-view separate models [14]. Moreover,
with the virtual-world data the type of view is known auto-
matically. Unlike the manually separated examples in [14],
we generate multiview pedestrian examples automatically
using template convolution. The multiview templates can be
computed by averaging a few groundtruth masks of each
view (see Fig. 1 (b)-(c)-(d)). In particular we used only
50 groundtruth samples for the frontal view and the same
number for the left view (right one is just obtained by
mirroring). We apply template convolution as

F (T ) = argmax
k

Tk⊗T
‖Tk‖

, k = 1, ...,m , (1)

Fig. 2. Matching part locations by distance transform. Figure (a) and (b)
are the templates. Figure (c) shows the canonical part locations and figure
(d) is the matching result of the part locations. Figure (e) shows the locations
of the part cropping window for the virtual pedestrian example.

where T is the mask of the pedestrian example to be
clustered, m is the number of the root classes, Tk is the k-
th template and F (T ) is the root class which gives max-
imum response to template convolution. In [11], mixture
components are clustered by comparing bounding box aspect
ratio and symmetry components are further clustered by
comparing the similarity of the HOG features. However, this
method may fail since the bounding boxes of pedestrians
usually have canonical size for most pedestrian datasets.
Thus, the shape based clustering method is more reliable
for the multiview pedestrian clustering.

B. Localization of Pedestrian Parts

1) Initialize the parts of a pedestrian model: The part
anchor points are inexplicit in latent SVM framework, thus
they must be obtained by heuristic initialization. With virtual-
world data, the anchor points can be obtained in an ex-
plicit way. For each pedestrian example we consider its
groundtruth mask (Fig. 1 (b)-(d)), we compute the corre-
sponding binary skeleton and obtain the end points of it. Such
end points are considered as semantic anchor points (center
of the head, end of the arms, etc.). Thus, the accumulation
of all them is understood as the sampling of an underlying
distribution of semantic anchor points locations. We model
such a distribution using a Gaussian Mixture Model (GMM)
that is fitted using the Expectation-Maximization (EM) al-
gorithm. We set the number of clusters to five: head, arms
and legs. The overall body is expected to be captured by
the root model, but we set the parts canonical size to 32 x
64 pixels, which implies that, although centred in the head
and the extremities, the five parts cover the whole body. The
procedure is an offline process which runs in less than 80
seconds and is done just once during the training1.

2) Locate the parts by distance transform: We define
canonical part location C j as the point located on the
silhouette of the template and is used to identify part j (See
Fig. 2 (c)). Firstly, we locate the full body cropping window
to a precise position by finding the maximum response of
the template convolution, a procedure which is similar to
the one in section II-A. Secondly, we match the canonical
part locations to the silhouette by distance transform, as

1All experiments in this paper run with Intel Xeon CPU E5420 @
2.5GHz, 16GB RAM.



illustrated in Fig. 2 (d). In this way, we are able to extract
part examples precisely. The pixel-wise groundtruth plays an
important role in the procedure but it is usually not available
in real-world training data.

III. VIRTUAL DEFORMABLE PART-BASED MODEL

In the following, we briefly review the deformable part-
based model (DPM) in [11], i.e., based on latent SVM,
and then move on to our multiview part-based model and
its corresponding training. For comparability, we adopt the
notation of [11]. We use the term VDPM to refer to our
counterpart model as trained with virtual-world dataset.

A. DPM review

A DPM is a mixture model with m components. Each
component is a star structural model consisting of a coarse
root and n parts placed in the double resolution layer of
the feature pyramid. The object hypotheses of component
c,(1≤ c≤ m), is defined by z = (c, p0, . . . , pn), where p j =
(u j,v j,σ j) specifies the position (u j,v j) and scale level σ j
of part j, ( j = 1, ...,n). For the general training dataset, we
can identify the bounding box of root part p0 whereas the
parts p1, . . . , pn are not available and they are the so-called
latent variables.

Given training dataset {(Ii,yi)}i∈{1,...,N}, where Ii defines
an example and yi ∈ {−1,1, . . . ,m} is the background (−1)
or the class of the components (1, . . . ,m). The score of a
hypothesis z can be expressed in terms of a dot product,
score = β ·Ψ(Ii,yi,z), where β = (β1, ...,βm) is the vector
that contains all parameters of all mixture components and
Ψ(Ii,yi,z) is a sparse feature vector with non-zero entries
ψ(Ii,c,z) at component c. The detectors of different compo-
nent are trained in a one-versus-rest way. Using the standard
hinge loss, the optimization problem for component c is:

minβ ,ξ≥0
1
2
‖β‖2 +C ∑

N
i=1 ξi

sb.t. ∀i : yi = c : maxh 〈β ,Ψ(Ii,yi,z)〉 ≥+1−ξi
∀i : yi 6= c : maxh 〈β ,Ψ(Ii,yi,z)〉 ≤ −1−ξi .

(2)

B. Our VDPM proposal

With virtual-world dataset, views and corresponding n part
locations can be obtained using the methods in section II,
thus we can remove latent variable z = (c, p0, . . . , pn) from
(2), i.e., the latent SVM is simplified to the classic linear
SVM. Therefore, our model is explicit and straightforward.
In particular, is composed of a joint multiview root classifier,
part classifiers and a combination classifier (ensemble). The
ensemble takes into account the scores from each classifier
as well as the part deformation cost.

1) Multiview root models: Combining several depen-
dently trained root classifiers together may perform worse
than a single root classifier, because the output score of the
root classifiers may not be comparable. Considering this,
we define our multiview root model as a joint model which

appends the features of the multiple roots together, similar
to [15]. The joint features Ψr (Ii,yi) can be expressed as

Ψr (Ii,yi) =

{
(ψr (Ii,yi) ,1,0,0) , if yi = 1
(0,0,ψr (Ii,yi) ,1) , if yi = 2 ,

(3)

where yi indicates the root class (we define frontal as 1 and
left as 2), ψr (Ii,yi) denotes the features of root yi, and ”1”
is the bias term. Equation (3) is equivalent to training each
multiview root model independently, but in this way the bias
term is balanced because they refer to the same hyper-plane
in the same vector space. By doing so, we can obtain reliable
root classifiers and the training can even be accelerated as
the independent models can be trained in parallel. Note that
by using the same strategy of processing symmetry models
in [11], we can omit the training of the right view model.
In this paper, we only use three views, namely, frontal/back,
left, and right views. We do not separate the front and rear
views is because the two views are similar for HOG-based
models and more views require more expensive training.

2) Deformable part models: We adopt the star structure
for our deformable part models. The score of an object
hypothesis is given by the score of appearance minus the
deformation cost of each part. For the star model, the general
energy minimum function can be expressed as

B j(li) = min
l j

(m j(li)+di j(li, l j)) , (4)

where li is the location of the root node, l j is the location
of the part node, m j(li) is the appearance match cost, and
di j(li, l j) is the deformation cost. The energy function can
be understood as generalized distance transforms and can
be solved by dynamic programming [10]. The distance
transform over part grid space Ω can be expressed as

D f (Tj(li)) = min
ly∈Ω

(ρ(Tj(li), ly)+ f (ly)) , (5)

where ρ and f are the distance measure and generalized
indicator function, respectively. Remember that the Tj(li)
is the transformed root location which corresponds to the
anchor point of part j in our star model and f (ly) is the
appearance matching cost at position ly. Note that, for the
general DPM, the transformed root locations are obtained by
heuristic initialization while for our VDPM, the canonical
part locations are explicitly given. Moreover, our part geo-
metric models are naturally defined as GMM, which means
we can directly adopt the Mahalanobis distance to measure
the deformation cost in the energy function. The Mahalanobis
distance on the grid space of part j is

di j(li, l j) = (Tj(li)− l j)
T M−1

i j (Tj(li)− l j) , (6)

where Tj(li) is the anchor point of part j, and Mi j is the
covariance matrix. However, the model can be even simpli-
fied by top-down strategy which does not require dynamic
programming. We will explain it in the next section.



Fig. 3. Visulization of the DPM model (best viewed in color). The models
from latent SVM: (a) to (c) are the coarse root model, part models, and
deformation cost respectively. The models from VDPM: (d) to (g) are the
coarse root model, part models, deformation cost with Mahalanobis distance,
and deformation cost with Euclidean distance respectively.

3) Top-down inference: Dynamic programming and dis-
tance transform have been proven as general and efficient
algorithms for tree (or star) structure models in bottom-up
methods. However, scores have to be computed everywhere
in the feature pyramid which is expensive and not necessary.
We use a top-down method to search the best locations of
the parts in the space covered by the high potential roots.
The method is similar to [16] and [17], while both of them
are based on latent SVM framework thus rely on the general
distance transform and bottom up method for computing the
score. Moreover, [16] requires additional training for learning
the pruning threshold. Note that our method is independent
to the distance function since root li is fixed. We use both
Mahalanobis and Euclidean distance in our experiments and
obtained equivalent results. The deformation cost of these
two distance functions can be found in Fig. 3 (f) (g).

4) Combination model design: After obtaining multiview
part-based detectors, we consider the problem of taking all
of them into account for obtaining a final decision. Instead
of using a straightforward way to combine all the scores of
the individual detectors and to form an ensemble as in [8],
we take into account the deformation penalty of each part in
the final score. The combination model (ensemble) for root
yi is

φ(Ii,yi) = (s0,s1, ...,sn,d1, ...,dn,1) , (7)

where s0 is the score of the root, s j,d j are the score and
deformation cost of part j, respectively. The last term is the
bias for SVM. Therefore, the final model can be expressed
as

Φ(Ii) = (φ(Ii,1), ...,φ(Ii,m)) ,
score(Ii) = β ·Φ(Ii) ,

(8)

where Φ(Ii) combines each φ(Ii,yi) to form a multiple root
vector, β is the parameter trained by SVM and score(Ii) is
the final score of example Ii.

C. VDPM Training

Now we consider the problem of training VDPM. As
described above, we separate the training procedure into
individual model and ensemble model training.

1) Training root and part detectors with SVM: We train
the joint root model with multiview examples and random
negatives obtained from the virtual-world scenarios without
pedestrians. After the initial training, the classifiers are re-
trained with a set of hard negatives collected by the initial

classifier. The hard negatives are added to train a new root
classifier which is commonly referred to as bootstrapping.
During the training, the hard negatives will be saved and
added to the training set for the parts, thus the root will
share the negative features with the parts. Fig. 3 compares
the models learnt by latent SVM V4.0 and by our method.

2) Adaptive Combination of Classifiers (ACC): The adap-
tive combination of classifiers has been seen in hierarchical
classification structures and [8] used it for part-based human
detection. The authors showed that applying ACC with linear
SVM is an effective procedure for combining classifiers.
Based on this conclusion, we adopt ACC to combine the
output score of the part detectors as well as the deformation
cost, i.e., to build our ensemble.

IV. EXPERIMENTAL RESULTS

Since we are interested in the ADAS field, in this section,
we evaluate our method on Daimler [18] and Karlsruhe
pedestrian benchmarks [19]. Recently, the results of the state-
of-the-art pedestrian detection algorithms have been reported
in [12], where a general evaluation method for pedestrian
detection has been proposed. In that paper, latent SVM
has shown the state-of-the-art results except for the method
incorporating motion features. Here we do not include such
motion features, thus, in order to compare our method with
the state-of-the-art, we use such an evaluation framework for
our experiment, as well as the latent SVM 4.0.

A. Experiment setup

For the training, we generated virtual-world dataset with
frontal/back and left viewed pedestrians, containing 1000
examples per view, with canonical size of 64× 128 pixels.
We extract part examples from these dataset, thus we got
1000 positive examples with canonical size of 32×64 pixels
for each of the five parts. For collecting negative examples
we use 2000 virtual-world pedestrian-free images of 640×
480 pixel resolution, i.e., the same size as Daimler testing
images. We use the same training data for latent SVM and
our model. For the testing, we upscale the testing images to
a factor to detect small pedestrians as in [12].

Both our method and latent SVM are using HOG-based
features. The only difference is that our HOG applies anti-
aliasing in scaling operations and latent SVM uses a 31
dimensional HOG [11] (claimed to perform better than
standard HOG). In the experiments, we also compare with
the holistic models as in [13]. The holistic models based
on our HOG features have been trained on Daimler training
dataset as well as on virtual-world dataset.

For Daimler pedestrian dataset, we focus on the images
containing pedestrians which must be mandatorily detected.
We use 974 images containing 1193 pedestrians and the
72 pixels as the minimal height of pedestrian in order to
compare to the holistic model of [13].

Karlsruhe datasets contains bounding boxes for cars and
pedestrians. We use the pedestrian testing set with 775
images. Furthermore, the dataset contains the orientations
of each object, discretized into front, back, left, and right



classes for pedestrians. We consider front and back as one
orientation in this paper. In order to evaluate under the same
framework, we converted the groundtruth to the Caltech
format. In particular, all groundtruth with label ’hard’ are set
to be ignored in Caltech groundtruth format since we only
evaluate pedestrians over 50 pixels. The final groundtruth
contains 1345 pedestrians.

B. Results

We assess detectors performance using per-image eval-
uation, which is highly recommended in [12] and also
employed in [18]. In particular, we plot curves depicting the
tradeoff between miss rate and the number of false positives
per image (FPPI) in logarithmic scale. Fig. 4 top depicts dif-
ferent performance plots on Daimler dataset. For Karlsruhe
pedestrian dataset, we further evaluated the performances at
different scales (Fig. 4 middle). We evaluated detections on
pedestrians with minimum height of 50 pixels, 80 pixels
and 100 pixels. In Fig. 5, we show some qualitative results
(detections and viewpoint estimation).

As expected, part-based methods show better performance
than holistic ones. The ”Holistic (Virtual)” achieves 48.6%
of average miss rate, which is equivalent to the 49.4%
obtained with the model trained by Daimler dataset (the
”Holistic (Daimler)” in Fig. 4 top), and the result agrees
with the conclusion in [13]. Our multiview root achieves
30.5% showing that the mixture models perform better than
the single root. Training with the same virtual world-data,
our VDPM achieves 24.9%, approximately 3 points better
than the latent SVM 4.0 which reaches 27.9%.

The results on Karlsruhe dataset show that our model
performs constantly better at all scales. Since we are using a
mulitview model, we are also interested in the viewpoint esti-
mation though viewpoint estimation is not the main focus of
this paper. The viewpoint output can be obtained by tracing
back the maximum score of the multiview classifiers. Fig. 5
row 3 shows the viewpoint estimation output by our model.
We made quantized evaluation for both our multiview root
model and multiview part-based model, following the pro-
posal in [20]. We merged the front and back view groundtruth
as one view since our model only contains 3 views. We tested
on all 1345 samples and interestingly, our root model and
part-based model got very similar performance. Results of
our multiview part-based model are given in Fig. 4 bottom.
Our model reaches up to 71%, 74% and 67% accuracy for
front/back, left, and right views respectively. The overall
correct decision rate is 70.4% per test sample.

Additionally, we assessed the time consumption on a
desktop computer. Using the same virtual-world training data
as we mentioned above, our VDPM is trained within 5 hours
while the latent SVM consumed more than 6.5 hours. The
entire testing time of latent SVM on 973 images of size
640×480 pixels is 3 hours and 44 minutes, while our VDPM
only took 20 minutes, i.e., 0.79 fps, thus our detector is
ten times faster than latent SVM 4.0, which is close to
the cascade model of [16]. Our method turns out to be
simpler but effective in practice. Note that we are using 36
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Fig. 4. Top: Average miss rate percentage on Daimler dataset. The training
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on Karlsruhe dataset. Bottom: Confusion matrix of viewpoint estimation on
Karlsruhe.

dimensional HOG instead of a faster 31 dimensional HOG
in latent SVM.

V. CONCLUSION

In this paper we have presented a method to train a
multiview deformable part-based model with virtual-world
data for pedestrian detection. The key point of our approach
is the ability of automatically obtaining parts labels and
view clusterization from the virtual-world pedestrians. This
removes latent variables from our approach and allows us
to design a very efficient pedestrian detector. In particular,
we use a top-down approach to detect the parts which can
largely reduce the searching space comparing to the bottom-
up approach. So far, our detector is ten times faster than
latent SVM 4.0.

A possible extension of our method is to take more
advantages of the 3D virtual world, as for example using
3D pedestrian skeleton points for even more precise part
sampling. Furthermore, these informative points can be used
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to learn a more exact body configuration which can be used
to train a richer model. The detection speed and pedestrian
direction estimation can also be further improved in our
future work. For example, geometry constrains [21] or even
stixels [22], [23] can be used to reduce the sliding window
candidates, thus the speed is expected to be substantially
improved.
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