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Learning a Part-based Pedestrian Detector in Virtual
World

Jiaolong Xu, David Vázquez, Antonio M. López Member, IEEE, Javier Marı́n and Daniel Ponsa

Abstract—Detecting pedestrians with on-board vision systems
is of paramount interest for assisting drivers to prevent vehicle-
to-pedestrian accidents. The core of a pedestrian detector is
its classification module, which aims at deciding if a given
image window contains a pedestrian. Given the difficulty of
this task, many classifiers have been proposed during the last
fifteen years. Among them, the so-called (deformable) part-based
classifiers including multi-view modeling are usually top ranked
in accuracy. Training such classifiers is not trivial since a proper
aspect clustering and spatial part alignment of the pedestrian
training samples are crucial for obtaining an accurate classifier.
In this paper, first we perform automatic aspect clustering and
part alignment by using virtual-world pedestrians, i.e., human
annotations are not required. Second, we use a mixture-of-parts
approach that allows part sharing among different aspects. Third,
these proposals are integrated in a learning framework which also
allows to incorporate real-world training data to perform domain
adaptation between virtual- and real-world cameras. Overall, the
obtained results on four popular on-board datasets show that
our proposal clearly outperforms the state-of-the-art deformable
part-based detector known as latent SVM.

Index Terms—computer vision, pedestrian detection, synthetic
training data, multi-part model

I. INTRODUCTION

ON-BOARD pedestrian detection is crucial to prevent
accidents. Vision-based detectors consist of several pro-

cessing stages [1], [2], namely the generation of image candi-
date windows, their classification as pedestrian or background,
the refinement into a single detection of multiple ones arising
from the same pedestrian, and the tracking of the detections
for removing spurious ones or inferring trajectory information.

An accurate classification is fundamental. However, it turns
out to be a difficult task due to the large intra-class variability
of both pedestrians and background classes, as well as the
imaging and environmental conditions. Note that pedestrians
are moving objects which vary on morphology, pose, and
clothes; there is a large diversity of scenarios; and images are
acquired from a platform moving outdoors (i.e., the vehicle),
thus, pedestrians are seen from different viewpoints at a range
of distances and under uncontrolled illumination.

Aiming at overcoming such a complexity, many pedestrian
classifiers/detectors have been proposed during the last fifteen
years. The reader is referred to [2] for a comprehensive review
on pedestrian detection, to [1], [3] for accuracy comparisons
of different proposals, as well as to [4], [5] where the focus is
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on reaching real-time processing. A first outcome of the work
done so far in this field is that most accurate pedestrian clas-
sifiers are learned from pedestrian and background samples.
For instance, this is the case of the well-known pedestrian
classifier based on histograms of oriented gradients and linear
support vector machines (HOG/Lin-SVM) [6].

Indeed, HOG/Lin-SVM approach was a milestone in the
field of pedestrian detection. However, the most relevant
contribution of [6] consists in devising HOG features, since
the overall pedestrian classifier itself just follows a holistic
approach and uses a linear frontier to separate pedestrians
and background. Holistic approaches regard pedestrians as a
whole, i.e., no body-inspired parts are considered separately.
Moreover, [6] proposes what we term as single holistic ap-
proach because the intra-class variability of the pedestrians is
not explicitly considered. In other words, during the training of
the pedestrian classifier all pedestrians are mixed, which tends
to generate blurred features. In consequence, the learned clas-
sifier does not necessarily improves its accuracy by increasing
and/or diversifying the training pedestrian samples [7].

In order to overcome this limitation, prior knowledge about
the pedestrian class can be exploited. For instance, we can
find multiple holistic ensembles accounting for different pedes-
trian view and pose combinations (aspects hereinafter), or
single/multiple body-inspired part-based ensembles. Represen-
tative examples can be found in [4], [8]–[13]. In fact, the
deformable part-based model (DPM) presented in [10] is one
of the most popular state-of-the-art pedestrian/object detectors.

An advantage of DPMs is that pedestrian poses unseen
during training are implicitly modeled through the allowed
deformation, i.e., the generalization capability of the corre-
sponding classifiers increases. This is more effective if view-
based DPMs can be used to build a mixture model, which is
the case in [10] provided that the aspect ratio of the annotated
pedestrian bounding boxes (BBs) correlates with major view
differences (e.g., frontal vs. side). A natural extension of this
idea consists in allowing to share parts among different views,
which increases the number of implicitly modeled aspects
and reduces the number of overall parts to be learned and
applied. Up to the best of our knowledge this approach has
not been exploited in pedestrian detection for driver assistance.
However, part-sharing has recently shown benefits in tasks
such as object detection and pose estimation [7], [14]–[16].

Accordingly, for on-board pedestrian detection this paper
proposes a new aspect-based mixture of DPMs with part-
sharing. A key point of such a pedestrian model is to have
pedestrian samples with reliable and rich annotations. In
particular, for each pedestrian, its full-body BB is required
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Fig. 1. Virtual world trained DPM with Mixture of Parts (VDPM-MP) framework for training an aspect-based mixture of DPMs with part-sharing. We refer
to Algorithms 1 and 2 (Sect. IV) for more details.

along with the BB of its constituent parts, and its aspect
label (e.g., either rear-frontal, side-left, side-right). Collecting
all this information by human annotation is a tiresome task
prone to errors. Thus, other than [7], [8], [14], [16]–[22],
we propose the use of a virtual-world with automatic pixel-
wise pedestrian groundtruth. In our first work in this line
[23] a single holistic pedestrian classifier trained with virtual-
world data performed equally well in automotive real-world
images than an equivalent one trained with real-world data.
For building our pedestrian model, in this paper we also
exploit part labeling (i.e., part BBs) and aspect clustering, both
automatically obtained from the pixel-wise groundtruth.

In the last years the computer vision community has started
to consider the decrease in accuracy of a classifier due to
differences between training and testing data. In [24], [25], we
show that between virtual- and real-world data this problem
exists. However, we show also that it is not due to the
particular difference between virtual- and real-world imaging
but just because this phenomenon can appear between any
two camera types, even if both operate in the real world.
Moreover, we show how fusing virtual-world training data
with a relatively few real-world training data allows to adapt
virtual and real domains. While looking for the best domain
adaptation method for our classifiers is out of the scope of
this paper, we have devised our learning framework to allow
such a world’s fusion and we demonstrate its effectiveness too.
For that we only require the full-body BB of the real-world
pedestrians, i.e. neither their part BBs nor aspect labels.

Fig.1 summarizes our DPM-based proposal. Since we rely
on virtual-world data and part-sharing is implemented as a
mixture of parts, we term this proposal as VDPM-MP. We
test it on four popular on-board datasets focusing on luminance
images and HOG features. The results show that VDPM-MP
outperforms the state-of-the-art DPM proposed in [10] based
on HOG-inspired features and latent SVM (HOG/Lat-SVM).

In Sect. II we summarize the works most related to this
paper. Sect. III explains the generation of virtual-world training
samples with aspect clustering and part labeling. Sect. IV de-
tails the proposed framework for training pedestrian classifiers.
Sect. V presents the qualitative evaluation of our proposal,
assessing the contribution of the different ideas involved in it.
Finally, the conclusions are drawn in Sect. VI.

II. RELATED WORK

A major benefit of using prior knowledge strategies (i.e.,
richer annotations) to align the pedestrian training samples
is to obtain less blurred features and more accurate overall
pedestrian classifiers as a consequence. For instance, aspect
clustering avoids to mix frontal/rear viewed pedestrians with
side viewed ones during training. DPMs avoid to mix different
body parts. Aspect clustering plus fixed part models may have
the same effect as DPMs, however, the capacity of modeling
unseen poses may be reduced and then more pedestrians
examples could be required for training.

In [8], a body-inspired part-based method is proposed and,
notably, aspect-based clustering of the training data is also



3

reported as a crucial step. In particular, an AdaBoost strong
classifier ensembles 117 weak classifiers that account for
different body parts and clusters. There are nine clusters and
within each cluster thirteen fixed parts with overlap (head,
trunk, head-trunk, trunk-legs, etc.) are considered, each part
being described by a sort of simplified HOG features. In [9],
a fixed part-inspired model is also used but without aspect
clustering; the focus is on the features.

The state-of-the-art DPM-based pedestrian detector relies on
the HOG/Lat-SVM framework [10]. In this approach there is a
holistic filter called root and few body-part filters operating at
twice the resolution of the root. The parts are not assumed to
be fixed, but they are distributed according to a deformable
star layout anchored to the root. In the current version of
HOG/Lat-SVM (i.e., V5) [26] it is possible to handle different
models based on the root aspect ratio, called components. Each
component has its own associated filters and layout.

In [11], a probabilistic mixture-of-experts framework is pro-
posed where 24 different holistic classifiers (experts) account
for four different pedestrian views (front, back, left, right) and
three modalities (luminance, depth, optical flow), described by
HOG and local binary patterns (LBP) features.

In [8] view information is manually provided (how-to details
are not given), while in [11] aspect information is provided by
a shape hierarchy built from manually delineated silhouettes.
Note that manual delineation of silhouettes is a tiresome task.
Thus, for reducing the annotation effort, in [10], [15], [16] an
automatic aspect clustering criterion is used, namely, the as-
pect ratio of the manually annotated pedestrian BBs. However,
this is a crude criterion that roughly allows to distinguish two
view categories, namely frontal/rear vs. left/right, and only if
the use of this criterion was taken into account during BBs
annotation. Some works also incorporate clustering based on
the features further used to describe the object, e.g., HOG [7].
However, this implies clustering in high dimensional spaces,
especially when combining different feature types, whereas
it may lead to cluster-assignment inconsistencies in multi-
expert approaches provided the feature type determines the
expert. Moreover, in these cases clustering does not depend
only on the objects of interest (i.e., pedestrians here) but also
in the background clutter. In short, for such non-human guided
approaches clustering can become a difficult issue itself.

In [10], given the pedestrian BBs clustered by aspect, part
alignment is automatically done per-view through the iterative
mechanism of Lat-SVM training. However, it is necessary to
provide a heuristic part initialization which may lead to a sub-
optimum alignment. In fact, some works rely on manual part-
level supervision as an effective method for obtaining more
accurate DPMs [7], [14], [16], [18]–[21]. Of course, manually
supporting part annotations is also a tiresome task.

In order to increase the size and variability on the train-
ing set, some works propose the application of geomet-
ric and photometric transformations to pedestrian examples
manually annotated. Since such transformations require to
have the pedestrian examples segmented, different pedestrian-
background combinations are also generated for training. For
instance, in [17] it is assumed the manual delineation of the
initial silhouettes of the pedestrians. In [22], landmark points

for 3D pose recovery and a semi-automatic segmentation of
the 2D pedestrian examples need to be manually provided.

In comparison with the reviewed literature, the contributions
of our VDPM-MP method are summarized as follows. DPM
employs a coordinate-descent algorithm to learn the model
parameters which is sensitive to initialization. However, given
the difficulties of collecting rich pedestrian/object annotations
by manual labeling, heuristic methods are used to initialize the
parameters defining parts and views. VDPM-MP framework
uses virtual-world pedestrians with automatically generated
groundtruth regarding parts and views, i.e., a richer pedestrian
information than just BBs, which is mandatory to learn the
VDPM-MP classifier. Therefore, allowing a better initializa-
tion of the learning process. Moreover, once a VDPM-MP is
trained with virtual data, the resulting classifier can be refined
for domain adaptation using real-world data, where only the
full-body BB of each real-world pedestrian is required. In
addition, following the spirit of [14], VDPM-MP is a more
flexible DPM than the originally proposed in [10] since it
allows part-sharing. As we will see in Sect. V, these two
improvements (i.e., better parameter initialization and part-
sharing) allow VDPM-MP to significantly improve the accu-
racy of the original DPM without requiring to collect part and
aspect information by manual labeling.

III. VIRTUAL-WORLD TRAINING DATA

A. Virtual-World Images

For this work we have improved the dataset of [23] using
the same proprietary game engine (i.e., Half-Life 2). The new
images contain higher quality textures and more variability in
cars, buildings, trees, pedestrians, etc. Unfortunately, we have
no access to the 3D information processed by the game engine.
However, a precise 2D segmentation (pixel-wise groundtruth)
of the imaged pedestrians is automatically available. Hence,
for automatically obtaining BBs, performing aspect clustering
and part labeling, we process the 2D pedestrian-segmentation
masks as explained in III-B and III-C. Therefore, our mecha-
nism can also be used when manually drawn object silhouettes
are available (e.g., as in [17]).

B. Aspect Clustering

The silhouette of the pedestrians can be used to distinguish
major aspect tendencies. The available segmentation of the
virtual-world pedestrians allows to automatically delineate
their precise silhouette. Thus, using a similarity function
between silhouettes we can cluster them. A function that
does not require point-wise matching between silhouettes is
chamfer distance, which has already been successfully used
for building shape-based pedestrian hierarchies from manually
annotated silhouettes [27]. Given a binary template T and a
binary image I , the T to I chamfer distance is defined as
Ch(T, I) = |T |−1

∑
t∈T mini∈I ‖t − i‖, where |T | denotes

the area of T . In our case, both T and I are silhouettes. Since
Ch(T, I) is not a symmetric function in general, we use the
symmetric version S(X,Y ) = Ch(X,Y ) + Ch(Y,X).

Using S(X,Y ) we build a similarity distance matrix,
M(X,Y ), for the silhouettes. Then, we can organize the
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pedestrians as a silhouette-based hierarchical cluster by relying
on M(X,Y ) and K-medoids [28]. K-medoids selects a data
point for each cluster center, which is important here since we
will further use the center pedestrians for part labeling.

First, pedestrian BBs are automatically determined from the
segmentation masks. The BBs are set with the same aspect
ratio as the canonical (detection) window (CW). We crop
pedestrians and masks according to the BBs. Then, all cropped
windows (appearance and mask) are resized to the CW size.

Second, we exploit vertical symmetry to obtain an initial
alignment of the pedestrians. In particular, we manually select
one left-side viewed pedestrian, which is vertically mirrored
to obtain its right-side counterpart (its mask is also mirrored).
These two exemplars initialize K-medoids clustering for K=2.
This procedure classifies our pedestrians as either left or right
aspect. Frontal/rear aspects are assigned to one or another cate-
gory depending on their aspect tendency. Now, the pedestrians
classified as right-aspect are vertically mirrored and joined
with the other category. Thus, we obtain a training set of
pedestrians that are aspect-aligned in the left-vs.-right sense.
Regarding the hierarchical clustering, this set of pedestrians
constitutes the root level, i.e., no clusters are available yet.

Third, we perform the hierarchical clustering. In particular,
we generate a binary tree by iteratively applying K-medoids
with K=2 and using M(X,Y ). In this case, K-medoids initial-
ization is done just randomly. For instance, the first application
of the procedure (2nd level of the hierarchy) divides the
pedestrian examples of the root level as frontal/rear-vs.-left
categories. The second application (3rd level) distinguishes
different degrees of left skewness, and so on. Fig.2a and 2b
show the average appearance and mask of pedestrians for the
2nd and 3rd levels of the hierarchy, as well as the mirrored
hierarchy generated by vertically mirroring the pedestrian
examples at each node of the binary tree.

C. Part Labeling
We assume the usual settings of the state-of-the-art part-

based models [8], [10], [12], i.e., a fixed number of parts
annotated as rectangular sub-windows, where each part rect-
angle is of fixed size but where such size can vary from
part to part. In the deformable case (DPM) the location of
the parts changes from one pedestrian example to another.
Since we focus on DPMs, we have to provide a procedure to
automatically label the parts for each example. Currently we
follow the hierarchical cluster described in III-B.

In particular, we select the pedestrian masks representative
of the 2nd level clusters, i.e., one exemplar for the frontal/rear
aspect and another for the left one. We manually point the
parts’ centers of these two exemplars. For instance, we can
roughly focus on head and extremities, i.e., five parts, and
then quickly clicking ten pixels to be these centers. The parts’
centers are automatically propagated through the hierarchy,
from the 2nd level to the bottom level. From level to level, the
centers are propagated between the representatives of cluster
nodes. The representatives of the bottom-level clusters prop-
agate the centers to all the pedestrian examples within their
respective clusters. Overall, by manually clicking ten points,
we can obtain part labeling for thousands of pedestrians.

(a) (b)

(c) (d)

Fig. 2. (a) 2nd (top row) and 3rd (bottom row) levels of the silhouette-
based hierarchy. The average appearance and segmentation mask of each
cluster node are shown. (b) Mirrored hierarchy. (c) Part centers marked in the
pedestrian mask representative of the left 2nd level cluster, and their automatic
propagation to the representative of one of the left subcategories (a 3rd
level cluster node). The respective parts are also shown on the corresponding
appearance windows. (d) Analogous for the frontal/rear case.

Propagating the centers from one pedestrian example e1
to another e2 is done by a simple but effective procedure.
For that we use the distance transform (DT) of the different
examples. Since chamfer distance involves DT computation,
all pedestrian DTs are already available from the hierarchical
clustering. Let cpi be the center of the part p of the pedestrian
example ei, and Dj the DT of the example ej . In order to map
cp1 into cp2, the new center cp2 is defined as the silhouette pixel
of e2 which is at minimum distance D2(cp1) from cp1. If the
condition holds for more than one pixel, we just choose one at
random since they must be quite close and thus the choice will
not affect the final pedestrian model. Fig.2c and 2d illustrate
the idea. Note that, like for the hierarchical cluster, here we
can define also the vertically mirrored parts.

IV. PEDESTRIAN CLASSIFIER

A. Aspect-based Mixture of DPMs: Overall Idea

In this paper, pedestrians are modeled according to their
full-body appearance, as well as by the appearance of n body-
inspired parts. Such appearances are evaluated by correspond-
ing learned image filters. The size of these filters can be
different from part to part. However, each individual filter
size is fixed. Contrarily, the location of the parts can vary
with respect to the overall full-body location. There are part
locations more plausible than others, therefore, there is a
deformation penalty given by a deformation cost function.
Overall, this is the description of a deformable part-based
model (DPM). Moreover, in order to search for pedestrians at
multiple resolutions, a pyramidal sliding window is assumed
and, following [10], we also assume that parts are detected at
twice the resolution of the root.

In addition, we consider different aspect models, thus, our
pedestrian model actually is a mixture model of m components
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Fig. 3. Part-sharing allows to model unseen aspects. Imagine the testing
sample at the right was not present in the training data. Then, the star model
does not include a combination of parts (head/trunk here) corresponding to
this testing sample. The MP models part combinations that were not seen
during training, thus, it has more chances to rightly classify such a sample.

(aspect-based mixture of DPMs). When using more than one
component we have to decide whether to share parts among
components or not (Fig. 3). In [10] parts are not shared among
components, which corresponds to a star structure. Not sharing
parts can lead to a large number of them, while sharing
the parts reduces this number and allows to model aspect
configurations not explicitly seen during training time. Part-
sharing has been successfully used for pose estimation [14]
and to share parts among different classes of objects [16];
manual part annotations are required in these works though.

B. DPM Definition

For describing our pedestrian model we mainly follow
the notation of [10] since this is the state-of-the-art multi-
component DPM which we take as baseline. We call H the
pyramid of features built from the image under consideration.
Let p = (x, y, l) specify a position (x, y) in the l-th level of H .
For instance, if H is a pyramid with HOG information, then
H(p) contains the features corresponding to a cell of HOG. We
term as φa(H, p,w, h) the vector obtained by concatenating
the feature vectors of a w × h subwindow of H with top-left
corner at p in row-major order. Let F be a w×h filter, arranged
as a vector, i.e., as for the subwindows of H . We can compute
the score of F at p as F · φa(p), where hereinafter we have
simplified the notation by assuming equal dimension of filters
and subwindows, and the use of H underlying appearance
features computation (for the deformation features defined
later too). Following with the HOG example, note that each
entry of F actually contains a vector of weights for the bins of
the four histograms of a HOG cell. In other words, if we think
in terms of the traditional HOG/Lin-SVM framework, the filter
F contains the weights learned by the Lin-SVM procedure.

A DPM is then defined by a (n + 2)-tuple
(F0, P1, . . . , Pn, b), where F0 is the root filter of size
w0 × h0, Pi describes part i, and b is a real-valued bias term.
In particular, Pi = (Fi, vi, di), where Fi is the filter of part i

with size wi×hi, vi is a 2D vector that describes the relative
anchor position of part i with respect to the root position,
and di is a 4D vector of coefficients of a quadratic function,
φd(dx, dy) = (dx, dy, dx2, dy2), that defines the cost of
deviating from the anchor position (i.e., the deformation cost).

Now, let z = (p0, . . . , pn) be a pedestrian hypothesis, i.e.,
an assumption about where the root and the n parts are located
within H , subject to li = l0 − λ for i > 0, where λ defines
the number of levels needed to double the resolution. This
hypothesis will be validated (it is pedestrian) or rejected by
thresholding a score, say S(z), which accounts for the scores
of the appearance filters in their respective positions as well
as the deformation cost of each part, plus the bias term, i.e.,

S(z) =

n∑
i=0

Fi · φa(pi)−
n∑
i=1

di · φd(dxi, dyi) + b , (1)

where (dxi, dyi) is the displacement of the i-th part relative
to its anchor point. We can express (1) in compact form as

S(z) = β · ψ(z) , (2)

where β is a vector of model parameters and ψ(z) is a
vector with the appearance and deformation of hypothesis z
as observed in H , i.e.,

β = (F0, . . . , Fn, d1, . . . , dn, b) , (3)
ψ(z) = (φa(p0), . . . , φa(pn), (4)

−φd(dx1, dy1), . . . ,−φd(dxn, dyn), 1) .

Based on S(z) we can follow [10] to apply an efficient
pedestrian search within an input image.

C. DPM Learning

The parameters in β must be learned from a set of labeled
samples. For Lin-SVM learning with hinge loss, β can be
obtained by solving the following optimization problem:

minβ
1

2
‖ β ‖2 +C

∑N
i=1 ξi ,

s.t. ∀i ∈ [1..N ] : ξi ≥ 0 ∧ (β · ψ(si))`i ≥ 1− ξi ,
(5)

where, {(s1, `1), . . . , (sN , `N )} is the set of training samples,
with `i ∈ {+1,−1} labeling sample si as pedestrian (+1) or
background (−1). Here we assume si = (p0,i, . . . , pn,i), i.e.,
when `i = +1 both the BBs of the root and parts of pedestrian
i are provided (see Sect. III-C), while for `i = −1 such BBs
can be just sampled from background patches. Moreover, note
that si is expressed with respect to the coordinates of the
pyramid of features, Hsi , computed from the original image
containing the annotated pedestrian corresponding to si. These
coordinates already encode resizing pedestrians to CW size.

If only pedestrian root BBs are annotated but not part BBs,
this optimization problem is not convex and the Lat-SVM
algorithm must be applied by treating root and part BBs as
latent information [10]. Lat-SVM is basically a coordinate
descent method where holding β fixed, the root and part BBs
are optimized (manually annotated root BBs and ad hoc part
BBs relative to such root BBs are used for initialization); then
assuming that such BBs are right, β is optimized.
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D. Mixture of DPMs: Star Model (VDPM-Star)

The basic DPM can be extended to account for m compo-
nents (e.g., views), i.e., the new model can be thought as a
mixture of DPMs. Each component has its associated βc and
ψc(z) vectors, 1 ≤ c ≤ m. The score function in this case
can be defined as S(z) = maxc∈[1..m] βc · ψc(z). Now, the
parameters to be learned take the form of a vector

β = (β1, . . . , βm) . (6)

Again, β can be obtained by solving the optimization
problem in (5), where in this case

ψ(z′) = (0, . . . , 0, ψc(z), 0, . . . , 0) (7)

for z′ = (c, z). Note that ψ(z′) is a sparse vector, i.e., all its
entries are zero but those of the component c corresponding to
z′. Accordingly, the training samples are of the form (s′i, `i)
with s′i = (ci, si). Note that in our case the components are
aspects and, thus, during training the aspect information (i.e.,
ci) of the pedestrian samples is known (see Sect. III-B), while
for the background ones it can be set randomly. This mixture
of DPMs just inherits the star structure of the basic DPM for
each mixture component. Therefore, and given the fact that
we rely on virtual-world data, we term it as VDPM-Star.

As in the single component case, given an image we use
the new score S(z) for finding pedestrians following [10].

E. Mixtures-of-Parts Model (VDPM-MP)

The star structure limits the parts to be connected to a single
root component. Therefore, sharing parts among different
components is not possible. Moreover, when increasing the
number of components, the number of part filters grows ac-
cordingly. In contrast, models allowing part-sharing can avoid
both problems. We follow the mixtures-of-parts (MP) idea
presented in [14] for pose estimation, which is based on a tree
organization. In particular, a node of the tree conveys different
aspects of the same type of part, e.g., one node can include
different head aspects, another node can incorporate different
trunk aspects, and so on. Moreover, there is a deformation cost
between part aspects of child and father nodes.

In this paper we incorporate several contributions with
respect to [14]. First, rather than using just a collection of
constituent parts, we also use a root which is treated as a
special part. Second, in this case we also detect parts at twice
the resolution of the root. Third, as in the DPM seen so far, the
deformation cost of all the parts are with respect to the root.
Thus, our model is a tree with only two layers. In the first
layer (root node of the tree) we have different pedestrian root
aspects. In the second layer, we have different nodes, each one
being dedicated to a different type of part (i.e., view induced
head aspects, left-arm aspects, etc.). Fig.3 conceptualizes the
idea. Note how any part aspect can be combined with any
root aspect. Thus, the variety of modeled pedestrians that were
not explicitly seen during training is larger than for star-like
models [7], while increasing the number of aspects of a given
part (e.g., root aspects) does not require doing the same for
the other parts.

Interestingly, by defining the proper β and ψ vectors, the
learning of β drives us to (5) again. First, we define

β = (Γ0, . . . ,Γn,∆1, . . . ,∆n, b) , (8)

where
Γi = (F 1

i , . . . , F
k
i ), 0 ≤ i ≤ n , (9)

conveys the appearance filters of part i (i = 0 refers to the
root) for k aspects, while

∆i = (d1,1i , . . . , d1,ki , . . . , dk,1i , . . . , dk,ki ), 1 ≤ i ≤ n , (10)

are the deformation cost parameters of part i with respect
to the root, where dai,a0i , 1 ≤ ai, a0 ≤ k, stands for the
deformation cost parameters of the aspect ai of part i with
respect to the aspect a0 of the root. We note that, without
losing generality, in this work we use the same number of
aspects (i.e., k) for each type of part provided it is relatively
low (e.g., four in the experiments of Sect. V), otherwise it is
straightforward to consider different ki.

Accordingly, we can define the feature vector ψ(z) as

ψ(z) = (Φa(p0), . . . ,Φa(pn), (11)
−Φd(δx1, δy1), . . . ,−Φd(δxn, δyn), 1) ,

where

Φa(pi) = (φa(p1i ), . . . , φa(pki )), 0 ≤ i ≤ n , (12)

contains the appearance features at paii , 1 ≤ ai ≤ k, i.e.,
the location pi for the different aspects ai. Now, we define
the vector δxi = (dx1,1i , . . . , dx1,ki , . . . , dxk,1i , . . . , dxk,ki ) and
analogously for δyi, where (dxai,a0i , dyai,a0i ), 1 ≤ ai, a0 ≤ k,
stands for the displacement of aspect ai of part i with respect
to aspect a0 of the root. Accordingly, we have

Φd(δxi, δyi) = (φd(dx
1,1
i , dy1,1i ), . . . , φd(dx

1,k
i , dy1,ki ), (13)

. . . , φd(dx
k,1
i , dyk,1i ), . . . , φd(dx

k,k
i , dyk,ki )),

1 ≤ i ≤ n .

Again, training samples are of the form s′i = (ci, si). The ci
label is used as aspect index. When forming the ψ(s′i) vectors
for the optimization in (5), all appearance related entries are
zero but those indexed by aspect index ci. Regarding the
deformation cost entries, the situation is analogous but taking
into account that the displacement of each part of s′i must
be related to all roots, not only to the root whose aspect is
indexed by ci. Note that displacements from any aspect of
any part to any root aspect can be computed because during
the training all the examples are used according to the CW
size. Accordingly, we obtain feature vectors of the form

ψ(s′i) = (0, . . . , φa(pci0 ), . . . , 0, . . . , φa(pcin ), . . . , 0,

0, . . . , φd(dx
ci,1
1 , dyci,11 ), . . . , φd(dx

ci,1
n , dyci,1n ),

. . . , φd(dx
ci,k
1 , dyci,k1 ), . . . , φd(dx

ci,k
n , dyci,kn ),

. . . , 0, 1) .
(14)

We remark that in this case the annotation of the parts and
the aspects is strictly necessary. In [14] a manual process is
followed to obtain such a rich ground truth, while here we use
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Algorithm 1 VDPM Optimization
Assume β and ψ defined by (6) and (7) for VDPM-Star, or
by (8) and (14) for VDPM-MP. Inputs S+ and S− stand
for positive and negative training data, respectively, while
Din is an initial pedestrian detector.
Optimize(S+,S−,Din)
Dout ← Din

while the optimization does not finish do
1. Compute the ψ’s as follows:

1.a. Run Detect(Dout,S+) to obtain the φa’s and φd’s
of the pedestrians.
1.b. Run HardNeg(Dout,S−) to obtain the φa’s and
φd’s of the background examples.

2. Using the ψ’s, solve (5) to obtain β.
3. Update Dout according to the new β.

end while
return Dout

Algorithm 2 VDPM Training
Mandatory: V , virtual-world data with pixel-wise ground
truth for pedestrians as well as pedestrian-free images.
Optional: R+, real-world data with root BB annotations for
pedestrians, and R− with pedestrian-free images.
1. Automatic annotation steps.
1.a. Obtain V−, the pedestrian-free virtual-world images.
1.b. Obtain V+

0 as the complement of V− in V .
1.c. Obtain V+ from V+

0 by performing the automatic
annotation of aspects (Sect. III-B) and parts (Sect. III-C).
2. Build an initial part-based pedestrian detector
2.a. Appearance classifiers: using {V+,V−} train each root
and parts’ initial appearance classifiers.
2.b. Anchor points: use V+ to fit a Gaussian mixture model
(currently a GMM of five components, i.e., one per part) to
the cloud of points generated by considering the centers of
the part BBs, independently for each aspect. The mean of
each Gaussian is taken as the anchor point of a part.
2.c. Build an initial part-based pedestrian detector, D0, using
the appearance classifiers and their anchor locations.
3. Train the VDPM-MP
Dout ← Optimize(V+,V−,D0)
4. [optional] Virtual to real world domain adaptation
Dout ← Optimize(R+,R−,Dout)
return Dout

the virtual world for automatically obtaining it. Accordingly,
we term this pedestrian model as VDPM-MP. With the VDPM-
MP S(z), we search pedestrians in images following [10].

F. Training Framework

Algorithms 1 and 2 summarize the training of our VDPMs.
We have coded it within the Lat-SVM V5 framework so that
comparisons with such a state-of-the-art method are fair.

Algorithm 1 is at the core of Lat-SVM. HardNeg() is the
data mining procedure used in [10] for collecting hard nega-
tives. Detect() has the purpose of self-annotating components
(aspects) and parts in training pedestrians, i.e., estimating the

TABLE I
STATISTICS OF THE DATA SETS USED IN THIS PAPER.

Testing sets  Daimler Daimler* TUD Caltech* CVC02
Images 21,790 973 508 4,024 4,363
≥ 50 pix ped. 6,090 1,483 1,207 1,014 5,016

Training sets  INRIA Virtual
Pedestrian-free images 1,218 2,000
Pedestrian examples 1,208 2,500

TABLE II
EVALUATION OF COMPONENTS CLUSTERING METHODS FOR LAT-SVM

V5. AVERAGE MISS RATE % IS SHOWN FOR FPPI IN [10−2, 100].

Clustering Method Daimler* TUD Caltech* CVC02
Symmetry, c=2 32.1 72.7 68.1 56.2
HOG K-means, c=4 31.0 73.8 68.6 57.2
Our, c=4 29.3 72.7 64.9 49.6
Our, c=8 28.4 70.0 64.5 50.9

ψ’s of (5) during Lat-SVM learning. Hence, we can adopt
HardNeg(), while the use of Detect() is different depending
on whether we already have BB annotations for aspects and
parts (e.g., as for virtual-world data), or we only have root
BBs (e.g., as usually for real-world data).

Accordingly, for the step 3 in Alg. 2, the Detect() function
only needs to return the aspect and part annotations computed
in the step 1 of the same algorithm. However, we have
found useful to lead the current detector to search for the
best detection (highest score) overlapping up to a certain
amount with the provided annotations. In particular, we set
to 60% such overlapping for roots and parts individually. This
flexibility can be understood as a sort of online jittering of the
training pedestrians. Augmenting the training set with jittered
pedestrians is employed in [17] to be more shift invariant
because, for the sake of speed, during pedestrian detection
the image is explored according to a stride longer than one
pixel. We do this process online, thus our pedestrian training
set is not augmented. We have seen that this operation leads
to gains between two or three percentage points of accuracy.

For real-world data with only root BBs, Detect() is exactly
the corresponding step of Lat-SVM V5 training. This means
that the current detector is used for collecting aspects and
part annotations, but without using the prior annotation infor-
mation available when training with virtual-world data (the
60% overlapping rule). Thus, step 4 of Alg. 2 consists in
training with Lat-SVM V5, but initializing the process with
a VDPM detector (Star or MP) based only on virtual-world
data. Since VDPM detectors are accurate, they provide a good
initialization for the optimization process. The rational behind
this optional step is to prepare our framework for domain
adaptation based on incorporating real-world data [24], [25].

Finally, the initial part-based detector of step 2 in Alg. 2
follows our proposal in [13]. Thus, we obtain an aspect-based
mixture of DPMs with a star structure, with the root and parts
trained independently from each other.
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V. EXPERIMENTAL RESULTS

A. Datasets and Evaluation Protocol

Since our interest is pedestrian detection for cars, we
validate our proposals in different datasets acquired on-board,
namely Daimler [1], TUD-Brussels [29], Caltech-Testing [3],
and CVC02 [30]. Thus, different camera types and cities are
covered. Table I provides relevant statistics of these datasets.
Daimler* refers to the mandatory set of Daimler we used in
[23]. Caltech* refers to the reasonable set of Caltech [3].

As evaluation protocol we run the widely used Caltech per-
image evaluation [3], i.e., false positives per image (FPPI) vs.
miss rate. Detected pedestrians must be of height ≥ 50 pixels.

Most pedestrian detectors evaluated in [3] are trained with
INRIA training set [6]. Thus, for comparing our proposals
with respect to them, we use such INRIA data for adapting
virtual world to real one. Regarding domain adaptation, here
we only focus on combining all the available virtual and real
data, i.e., we leave for future work to incorporate either our
active learning strategies [25] or the non-supervised ones [24].

Our virtual-world training set contains 2,500 pedestrians and
2,000 pedestrian-free images1. Our VDPMs use the root and
five parts: shoulder-head, left and right trunk-arms, left and
right legs. Lat-SVM V5 uses a 8-part configuration. The root
window (i.e., the CW) size is of 48× 96 pixels. For detecting
pedestrians of height up to 50 pixels, we upscale the images
with bilinear interpolation. Part windows are of 24×48 pixels.

Automatic aspect clustering is done once for a desired
number of clusters. For the numbers tested in the presented
experiments, our clustering procedure (Sect. III-B) roughly
takes five minutes for the 2,500 virtual-world pedestrians using
MatLab code running on an Intel Xeon CPU E5420 @2.5GHz.
The part labeling of the same pedestrians (Sect. III-C) is also
done once. By using MatLab code running on the mentioned
processor, the part labeling takes around five minutes as well.

The testing of the pedestrian detectors presented in these
experiments is always done by running the corresponding part
of the Lat-SVM V5 framework. Since the BB prediction post-
processing incorporated within this framework requires further
training, it is skipped for all tests. In other words, the location
of a detected pedestrian directly corresponds to the location of
the root. Overall, training and testing of all detectors is done
under the same conditions for fair comparison.

B. Results and Discussion

First we assess the accuracy of the component clustering
methods for Lat-SVM V5. We train with our virtual-world
data. The results are shown in Table II. Our virtual-world
pedestrian examples have a fixed aspect ratio, thus the default
Lat-SVM V5 clustering method is equivalent to consider two
symmetric components. For completeness, we also include K-
means clustering of HOG features [31]. Note how our clus-
tering performs better than the rest. Setting c = 8 components
tends to perform slightly better than c = 4. However, since
the difference is small, in the following we assume c = 4 (3rd
level of the hierarchy in Fig. 2a-2b) to obtain a faster detector.

1Publicly available within www.cvc.uab.es/adas/

TABLE III
VDPM-STAR vs. VDPM-MP COMPARISON. AVERAGE MISS RATE % IS

SHOWN FOR FPPI IN [10−2, 100].

VDPM (training sets) Daimler* TUD Caltech* CVC02
Star (V.) 25.1 70.7 61.5 48.8
MP (V.) 24.3 65.9 63.3 47.5
Star (V.+INRIA) 21.6 65.7 55.8 42.5
MP (V.+INRIA) 18.2 61.3 53.0 36.3

TABLE IV
DPMS AVERAGE MISS RATE % IS SHOWN FOR FPPI IN [10−2, 100].

DPM (training sets) Daimler* TUD Caltech* CVC02
Lat-SVM V5 (V.) 29.3 72.7 64.9 49.6
VDPM-MP (V.) 24.3 65.9 63.3 47.5
Lat-SVM V5 (INRIA) 24.7 60.0 59.5 42.6
Lat-SVM V5 (V.+INRIA) 23.4 69.6 58.9 42.9
VDPM-MP (V.+INRIA) 18.2 61.3 53.0 36.3

TABLE V
AS TABLE IV SUBSTITUTING INRIA BY CVC02 AND CALTECH† . THE

’—’ AVOIDS TESTING WITH THE TRAINING PEDESTRIANS.

DPM (training sets) Daimler* TUD Caltech* CVC02
Lat-SVM V5 (Caltech†) 57.5 75.4 — 52.5
VDPM-MP (V.+Caltech†) 18.5 60.2 — 36.6
Lat-SVM V5 (CVC02) 60.2 81.1 60.0 —
VDPM-MP (V.+CVC02) 20.9 56.6 50.6 —

Next we compare Star and MP VDPMs using our aspect
clustering, with and without domain adaptation. Table III
shows the results. Note how effective is combining the virtual-
and real-world data: accuracy improves from 4 to 11 percent-
age points depending on the dataset, MP clearly outperforming
Star. Without the combination, VDPMs perform similarly.

Table IV compares Lat-SVM V5 with VDPM-MP. VDPM-
MP uses our aspect clustering. Lat-SVM V5 uses the same
clustering input when the training data is the virtual-world one,
while it applies its own clustering algorithm when the training
uses only INRIA. Note how, using the same aspect clustering
and the virtual-world data, VDPM-MP reports better accu-
racy than Lat-SVM V5. This is because VDPM-MP is more
flexible than the star model of Lat-SVM V5 and relies on a
better initialization of the parts. The same happens combining
virtual- and real-world data. Overall, if we compare Lat-SVM
V5 trained with INRIA to our VDPM-MP trained with INRIA
plus our virtual-world data, we see a large decrease in average
miss rate, (∼ 6 points for Daimler, Caltech and CVC02).

Fig.4 draws results for the full Daimler set and different Cal-
tech subsets. We add CrossTalk [5] since it recently reported
state-of-the-art results on Caltech. CrossTalk uses a holistic
pedestrian model learnt by mining many feature channels
using AdaBoost style. Note how in the reasonable setting
of Caltech the average accuracy of CrossTalk is comparable
to VDPM-MP at the moment, while looking only at close
pedestrians (Large label corresponds to pedestrians over 100
pixels height, i.e., closer than 18 m [3]) VDPM-MP outper-
forms CrossTalk in 10.5 points, which is very important in
driving scenarios. This is in agreement with the fact that DPMs
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Fig. 4. LatSvm-V2 and LatSvm-V5 are trained with INRIA training dataset, while LatSvm-V5* and VDPM-MP are trained Virtual+INRIA training data.

Fig. 5. Detections at FPPI = 0.1 (Daimler/TUD/Caltech/CVC02) for our VDPM-MP trained with Virtual+INRIA data. Blue BBs indicate miss detections.
Green ones are root right detections, with corresponding detected parts as yellow boxes.
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Fig. 6. Behavior of different detectors with respect to occluded pedestrians.

are expected to work better at higher resolutions than holistic
models. Finally, Fig. 5 shows qualitative results of VDPM-MP.

For the sake of completeness we have devised a new set of
experiments where we have changed the real-world dataset.
We have appended the reasonable pedestrians of both the
training and testing sets of Caltech to obtain a new train-
ing set, namely Caltech†, which contains 2,721 pedestrians
(roughly twice as much as the INRIA training set). Note that
Caltech* ⊂ Caltech†. We have also used the CVC02 dataset
as training set (it contains 5,016 reasonable pedestrians, see
Table I). The obtained results, shown in Table V, confirm that
our approach clearly outperforms Lat-SVM V5.

For assessing classifiers’ accuracy for occluded pedestrians
we incorporated the experiments in Fig. 6. We tested on the
partial occlusion set of Caltech and in our own one [32]. The
former containing 102 partially occluded pedestrians over 50
pix height, the latter containing 577. Note how our VDPM-
MP clearly outperforms Latent SVM V5 in the non-occluded
pedestrians, while for the occluded ones these methods per-
form analogously. In fact, the accuracy under partial occlusion
tends to decrease compared to the non-occlusion case, showing
that DPMs may require mechanisms of occlusion detection
and re-scoring as we proposed in [32] for holistic models or,
alternatively, explicitly incorporating additional components
trained with partially occluded pedestrians as special aspects.

Finally, we assessed the processing time of the training

and testing frameworks. The training is conducted in an Intel
Xeon(R) CPU E51620 of 8 cores at 3.60GHz. The code has
parts in C++ and in MatLab, training in parallel the part
filters. DPM and VDPM methods consume a similar time to
learn the pedestrian models, i.e., between 11 and 12 hours in
average for the presented experiments. For testing we have
incorporated the proposal of [33] to speed up our linear part
filters. Then, using the same CPU as for training, our current
C++ implementation runs in the range of 6 to 10 fps.

VI. CONCLUSIONS

We have shown how virtual-world data can be used for
learning pedestrian DPMs. Using our VDPM-MP proposal and
combining virtual- and real-world data, we clearly outperform
the state-of-the-art DPM, i.e., Lat-SVM V5. Our automatic
aspect clustering and part labeling have two main outcomes.
On the one hand, we obtain a more precise initialization for
the training optimization procedure. On the other hand, we
can train a DPM with part-sharing and aspect clustering. As
to the best of our knowledge this is the first work showing
how to effectively train such a model by using virtual-world
data. As future work we plan to reduce the number of real-
world examples required for domain adaptation by testing our
approaches in [24], [25]. We want also to improve detection
accuracy for partially occluded pedestrians.
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(UAB). His research interests include pedestrian
detection, virtual worlds, and machine learning.

David Vázquez received the B.Sc. degree in Com-
puter Science from the UAB. He received his M.Sc.
in Computer Vision and Artificial Intelligence at
CVC/UAB in 2009. As member of the CVC’s ADAS
group, he obtained the Ph.D. degree in 2013. His re-
search interests include pedestrian detection, virtual
worlds, domain adaptation and active learning.
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