
Reducing Configuration Overhead with
Goal-oriented Programming

Justin Mazzola Paluska, Hubert Pham, Umar Saif, Chris Terman, and Steve Ward
{jmp,hubert,umar,cjt,ward}@mit.edu

MIT CSAIL
32 Vassar Street

Cambridge, MA 02139

Abstract— The rapid increase in the number and variety
of consumer-level electronic devices without the corresponding
development of device management technology has lead to
a configuration nightmare. We propose to use goal-oriented
programming over a substrate of network-portable objects to
help reduce the amount of configuration users must do in
order to have their applications use their devices efficiently. We
detail an architecture and describe a prototype system using
existing pervasive computing technology that plays music on the
most appropriate devices without requiring user interaction and
configuration.

I. INTRODUCTION

Recent years have seen an explosion in the number and
diversity of consumer-level electronic devices. Many of these
devices work extremely well in one environment in a few
scripted ways, but have the possibility of working in many
other, unanticipated ways if users are willing to expend con-
siderable effort configuring the devices and connecting them
together. Unfortunately, this effort confounds even determined
users with time and money to hire professional installers and
technical support [1].

As a motivating example, suppose a user would like to play
a video from her laptop computer. The computer normally
plays video on its own screen and internal speakers, but the
user enjoys the experience more on her television and home
theater system. As such, every time the user wants to watch a
video from the laptop, she must:

1) Connect the laptop’s television output—if it has one—to
one of television’s inputs,

2) Connect the laptop’s audio outputs to an adapter bought
from RadioShack then that to the speakers’ inputs,

3) Activate the inputs of the speakers and television,
4) Start the media player on the computer,
5) Instruct the laptop to render the media to its external

outputs, and
6) Press “play” and hope that the television and computer

agree on aspect ratios and other miscellany.

If the user would rather move the laptop to another room and
play on the laptop’s built-in components, she must reconfigure
the laptop once again.

We believe that these configuration hassles can be reduced
most of the time to “just play”.

Fig. 1. Software architecture for “Just Play”

II. THE “JUST PLAY” PROPOSAL

The steps above show that configuration is difficult because
devices have different and often incompatible physical inter-
faces; because devices cannot be controlled in a standardized
way; and because software is application-centric rather than
task-centric. As a result, the user must explicitly mediate be-
tween each pair of devices that she wishes to communicate and
run software to enable that communication. Instead, we would
like a dynamically configured device environment where users
tell their devices what high-level tasks they would like to
accomplish and the system figures out the low-level details
of those tasks. In such a system, the user tells the system to
“Play Video” and the system responds by searching out for a
way to “Play Video” given the resources at hand.

In order to build this world we need a way to capture what
the user wants, a way to translate user intent into machine-
implementable tasks, and a way of implementing the tasks
with real software and hardware. We propose the following
four part, two-layer architecture to enable users to better use
their devices by enabling automatic configuration:

1) Machine-readable User Intents to allow a user’s ab-
stract desire to be read by the automatic configuration



Fig. 2. Software components used for the “Just Play” prototype.

system.
2) A Goal-oriented Configuration System to match user’s

intents with recipes, functions, and devices that can
achieve those intents.

3) A Common Wireless Interface and Control Mecha-
nism to eliminate physical connection mismatches and
allow replacement of devices by other devices over time.

4) Low-level Descriptions of Device Capabilities so that
devices may be used in ways beyond their single scripted
use. For example, a television is not just a television,
but a display device, NTSC or PAL tuner, audio output
device, and a remote control receiver, all of which might
be useful in implementing user tasks.

The first two architectural points form a layer that captures
and satisfies user tasks. The last two architecture points form
a layer that implements ways of satisfying tasks given devices
of certain capabilities. Figure 1 illustrates our architecture.
While there is some architectural fluidity within the layers,
we maintain a strong abstraction between the two layers. This
enables the two layers to evolve independently and be to
replaced as new technology develops.

III. INITIAL PROOF-OF-CONCEPT

We are currently developing a set of prototype devices and a
prototype programming environment in which we can explore
the “Just Play” architecture. Figure 2 illustrates our approach
and choice of components. The user of our system speaks to
a “Voice Shell” on a nearby computer that performs voice
recognition on her utterance and translates it into a (currently)
small universe of intents. When the user is done listening to
the music, she simply clicks a button or tells the system to
stop.

For example, the utterance “Play me some jazz” gets trans-
lated into a high level intent of PlayMusic(type=jazz).
The system finds a jazz music stream and a music output
device from the devices available and accessible to the user on

Fig. 3. A sample Plan Tree. Goal nodes are yellow. Technique nodes are
red and have their dependencies tied together with a cross-bar, since all
dependencies must be satisfied before the Technique can proceed. Dark lines
and darkly colored circles represent the nodes currently chosen by the Planner.

the network. If a new device becomes available—for example,
the user plugs in a speaker she just purchased—the system
evaluates if the new device is better than what is currently
being used and, if necessary, switches to the new device.
Similarly, if a device suddenly becomes unavailable, e.g., due
to power loss, the system plans around it. When the user
signals that the system shouldn’t play music anymore, the
system fades out the audio and disconnects the music stream.

In essence, the system maintains a formal record of the
user’s current intents (goals) and doggedly pursues them so
long as they remain active, using the best resources it can find.
It adapts to newly-available resources without explicit recon-
figuration, eliminating configuration overhead in a variety of
common system extension scenarios.

A. Implementation Details

We extend elements of MIT’s O2S [2] pervasive program-
ming system for our software infrastructure. In particular, the
prototype uses an extended version of the O2S Goals and
Techniques programming system for the Task/Intent layer.
Goal-oriented programming [3] provides a way of writing
applications so that the algorithms, devices, and resources
used can be evaluated and exchanged for ones with similar
functionality as needed. For the Component layer, we use O2S
Resource network-portable objects [4] over 802.11 wireless
networks. In particular, the O2S resources framework provides
us with a simple discovery system and a common interface
through which to access devices as objects.

Hardware-wise, our prototype “Just Play” environment uses
a Mac Mini, a standard laptop, and a speaker modified with
an 802.11b wireless interface and MP3-to-analog decoding
hardware. The Mac Mini acts as a trusted wireless and
computation hub that can monitor the state of the network
and discover devices on the user’s network. The laptop acts
as a UI, a source of music, an audio input device, and an
audio output device. Finally, the speaker simply provides audio
output. However, unlike conventional speakers, we modified
ours so that when it is plugged into power, it discovers the O2S
Registry on the Mac Mini and informs it of its capabilities as
an audio output device.

B. Goal-oriented Programming

Goal-oriented programming offers two primary abstractions.
Goals act as a specification abstraction. Goals are satisfied by



Techniques, a mixture of declarative statements and arbitrary
code.

Unlike traditional programming models, Goals are not
bound to any particular Technique until runtime. The binding
is mutable and may change as better devices come up or the
context in which a particular binding choice was made is no
longer valid. Thus, Goals provide a natural way of expressing
the points in an application that can be swapped out and
replaced as needed. The binding of Goals to Techniques is
handled by a Planning engine that cooperates with Techniques
to find the best way to satisfy the user’s top-level Goals.

A Technique may be Goal-oriented by declaring subgoals
that the Planner, in time, recursively satisfies. The “return
value” of a subgoal declaration is a Solution object that the
Technique can use to access properties of the subgoal, i.e.,
the sub-Technique the Planner chose to for the subgoal. This
information, in turn, is used by the Technique to set properties
of its own solution. Solutions can contain arbitrary properties
but must contain a “satisfaction” property that measures how
well the Technique is satisfying its own Goal.

The O2S Planner requires that all of a Technique’s subgoals
be satisfied before that Technique can proceed. The blocked
Technique, however, does not block other Techniques from
proceeding as long as their own subgoals are satisfied. Goals,
on the other hand, can be satisfied by any one of a variety of
Techniques. As such, Goals and Techniques form an AND/OR
tree. Our “planning process” is simply heuristic search from
the root to the leaves of each plan tree for the best Techniques
for each Goal as measured by “satisfaction”.

Figure 3 illustrates a sample plan tree for an instantiation of
the PlayMusic(type=jazz) Goal. Note that the plan tree
is just a dependence tree. The code in Techniques determines
the final structure of the application.

C. Techniques

Goals are just specification—the real work of connecting
devices together is done by Techniques. Figure 4 shows
a sample Technique to PlayMusic via MP3s. The first
line declares the Goal that the Technique satisfies; the via
statement just names the Technique to ease debugging. The
rest of the Technique is divided into stages:

to PlayMusic(type):
via MP3s:
subgoals:

source = MusicStream(type,
format="MP3")

control = VolumeControl()
sink = AudioSink(format="MP3")

eval:
satisfaction = (source.satisfaction +

sink.satisfaction) / 2
exec:

connect(source, sink)
control.set_speaker(sink)

update sink from old:
disconnect(source, old)
connect(source, sink)

Fig. 4. Sample PlayMusic Technique

• A subgoals stage that declares the subgoals of the
Technique.

• An eval stage that investigates the results of the sub-
goals and synthesizes how well the Technique can satisfy
its own goal given the Planner’s choice of subgoal im-
plementations.

• An exec stage that contains the code to run if the Planner
chooses the Technique for execution.

• An update stage that contains code to swap out the
sink subgoal for another one if necessary.

Technique code is not run all at once. Instead, the Planner
runs and re-runs stages as necessary to build a plan tree,
evaluate what Techniques form the best plan, execute the best,
and the monitor the chosen Techniques.

D. “Just Play” and Goal-oriented Programming

We use Goals to capture user and programmer intents. Since
Goals are explicit adaptation points, we can use the indirection
Goals provide to automatically choose and configure devices
and service for users as long as choices meet the Goal’s
specification. In particular, we do this by writing Techniques
that describe common configuration patterns; the Planner is
left to evaluate which is best at any given time and run them.

In the “Just Play” prototype, we have roughly two kinds of
Techniques. The first kind are Techniques that function much
like device drivers in traditional operating systems. These
simply gather network representations of each device and copy
their properties to Solution objects. The other kind of Tech-
niques are “algorithmic” Techniques that embody the logic of
how components are connected together. The Technique of
Figure 4 is a typical algorithmic Technique, as it assumes
its subgoals are satisfied and simply provides a recipe for
connecting them together. In order to give the Planner the
most choices, our prototype Techniques use subgoals whenever
possible.

The plan tree of Figure 5 is a snapshot of the “Just Play”
system during runtime. At the highest level is the PlayMusic
Goal that the user invokes when she wants to listen to
music. The PlayMusic goal is satisfied by the via MP3s
Technique. Lower-level Techniques satisfy the subgoals of the
via MP3s Technique; the recursion terminates at Techniques
that represent each available device in the system.

Our system is additive and extensible: As new ways of
playing music or new devices come along, we only need to add
new Techniques to the Planner for those devices or methods,
giving it more choices when satisfying the user’s PlayMusic
Goal.

E. The Component Layer and Portability

The O2S Resources system provides a network portable
object interface as well as device discovery and process health
monitoring. Low-level Techniques that must find devices and
services interface directly with the Component layer. For ex-
ample, as part of it’s health monitoring service, the Component
layer sends asynchronous DEVICE UP and DEVICE DOWN
events. Low-level Techniques convert these into satisfaction



Fig. 5. Snapshot of the “Just Play” plan tree during runtime when the speaker
is unavailable. Note that the Plan Tree reflects module dependencies and is
independent of the final application structure.

values in their solution objects, e.g., 1 for a working device,
and 0 for a non-working one. This way, the rest of the system
can be used even if the implementation of the component layer
changes.

While we chose to work with familiar and integrated com-
ponents of O2S, our architecture does not require the use of
O2S. For example, it is possible to swap out O2S resources
with a combination of Sun’s RMI [5] and the IETF’s Service
Location Protocol (SLP) [6]. This would require reconfiguring
the lowest-level Techniques that deal directly with devices,
but not necessarily all Techniques. We believe that algorithmic
Techniques would need few changes.

IV. RELATED AND FUTURE WORK

The “Just Play” framework draws ideas from many perva-
sive computing systems. UIUC’s Gaia [7] and CMU’s Aura [8]
both add a level of indirection between traditional applications
and I/O devices. Similarly, systems like Ninja Paths [9] and
SoNS [10] allow stream-based applications to transparently
change endpoints. Olympus [11] extends Gaia with portable
scripts that tie together resources within an intelligent room.
Techniques are similar, but are not tied to a specific class
of physical environments: the provide a generic programming
model that we believe is useful for many kinds of pervasive
environments. We, like PCOM [12], take the more radical
approach to system decomposition than these systems by
breaking apart previously atomic applications. In our case, we
divide into Techniques.

UPnP [13], Bonjour [14], and SLP [6] each provide dis-
covery methods. They are best suited as replacements for
discovery part of the Component layer—configuration must

be built on top of the substrates they provide. Closer to
our work is ISI’s Pegasus [15], which applies AI planning
algorithms to generating scientific workflows on the Grid
based on discovered resources. We differ in focus, however,
as Pegasus is based on moving files and programs around for
execution, not for device configuration.

There are two areas in which we need to extend our
prototype. First, we need to find a way to secure devices on
the device network without configuration hassles. Whereas a
laptop and speaker wired together are authenticated to each
other by the wire between them, wireless networks offer no
such authentication. This problem is compounded if users want
to be able to share their device networks or use devices—such
as projectors—that are a part of a shared infrastructure owned
by no one user.

Second, we need to determine how to best give non-
programmers a choice among equally good ways of satisfying
a high-level goal. Programmers can write their own Techniques
to do so, but we cannot expect most users to do this. A simple
interface would be to choose a single plan and switch among
them if the user rejects it. Alternatively, another interface lets
users explicitly tell the system to use a device in a particular
way, perhaps using speech recognition or gesture recognition.

REFERENCES

[1] A. Marcus, “The out-of-box home experience: remote from reality,”
interactions, vol. 12, no. 3, pp. 54–56, 2005.

[2] U. Saif, H. Pham, J. Mazzola Paluska, J. Waterman, C. Terman, and
S. Ward, “A case for goal-oriented programming semantics,” in UbiSys
2003, 2003.

[3] J. Mazzola Paluska, “Automatic implementation generation for pervasive
applications,” M.Eng Thesis, Massachusetts Institute of Technology,
June 2004.

[4] H. Pham, “A distributed object framework for pervasive computing
applications,” Master’s thesis, Massachusetts Institute of Technology,
2005.

[5] Sun Microsystems, “Java remove method invocation,” http://java.sun.
com/rmi, 1994.

[6] IETF, “Service location protocol, version 2,” RFC 2608, June 1999.
[7] M. Román, C. Hess, R. Cerqueria, A. Ranganathan, R. H. Campbell,

and K. Nahrstedt, “A middleware infrastructure for active spaces,” IEEE
Pervasive Computing, pp. 74–83, October-December 2002.

[8] D. Garlan, D. P. Siewiorek, A. Smailagic, and P. Steenkiste, “Project
aura: Toward distraction-free pervasive computing,” IEEE Pervasive
Computing, pp. 22–31, April-June 2002.

[9] S. D. Gribble, M. Welsh, J. R. von Behren, E. A. Brewer, D. E. Culler,
N. Borisov, S. E. Czerwinski, R. Gummadi, J. R. Hill, A. D. Joseph,
R. H. Katz, Z. M. Mao, S. Ross, and B. Y. Zhao, “The ninja architecture
for robust internet-scale systems and services,” Computer Networks,
vol. 35, no. 4, pp. 473–497, 2001.

[10] U. Saif and J. Mazzola Paluska, “Service-oriented network sockets,” in
MobiSys 2003, 2003.

[11] A. Ranganathan, S. Chetan, J. Al-Muhtadi, R. H. Campbell, and M. D.
Mickunas, “Olympus: A high-level programming model for pervasive
computing environments,” in PerCom 2005, March 2005, pp. 8–12.

[12] C. Becker, M. Handte, G. Schiele, and J. Rothermel, “Pcom — a
component system for pervasive computing,” in PerCom 2004, March
2004, pp. 67–76.

[13] Universal Plug and Play Forum, “Universal plug and play (upnp),” http:
//www.upnp.org/.

[14] Apple Computer, “Bonjour,” http://images.apple.com/macosx/pdf/
MacOSX Bonjour TB.pdf.

[15] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H.
Su, K. Vahi, and M. Livny, “Pegasus: Mapping scientific workflows onto
the grid,” LNCS, vol. 3165, pp. 11–20, 2004.


