
Submitted to the Technical Communications of the International Conference on Logic Programming (ICLP’10)
http://www.floc-conference.org/ICLP-home.html

FROM RELATIONAL SPECIFICATIONS
TO LOGIC PROGRAMS

JOSEPH P. NEAR 1

1 Computer Science and Artificial Intelligence Lab
Massachusetts Institute of Technology
32 Vassar St. Cambridge, MA, USA

Abstract. This paper presents a compiler from expressive, relational specifications to
logic programs. Specifically, the compiler translates the Imperative Alloy specification
language to Prolog. Imperative Alloy is a declarative, relational specification language
based on first-order logic and extended with imperative constructs; Alloy specifications are
traditionally not executable. In spite of this theoretical limitation, the compiler produces
useful prototype implementations for many specifications.

1. Introduction

This paper presents a compiler from declarative, relational specifications to Prolog
programs, eliminating the need for manual implementation. I express specifications in Im-
perative Alloy [28], a language based on the combination of first-order logic with transitive
closure and the standard imperative programming constructs. My compiler transforms
these specifications to Prolog for execution. Prolog represents an appropriate target lan-
guage, since it supports nondeterminism and provides a database for storing global relations;
the compiler uses these features to simulate Alloy’s relational operators, quantifiers, and
classical negation.

The existing Alloy Analyzer is designed for the verification and animation of specifi-
cations. My compiler is intended to complement the Analyzer by executing specifications.
Animators perform their analyses within a fixed universe of predetermined size, while ex-
ecution engines allow the creation of new objects. In practice, animators typically deal
with models containing tens of objects, while execution engines must handle hundreds or
thousands. In this case, this increased scalability comes at the cost of analysis: the Alloy
Analyzer is designed to check all cases within a small bound, while my compiler executes a
single, potentially large, case. In exchange, the compiler provides efficiency: most specifi-
cations can be executed fast enough to serve as prototype implementations.

Along with the Alloy Analyzer, my compiler provides end-to-end support for speci-
fying and implementing programs. The Alloy language provides the expressive logic and
relational constructs needed to express complex properties of programs and data; the An-
alyzer supports the animation and verification of program specifications; and the compiler
presented in this paper allows for the efficient execution of those specifications.

Key words and phrases: logic programming, specification languages, executable specifications.

c© J.P. Near
Confidential — submitted to ICLP

2 J.P. NEAR

2. The Alloy Language

Alloy [16] is a modeling language based on first-order relational logic with transitive
closure. It is designed to be simple but expressive, and to be amenable to automatic
analysis. Imperative Alloy [28] adds imperative constructs, including assignment to global
relations, sequential composition, and loops. The Alloy Analyzer is a tool for automatic
analysis of Alloy models. While this analysis is bounded, it does allow for incremental,
agile development of models; and the small-scope hypothesis [4]—which claims that most
inconsistent models have counterexamples within small bounds—means that modelers may
have high confidence in the results. The sacrifice of completeness in favor of automation is
in line with the lightweight formal methods philosophy [17].

Alloy’s universe is made up of uninterpreted atoms, each of which belongs to one of
the disjoint sets defined using signatures. Signatures also may define global relations in the
form of fields. As an example, consider a filesystem made up of file and directory nodes.

sig Data {}
abstract sig INode {}
sig DirNode extends INode { files: Name →INode }
sig FileNode extends INode { data: dynamic Data }

Directory and file nodes extend nodes, which are abstract, meaning that the file and direc-
tory nodes exhaustively partition the set of nodes. The “ files ” relation contains 3-tuples of
type DirNode→Name→INode, while “data” is a mutable relation of type FileNode→Data.
A representation of path names as linked lists of names can be defined similarly.

sig Name {}
abstract sig FilePath { name: Name }
sig DirName extends FilePath { dnext: FilePath }
sig FileName extends FilePath {}

Given a path name and a filesystem, a logical operation is to navigate through the
filesystem to the node corresponding to the path name. I define a single step of this
operation as an action in Imperative Alloy, using a singleton signature with mutable fields
to hold pointers into the path name and the filesystem, as well as some temporary data.

one sig MVar {
path: dynamic FilePath, current: dynamic INode, mdata: dynamic Data

}
action navigate {

MVar.path := MVar.path.dnext;
MVar.current := (MVar.path.name).(MVar.current.files) }

In defining navigation, I have used both imperative (field update and sequencing) and
declarative (Alloy’s generalized relational join) features of the language. Now, I can define
reading from and writing to the filesystem by repeating “navigate” until the file node is
reached and then either reading to or writing from the temporary storage.

action read {
loop { navigate[] } && after MVar.current in FileNode;
MVar.mdata := MVar.current.data

}

FROM RELATIONAL SPECIFICATIONS TO LOGIC PROGRAMS 3

action write {
loop { navigate[] } && after MVar.current in FileNode;
let file = MVar.current | file .data := MVar.mdata

}
Given both actions, the user might wish to verify that writing to the filesystem and

then reading from it produces the written data. I can define this property as an assertion
to be checked by the Alloy Analyzer. In addition to the first-order quantifiers “some” and
“no,” I use the temporal quantifier “always” to indicate that the property must hold in
all possible executions of the action. I use “before” and “after” to represent pre- and
post-conditions on the action. The overall property states that for all starting nodes in the
filesystem, it is always the case that if I begin at that node and write to the filesystem,
remember the written data, reset the current node, and read from the filesystem, then the
read data will match the remembered data.

one sig Temp { tdata: dynamic Data }
assert readMatchesPriorWrite {

all n: INode |
always |

before (MVar.current = n && no f: FileNode | f.data = MVar.mdata) &&
write; Temp.tdata := MVar.mdata, MVar.current := n;
read ⇒ after (Temp.tdata = MVar.mdata) }

For more information on Alloy, refer to [16]; for more on Imperative Alloy, see [28].

3. Compiling Alloy Specifications

Any execution strategy for the Alloy language must allow relations as first-class val-
ues, nondeterminism, imperative constructs, and both relational and logical operators. I
begin with Alloy’s global relations, whose representation as dynamic predicates in Prolog
I demonstrate using the filesystem from Section 2. For each signature, I generate a unary
predicate representing membership in the signature and a predicate for each relation. I
represent the existence of a single atom in each singleton signature by generating a fact.

:- dynamic sigName/1, sigFilePath/1, sigDirName/1, sigFileName/1,
sigINode/1, sigDirNode/1, sigRootNode/1, sigFileNode/1,
sigData/1, sigMVar/1, data/3, path/3, current/3,
mdata/3, name/2, dnext/2, files/3.

sigRootNode(gensym62).
sigMVar(gensym63).

Relational values in Alloy may be thought of as sets of tuples. In Prolog, I can represent
each tuple using a term; to represent the set of tuples in a relation, an expression may yield
multiple instantiations of that term—one for each tuple in the Alloy relation. For example,
I compile the expression representing the next element in a path as follows.

MVar.path.dnext → sigMVar(MVar), path(T0, MVar, Path),
dnext(Path, O)

The Prolog expression yields values by instantiating a member of the “MVar” signature,
looking up a Path in the field of that “MVar,” and then instantiating the free variable O

4 J.P. NEAR

based on the next element of that path. The other relational operators can similarly be
compiled into expressions involving Prolog’s logical connectives.

I compile formulas involving relations to comparisons between their possible instan-
tiations: r1 ⊆ r2, for example, assuming that r1 and r2 are binary relations, becomes
forall(r1(A,B), r2(A,B)). Another option is to enumerate each relation’s tuples explic-
itly (e.g. in a list or in the global database); this strategy may make lookup faster, but it
forces the enumeration of the relational value of each subexpression, making the complex
use of relational operators expensive.

Imperative Alloy also differs from Prolog in its imperative constructs: field update,
sequential composition, and loops are notions built into the language. Sequencing and
looping are easy to simulate in Prolog, and side effects can be expressed using assert
and retract. Since Imperative Alloy’s semantics call for side effects to interact well with
nondeterminism, I have defined assertl to assert a list of terms, and then retract them
upon backtracking, allowing side effects to be undone.

The combination of lazy evaluation and side effects means that a relation’s value may
depend on the value another relation had in the past. My prototype implementation there-
fore keeps track of the history of each global relation by adding an argument to each relation
representing a time-step; the compiler passes the current time-step to called relations to in-
stantiate the call’s other arguments with the relation’s value at that time-step. The “addr”
relation, for example, has the type Time→Name→Addr, so I compile a reference to it to
addr(T, N, A), placing the time argument in the first position because most Prolog sys-
tems index on that argument. Parts of a relation’s history upon which no “current” values
depend may be eliminated in a process analogous to garbage collection.

This infrastructure makes compiling field assignments straightforward. I translate an
update of the form o.f := e by compiling e at the current time-step, then using assertl
to update the global relation f . The first two arguments to f in the update are the next
time-step and o; the remaining arguments are the free variables of the result of compiling e,
and the body is the expression to which e compiles. I compile the full action for navigating
the filesystem, for example, into a Prolog predicate as follows.

action navigate {
MVar.path := MVar.path.dnext;
MVar.current := (MVar.path.name).(MVar.current.files)

}
→
navigate(T0, T1) :-

T2 is T0 + 1, sigMVar(Mv),

assertl([((path(T2, Mv, Path) :- sigMVar(Mv2), path(T0, Mv2, Var3), dnext(Var3, Path))),

((data(T2, Var6, Var7) :- data(T0, Var6, Var7))),

((current(T2, Var8, Var9) :- current(T0, Var8, Var9))),

((mdata(T2, Var10, Var11) :- mdata(T0, Var10, Var11)))]),

T1 is T2 + 1, sigMVar(Mv3),

assertl([((current(T1, Mv3, Var22) :-

sigMVar(Mv4), path(T2, Mv4, Var15), name(Var15, Var21),

sigMVar(Mv5), current(T2, Mv5, Var20), files(Var20, Var21, Var22))),

((data(T1, Var24, Var25) :- data(T2, Var24, Var25))),

((path(T1, Var26, Var27) :- path(T2, Var26, Var27))),

((mdata(T1, Var28, Var29) :- mdata(T2, Var28, Var29)))]).

FROM RELATIONAL SPECIFICATIONS TO LOGIC PROGRAMS 5

I compile each update in the navigation action to a call to assertl in Prolog and sequence
them using conjunction. In both cases, the update itself is the first element in the list passed
to assertl, and I form it by compiling the expression on the update action’s right-hand
side, then placing the result in the body of a rule defining the relation specified on the
assignment’s left-hand side. I also increment the current time-step so that the updated rule
will be the sole definition of the relation at that time-step. The other elements passed to
assertl represent the frame condition: in this new time-step, the other mutable relations
do not change, so I generate rules to delegate these relations to their previous definitions.

I compile the action for reading from the filesystem in a similar way, except for its loop
and declarative post-condition. I compile loops to nondeterministic repetition of an action,
which I implement using the loop predicate. The post-condition checks that the current
node is a file using the subset operator; in Prolog, this requires checking that the right-hand
side of the “in” formula succeeds for every possible instantiation of the left-hand side.

action read {
loop { navigate[] } && after MVar.current in FileNode;
MVar.mdata := MVar.current.data

}
→
read(T3, T4) :-

loop(T3, T5, navigate, []),

forall((sigMVar(Mv), current(T5, Mv, Var33)), sigFileNode(Var33)),

T4 is T5 + 1, sigMVar(Var39),

assertl([((mdata(T4, Var39, Var38) :-

sigMVar(Var35), current(T5, Var35, Var37), data(T5, Var37, Var38))),

((data(T4, Var40, Var41) :- data(T5, Var40, Var41))),

((path(T4, Var42, Var43) :- path(T5, Var42, Var43))),

((current(T4, Var44, Var45) :- current(T5, Var44, Var45)))]).

Finally, I compile the action for writing to the filesystem. Except for the “let” formula, it
is nearly identical to that for reading.

action write {
loop { navigate[] } && after MVar.current in FileNode;
let file = MVar.current | file .data := MVar.mdata

}
→
write(T6, T7) :-

loop(T6, T8, navigate, []),

forall((sigMVar(Var47), current(T8, Var47, Var49)), sigFileNode(Var49)),

sigMVar(Var51), current(T8, Var51, File), T7 is T8 + 1,

assertl([((data(T7, File, Var55) :- sigMVar(Var54), mdata(T8, Var54, Var55))),

((path(T7, Var56, Var57) :- path(T8, Var56, Var57))),

((current(T7, Var58, Var59) :- current(T8, Var58, Var59))),

((mdata(T7, Var60, Var61) :- mdata(T8, Var60, Var61)))]).

This collection of predicates represents a simplified model of a filesystem that can be ex-
ecuted by a Prolog system; combined with a tool like FUSE (Filesystem in User Space),
it can be used as a prototype implementation to store real data and be tested on an ac-
tual system. The user may add features slowly, using the Alloy Analyzer to verify their
correctness.

6 J.P. NEAR

CE :: expression→ time→ (Prolog expression, [variable])
CE(a, t) =̂ (∅, [A])

(a ∈ vars)

CE(f, t) =̂ (f(A1, A2, ..., An), [A1, A2, ..., An])
(f ∈ r) where f has arity n; A1, ..., An are fresh variables

CE(f, t) =̂ (f(A1, A2, ..., An, t), [A1, A2, ..., An])
(f ∈ rd) where f has arity n; A1, ..., An are fresh variables

CE(e1 → e2, t) =̂ ((E1, E2), [A1, ..., An, B1, ..., Bn])
CE(e1.e2, t) =̂ ((An = B1, E1, E2), [A1, ..., An−1, B2, ..., Bn])

where CE(e1, t) = (E1, [A1, ..., An])
and CE(e2, t) = (E2, [B1, ..., Bn])

CE(e1 + e2, t) =̂ ((A1 = B1, ..., An = Bn, E1; A1 = C1, ..., An = Cn, E2), [A1, ..., An])
CE(e1 − e2, t) =̂ ((A1 = B1, ..., An = Bn, E1, A1 = C1, ..., An = Cn, \+E2), [A1, ..., An])
CE(e1&e2, t) =̂ ((A1 = B1, ..., An = Bn, E1, A1 = C1, ..., An = Cn, E2), [A1, ..., An])

where CE(e1, t) = (E1, [B1, ..., Bn])
and CE(e2, t) = (E2, [C1, ..., Cn])

Figure 1: Rules for Compiling Alloy Expressions into Prolog

4. Implementing the Compiler

My compiler transforms a complete Alloy specification into a Prolog program. In Alloy,
sets are represented as unary relations; scalars, then, are singleton sets. For an Alloy
expression whose value is an n-ary relation, my compiler produces a Prolog expression with
n free variables; each possible instantiation of those free variables represents one tuple of the
original relation. My compiler therefore produces a 2-tuple (e, v) containing the compiled
Prolog expression e and a list of free variables v. I present the set of compilation rules for
expressions in Figure 1; r represents the set of global relations in the original Alloy model,
while rd is the set of dynamic relations.

Two issues make compiling expressions tricky. First, the translation requires a repre-
sentation of the time-step at which the expression is being evaluated. My implementation
represents time-steps using integers; each global relation accepts one of these time-steps as
its first argument and instantiates its other arguments to the values of the relation at that
time-step. Second, some relational operators (e.g. difference) require the use of the cut or
negation-as-failure. These impure elements restrict the contexts in which the compilation
produces useful programs: the Alloy expression !(i < j), for example, produces the Prolog
expression \+ (I<J), which will not correctly instantiate I or J.

Compiling Alloy formulas is straightforward, since Alloy’s logical connectives map di-
rectly to those of Prolog. The equality and subset operators are the most interesting: since
expressions evaluate to relations, both logical operators must examine all instantiations of
the expressions’ free variables generated by the resulting Prolog expressions. Figure 2 con-
tains the rules for compiling formulas; again, the rules require the time at which the formula
is being evaluated. Actions are compiled into formulas sequenced using conjunction. The

FROM RELATIONAL SPECIFICATIONS TO LOGIC PROGRAMS 7

CM :: formula→ time→ Prolog expression
CM (e1 ∈ e2, t) =̂ forall((E1), (B1 = C1, ..., Bn = Cn, E2))
CM (e1 = e2, t) =̂ forall((E1), (B1 = C1, ..., Bn = Cn, E2)),

forall((E2), (B1 = C1, ..., Bn = Cn, E1))
where CE(e1, t) = (E1, [B1, ..., Bn])

and CE(e2, t) = (E2, [C1, ..., Cn])

CM (f1&&f2, t) =̂ CM (f1, t) , CM (f2, t)
CM (f1 || f2, t) =̂ CM (f1, t) ; CM (f2, t)

CM (!f, t) =̂ \+ CM (f, t)

CM (all x: ite |f, t) =̂ forall((x = A,E), CM (f, t))
CM (some x:ite|f, t) =̂ x = A,E,CM (f, t)

where CE(e, t) = (E, [A])

Figure 2: Rules for Compiling Alloy Formulas into Prolog

CA :: action→ time→ time→ Prolog expression
CA(o.f :=e, t, t′) =̂ t′ is t + 1,

assertl((f(o, A1, ..., An, t′) :- E)),
assertl((f(O,B1, ..., Bn, t′) :-

dif(O, o), f(O,B1, ..., Bn, t))),
∀̄r : relations | assertl((r(O′, C1, ..., Ck, t

′) :-
r(O′, C1, ..., Ck, t)).

where CE(e, t) = (E, [A1, ..., An])

CA(a1 ; a2, t, t
′) =̂ CA(a1, t, T

′′), CA(a2, T
′′, t′)

where T ′′ is a fresh variable

CA(a1&&a2, t, t
′) =̂ CA(a1, t, t

′) , CA(a2, t, t
′)

CA(a1 || a2, t, t
′) =̂ CA(a1, t, t

′) ; CA(a2, t, t
′)

CA(action[e1, ..., en], t, t′) =̂ action(e1, ..., an, t, t′)
CA(loop {act[e1,...,en]}, t, t′) =̂ E1,...,En, loop(t, t′, act, [V1, ..., Vn])

where CE(ei, t) = (Ei, [Vi]) and
loop(T, T, F, Args).
loop(T, Tp, F, Args) :-
append(Args, [T, T1], A),
apply(F, A), loop(T1, Tp, F, Args).

Figure 3: Rules for Compiling Alloy Actions into Prolog

rule for field assignment updates the global relation f at the object o and time step t + 1
with the results of the right-hand side expression e. The next two lines of the rule express
the frame condition: first, that the values of the relation f at objects other than o do not
change, and second, that the values of the relations not being updated do not change. I
use the “meta” quantifier ∀̄ to represent quantification over the (static) set of relations in a
given specification. Figure 3 contains the complete set of rules for compiling actions.

8 J.P. NEAR

5. Related Work

As a notation, Imperative Alloy is similar to existing specification languages that sup-
port modeling dynamic systems [27, 23, 1, 5, 31, 20, 11, 9]; some of these notations also have
associated analysis and animation tools. The novelty of this work is in the combination,
using a single notation, of analysis and execution.

Most similar to my own work is an approach that translates Z specifications into Pro-
log [10], but produces relatively inefficient programs. Similarly, PVS has been translated
to LISP [8] for execution, but the translation places restrictions on the PVS language.
Squander [29] animates Alloy specifications embedded in Java programs, but provides the
same level of performance as the Alloy Analyzer. My technique, on the other hand, pro-
duces programs that are fast enough to serve as prototype implementations. Notations
for Abstract State Machines [22], rule-based transition systems [32, 30], concurrent object
interactions [24], and the Maude language [7] have been translated to Prolog, but these
are less expressive than Imperative Alloy. A Prolog translation also exists [25] from de-
scription logic, which has expressive power similar to that of Alloy. Many non-automated
approaches [14, 21, 12] have been proposed, but the possibility of introducing errors during
manual translation makes these unattractive, and most still require further refinement—
even after a manual translation effort—for efficient execution.

Animation of expressive specifications is a well-studied topic. The toolkit supporting
the B method [2] and tools for JML [6] and Z [19] all support animating specifications.
However, many of these tools do not allow animation of the most expressive parts of the
language, require a concrete instantiation of the initial state, and use constraint-solving
approaches that do not scale as well as Prolog’s search. By separating verification and
animation from execution, my approach can provide both analysis and verification (using
the Alloy Analyzer) and efficient execution (using my Prolog compiler).

The addition of constraints [18], more expressive logics [26, 15], more efficient execution
strategies [3], and classical negation to logic programming [13] has made logic programming
much more expressive; these advances may present an alternate approach to achieving the
goal of a single language for specification and implementation.

6. Conclusions & Future Work

I have presented a compiler from the expressive, relational, first-order specification
language Alloy to Prolog, making the process of implementing a specification automatic.
Together with the Alloy Analyzer, this compiler represents a complete end-to-end solution
for specifying and implementing programs. The Analyzer provides for the animation and
verification of specifications, and the compiler I have presented in this paper allows for their
execution.

My experience with this toolchain has identified two key areas for future work. First,
the compiler does not yet identify parts of input specifications that may be troublesome
to execute. Some Alloy constructs, such as negation and quantification, can make the
resulting Prolog program impossible to execute. Specifications that make extensive use of
these constructs do not seem to occur often in practice, but a warning message from the
compiler would be useful to the user in case they do.

Second, performance of the compiled specifications is not yet optimal. With better
knowledge of the strengths and weaknesses of the particular Prolog implementation the

FROM RELATIONAL SPECIFICATIONS TO LOGIC PROGRAMS 9

compiler targets, I should be able to generate more appropriate code. Moreover, the com-
piler itself may be able to detect code that will perform poorly and signal a warning. I
have already encountered cases requiring refinement of the specification in order to obtain
efficient code; a profiling tool for a future version of the compiler might be able to suggest
refinement in these cases.

Even without these improvements, my compiler produces useful prototype implementa-
tions for most specifications. My larger goal is to enable a single language to express systems
at all levels of abstraction, from high-level requirements to low-level implementation. An
implementation of such a language would naturally need to target several execution en-
gines; more expressive features, such as first-order quantifiers, can be handled by the Alloy
Analyzer, while low-level language features run at full speed. Of primary importance is
the middle ground between these: the largest benefit to programmers comes from the use
of expressive constructs in ways that can be identified and optimized by the compiler. By
compiling Alloy to Prolog, I have shown that this middle ground is achievable: even the
most expressive language constructs can be used in executable programs.

Acknowledgements

I am deeply grateful to Daniel Jackson, without whose guidance this work would not have
been possible; to Eunsuk Kang, Rishabh Singh, and Jean Yang, who provided thoughtful
comments on an early draft of this paper; and to the anonymous reviewers, who aided in
the clarification of many points. This research was funded in part by the National Science
Foundation under grants 0541183 (Deep and Scalable Analysis of Software), and 0707612
(CRI: CRD – Development of Alloy Tools, Technology and Materials), and by the Northrop
Grumman Cybersecurity Research Consortium under the Secure and Dependable Systems
by Design project.

References

[1] J.R. Abrial. The B-book: assigning programs to meanings. Cambridge Univ Pr, 1996.
[2] J.R. Abrial, M.K.O. Lee, D. Neilson, PN Scharbach, and I. Sørensen. The B-method. In Proceedings of

the 4th International Symposium of VDM Europe on Formal Software Development, volume 2, pages
398–405. Springer, 1991.

[3] H. Ait-Kaci. Warren’s abstract machine: a tutorial reconstruction. Citeseer, 1991.
[4] Alexandr Andoni, Dumitru Daniliuc, Sarfraz Khurshid, and Darko Marinov. Evaluating the ”small

scope hypothesis”. In In Popl ’02: Proceedings Of The 29th Acm Symposium On The Principles Of
Programming Languages, 2002.

[5] E. Börger and R.F. Stärk. Abstract state machines: a method for high-level system design and analysis.
Springer Verlag, 2003.

[6] F. Bouquet, F. Dadeau, B. Legeard, and M. Utting. Symbolic animation of JML specifications. Lecture
notes in computer science, 3582:75, 2005.

[7] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and JF Quesada. Maude:
specification and programming in rewriting logic. Theoretical Computer Science, 285(2):187–243, 2002.

[8] J. Crow, S. Owre, J. Rushby, N. Shankar, and D. Stringer-Calvert. Evaluating, testing, and animating
PVS specifications. Computer Science Laboratory, SRI International, Menlo Park, CA, Tech. Rep.,
Mar, 2001.

[9] G. Dennis, F.S.H. Chang, and D. Jackson. Modular verification of code with SAT. In Proceedings of the
2006 international symposium on Software testing and analysis, page 120. ACM, 2006.

10 J.P. NEAR

[10] AJJ Dick, PJ Krause, and J. Cozens. Computer aided transformation of Z into Prolog. In Z User
Workshop: proceedings of the Fourth Annual Z User Meeting, Oxford, 15 December 1989, page 71.
Springer Verlag, 1990.

[11] MR Frias, JP Galeotti, CGL Pombo, and NM Aguirre. DynAlloy: upgrading alloy with actions. In
Software Engineering, 2005. ICSE 2005. Proceedings. 27th International Conference on, pages 442–450,
2005.

[12] N.E. Fuchs. Specifications are (preferably) executable. Software Engineering Journal, 7(5):323–334,
1992.

[13] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Logic programming, page 597.
MIT Press, 1990.

[14] A. M. Gravell and P. Henderson. Why execute formal specifications? pages 165–184, 1991.
[15] J.S. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linear logic. Information

and Computation, 110(2):327–365, 1994.
[16] D. Jackson. Software Abstractions: logic, language, and analysis. The MIT Press, 2006.
[17] D. Jackson and J. Wing. Lightweight formal methods. Lecture Notes in Computer Science, 2021:1–1,

2001.
[18] J. Jaffar and J.L. Lassez. Constraint logic programming. In Proceedings of the 14th ACM SIGACT-

SIGPLAN symposium on Principles of programming languages, pages 111–119. ACM New York, NY,
USA, 1987.

[19] X. Jia. An approach to animating Z specifications. COMPSAC-NEW YORK-, pages 108–108, 1995.
[20] C.B. Jones. Systematic software development using VDM. Prentice Hall New York, 1990.
[21] A. Kans and C. Hayton. Using ABC to prototype VDM specifications. ACM SigPLAN Notices, 29(1):27–

36, 1994.
[22] A. Kappel. Executable specifications based on dynamic algebras. In Logic Programming and Automated

Reasoning, pages 229–240. Springer.
[23] Butler Lampson. 6.826 class notes, 2009. (http://web.mit.edu/6.826/www/notes/).
[24] P. Letelier, P. Sánchez, and I. Ramos. Prototyping a requirements specification through an automatically

generated concurrent logic program. Practical Aspects of Declarative Languages, pages 31–45.
[25] G. Lukácsy and P. Szeredi. Efficient description logic reasoning in prolog: The dlog system. Theory and

Practice of Logic Programming, 9(03):343–414, 2009.
[26] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation for logic pro-

gramming. Annals of Pure and Applied Logic, 51(1-2):125–157, 1991.
[27] C. Morgan. The specification statement. ACM Transactions on Programming Languages and Systems

(TOPLAS), 10(3):403–419, 1988.
[28] J. Near and D. Jackson. An Imperative Extension to Alloy. Abstract State Machines, Alloy, B and Z,

pages 118–131, 2010.
[29] D. Rayside, A. Milicevic, K. Yessenov, G. Dennis, and D. Jackson. Agile specifications. In Proceeding

of the 24th ACM SIGPLAN conference companion on Object oriented programming systems languages
and applications, pages 999–1006. ACM, 2009.

[30] B. Schätz. Formalization and Rule-Based Transformation of EMF Ecore-Based Models. Software Lan-
guage Engineering, pages 227–244, 2009.

[31] JM Spivey. The Z notation: a reference manual. 1992.
[32] Daniel Varro and Dniel Varr. Automated program generation for and by model transformation systems.

In Applied Graph Transformation (AGT’02), pages 161 - 174., 2002.

If accepted for publication by ICLP, this work will be licensed under the Creative Commons Non-Commercial No
Derivatives License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/.

