
αleanTAP : A Declarative Theorem Prover for
First-Order Classical Logic

Joseph P. Near??, William E. Byrd, and Daniel P. Friedman

Indiana University, Bloomington, IN 47405
{jnear,webyrd,dfried}@cs.indiana.edu

Abstract. We present αleanTAP , a declarative tableau-based theorem
prover written as a pure relation. Like leanTAP, on which it is based,
αleanTAP can prove ground theorems in first-order classical logic. Since
it is declarative, αleanTAP generates theorems and accepts non-ground
theorems and proofs. The lack of mode restrictions also allows the user
to provide guidance in proving complex theorems and to ask the prover
to instantiate non-ground parts of theorems. We present a complete
implementation of αleanTAP , beginning with a translation of leanTAP into
αKanren, an embedding of nominal logic programming in Scheme. We
then show how to use a combination of tagging and nominal unification
to eliminate the impure operators inherited from leanTAP, resulting in a
purely declarative theorem prover.

1 Introduction

We present a declarative theorem prover for first-order classical logic. We call
this prover αleanTAP , since it is based on the leanTAP [1] prover and written in
αKanren [2]. Our prover is a pure relation and has no mode restrictions [3]; given
a logic variable as the theorem to be proved, αleanTAP generates valid theorems.

leanTAP is a lean tableau-based theorem prover for first-order logic due to
Beckert and Posegga [1]. Written in Prolog, it is extremely concise and is capable
of a high rate of inference. leanTAP uses Prolog’s cut (!) in three of its five
clauses in order to avoid nondeterminism, and uses copy term/2 to make copies
of universally quantified formulas. Although Beckert and Posegga take advantage
of Prolog’s unification and backtracking features, their use of the impure cut and
copy term/2 makes leanTAP non-declarative.

We show how to eliminate these impure operators from leanTAP. To eliminate
the use of Prolog’s cut, we introduce a tagging scheme that makes our formulas
unambiguous. To eliminate the use of copy term/2, we use substitution instead
of copying terms. Universally quantified formulas are used as templates, rather
than instantiated directly; instead of representing universally quantified variables
with logic variables, we use the noms of nominal logic [4]. We then use nominal
unification [5] to write a substitution relation that replaces quantified variables
with logic variables, leaving the original template untouched.
?? Now at the Massachusetts Institute of Technology: jnear@csail.mit.edu

The resulting declarative theorem prover is interesting for two reasons. First,
because of the technique used to arrive at its definition: we use declarative sub-
stitution rather than copy term/2. To our knowledge, there is no method for
copying arbitrary terms declaratively. Our solution is not completely general
but is useful when a term is used as a template for copying, as in the case of
leanTAP. Second, because of the flexibility of the prover itself: αleanTAP is capable
of instantiating non-ground theorems during the proof process, and accepts non-
ground proofs, as well. Whereas leanTAP is fully automated and either succeeds
or fails to prove a given theorem, αleanTAP can accept guidance from the user
in the form of a partially-instantiated proof, regardless of whether the theorem
is ground.

We present an implementation of αleanTAP , demonstrating our technique for
eliminating cuts and copy term/2 from leanTAP. Our implementation demon-
strates our contributions: first, it illustrates a method for eliminating common
impure operators, and demonstrates the use of nominal logic for representing
formulas in first-order logic; second, it shows that the tableau process can be
represented as a relation between formulas and their tableaux; and third, it
demonstrates the flexibility of relational provers to mimic the full spectrum of
theorem provers, from fully automated to fully dependent on the user.

We proceed as follows. In section 2 we provide a brief description of αKanren
and describe the concept of tableau theorem proving. In section 3 we motivate
our declarative prover by examining its declarative properties and the proofs it
returns. In section 4 we present the implementation of αleanTAP . In section 5 we
briefly examine αleanTAP ’s performance. In section 6, we discuss related work.
Familiarity with αKanren and knowledge of tableau theorem proving would be
helpful; for more on these topics, see the references given in section 2.

2 Preliminaries

We begin by presenting a brief overview of αKanren, the language in which
αleanTAP is written. We also provide an introduction to tableau theorem proving
and its implementation in leanTAP.

2.1 αKanren Refresher

αKanren is an embedding of nominal logic programming in Scheme. It extends
the Scheme language with a term constructor ./ (pronounced “tie”) and five
operators: ≡, #, exist1, fresh, and conde. In addition to these declarative
operators, we use the impure operator conda to model Prolog’s cut.

≡ unifies two terms using nominal unification. exist and fresh, which are
syntactically similar to Scheme’s lambda and whose bodies are conjoined, are
used to introduce new lexical variables; those introduced by exist bind logic (or
unification) variables, while those introduced by fresh bind noms (also called

1 The name exist is chosen to avoid conflict with R6RS Scheme’s [6] exists.

“names” or “atoms” in nominal logic). A nom unifies only with a logic variable
or with itself; in αleanTAP , noms represent variable names. # is a freshness
constraint: (# a t) asserts that the nom a does not occur free in t . ./ is a term
constructor: (./ a t) creates a term in which all free occurrences of the nom a
in t are considered bound. Thus (# a (./ a t)) always succeeds.

conde, which is syntactically similar to cond, expresses a disjunction of
clauses. Each clause may contain arbitrarily many conjoined goals. conda is
similar to conde, but only a single clause of a conda may succeed. The success-
ful clause may succeed an arbitrary number of times, but once its first goal is
successful, no other clause may succeed. This behavior is similar to placing a cut
(!) before the first conjunct in the body of each relevant clause.

run provides an interface between Scheme and αKanren; it allows the user
to limit the number of answers returned, and to specify a logic variable whose
value should be reified to obtain answers. Reification is the process of replacing
distinct logic variables in a term with unique names. The first such variable to be
found is represented by the symbol 0 , the second by 1 , and so on. For example:

(run5 (q)
(exist (x y z)

(conde

((≡ x 3) (≡ y 2) (≡ z y))
((≡ x y) (≡ y z))
((≡ x z)))

(≡ ‘(,x ,y ,z)2q)))

⇒ ((3 2 2) (0 0 0) (0 1 0))

This run expression has three answers, each corresponding to one line of the
conde. In the first answer, all three variables have been instantiated to ground
values. In the second, the three variables have been unified with one another,
so they have the same reified value. In the third, x and z share the same reified
value, which is distinct from that of y.

Nominal unification equates α-equivalent binders:

(run1 (q) (fresh (a b) (≡ (./ a a) (./ b b)))) ⇒ (0)

Although the noms a and b are distinct and would therefore fail to unify, this
run expression succeeds. Like the terms λa.a and λb.b, the terms (./ a a) and
(./ b b) bind in the same way and are thus α-equivalent.

For a more complete description of αKanren, see Byrd and Friedman [2]. A
newer implementation of αKanren in R6RS Scheme [6] was used in the develop-
ment of αleanTAP 3; this version uses triangular substitutions [7] instead of idem-
potent substitutions and is significantly faster. αKanren is based on αProlog [8],
which implements the nominal unification of Urban, Pitts, and Gabbay [5], and
miniKanren, an earlier logic programming language [9, 10].

2 Here, backquote and comma are used to build a list of logic variables: the expression
‘(,x ,y ,z) is equivalent to [X, Y, Z] in Prolog. Similarly, the expression ‘(,x . ,y)
constructs a pair, and is equivalent to [X|Y] in Prolog.

3 The latest αKanren and αleanTAP source code is available at
https://code.launchpad.net/~jnear-csail/minikanren/alphaleanTAP.

2.2 Tableau Theorem Proving

Tableau is a method of proving first-order theorems that works by refuting the
theorem’s negation. In our description we assume basic knowledge of first-order
logic; for coverage of this subject and a more complete description of tableau
proving, see Fitting [11]. For simplicity, we consider only formulas in Skolem-
ized negation normal form (NNF). Converting a formula to this form requires
removing existential quantifiers through Skolemization, reducing logical connec-
tives so that only ∧, ∨, and ¬ remain, and pushing negations inward until they
are applied only to literals—see section 3 of Beckert and Posegga [1] for details.

To form a tableau, a compound formula is expanded into branches recursively
until no compound formulas remain. The leaves of this tree structure are referred
to as literals. leanTAP forms and expands the tableau according to the following
rules. When the prover encounters a conjunction x ∧ y, it expands both x and
y on the same branch. When the prover encounters a disjunction x ∨ y, it splits
the tableau and expands x and y on separate branches. Once a formula has been
fully expanded into a tableau, it can be proved unsatisfiable if on each branch
of the tableau there exist two complementary literals a and ¬a (each branch is
closed). In the case of propositional logic, syntactic comparison is sufficient to
find complementary literals; in first-order logic, sound unification must be used.
A closed tableau represents a proof that the original formula is unsatisfiable.

The addition of universal quantifiers makes the expansion process more com-
plicated. To prove a universally quantified formula ∀x.M , leanTAP generates a
logic variable v and expands M , replacing all occurrences of x with v (i.e., it
expands M ′ where M ′ = M [v/x]). If leanTAP is unable to close the current
branch after this expansion, it has the option of generating another logic vari-
able and expanding the original formula again. When the prover expands the
formula ∀x.F (x) ∧ (¬F (a) ∨ ¬F (b)), for example, ∀x.F (x) must be expanded
twice, since x cannot be instantiated to both a and b.

3 Introducing αleanTAP

We begin by presenting some examples of αleanTAP ’s abilities, both in proving
ground theorems and in generating theorems. We also explore the proofs gen-
erated by αleanTAP , and show how passing partially-instantiated proofs to the
prover can greatly improve its performance.

3.1 Running Forwards

Both leanTAP and αleanTAP can prove ground theorems; in addition, αleanTAP
produces a proof. This proof is a list representing the steps taken to build a
closed tableau for the theorem; Paulson [12] has shown that translation to a more
standard format is possible. Since a closed tableau represents an unsatisfiable
formula, such a list of steps proves that the negation of the formula is valid. If the
list of steps is ground, the proof search becomes deterministic, and αleanTAP acts
as a proof checker.

leanTAP encodes first-order formulas using Prolog terms. For example, the
term (p(b),all(X,(-p(X);p(s(X))))) represents p(b) ∧ ∀x.¬p(x) ∨ p(s(x)). In
our prover, we represent formulas using Scheme lists with extra tags:

(and (pos (app p (app b))) (forall (./ a (or (neg (app p (var a)))
(pos (app p (app s (var a))))))))

Consider Pelletier Problem 18 [13]: ∃y.∀x.F (y) ⇒ F (x). To prove this theo-
rem in αleanTAP , we transform it into the following negation of the NNF:

(forall (./ a (and (pos (app f (var a))) (neg (app f (app g1 (var a)))))))

where (app g1 (var a)) represents the application of a Skolem function to the
universally quantified variable a. Passing this formula to the prover, we obtain
the proof (univ conj savefml savefml univ conj close). This proof lists the steps
the prover (presented in section 4.3) follows to close the tableau. Because both
conjuncts of the formula contain the nom a, we must expand the universally
quantified formula more than once.

Partially instantiating the proof helps αleanTAP prove theorems with similar
subparts. We can create a non-ground proof that describes in general how to
prove the subparts and have αleanTAP fill in the trivial differences. This can
speed up the search for a proof considerably. By inspecting the negated NNF of
Pelletier Problem 21, for example, we can see that there are at least two portions
of the theorem that will have the same proof. By specifying the structure of the
first part of the proof and constraining the identical portions by using the same
logic variable to represent both, we can give the prover some guidance without
specifying the whole proof. We pass the following non-ground proof to αleanTAP :

(conj univ split (conj savefml savefml conj split x x)
(conj savefml savefml conj split (close) (savefml split y y)))

On our test machine, our prover solves the original problem with no help in 68
milliseconds (ms); given the knowledge that the later parts of the proof will be
duplicated, the prover takes only 27 ms. This technique also yields improvement
when applied to Pelletier Problem 43: inspecting the negated NNF of the for-
mula, we see two parts that look nearly identical. The first part of the negated
NNF—the part representing the theorem itself—has the following form:

(and (or (and (neg (app Q (app g4) (app g3)))
(pos (app Q (app g3) (app g4))))

(and (pos (app Q (app g4) (app g3)))
(neg (app Q (app g3) (app g4))))) . . .)

Since we suspect that the same proof might suffice for both branches of the the-
orem, we give the prover the partially-instantiated proof (conj split x x). Given
just this small amount of help, αleanTAP proves the theorem in 720 ms, com-
pared to 1.5 seconds when the prover has no help at all. While situations in
which large parts of a proof are identical are rare, this technique also allows us
to handle situations in which different parts of a proof are merely similar by
instantiating as much or as little of the proof as necessary.

3.2 Running Backwards

Unlike leanTAP, αleanTAP can generate valid theorems. Some interpretation of
the results is required since the theorems generated are negated formulas in
NNF.4 In the example

(run1 (q) (exist (x) (proveo q ’() ’() ’() x)))
⇒ ((and (pos (app 0)) (neg (app 0))))

the reified logic variable 0 represents any first-order formula p, and the entire
answer represents the formula p ∧ ¬p. Negating this formula yields the original
theorem: ¬p ∨ p, or the law of excluded middle. We can also generate more
complicated theorems; here we use the “generate and test” idiom to find the
first theorem matching the negated NNF of the inference rule modus ponens:

(run1 (q)
(exist (x)

(proveo x ’() ’() ’() q)
(≡ ’(and (and (or (neg (app a)) (pos (app b))) (pos (app a)))

(neg (app b)))
x)))

⇒ ((conj conj split (savefml close) (savefml savefml close)))

This process takes about 5.1 seconds; modus ponens is the 173rd theorem to
be generated, and the prover also generates a proof of its validity. When this
proof is given to αleanTAP , modus ponens is the sixth theorem generated, and
the process takes only 20 ms.

Thus the declarative nature of αleanTAP is useful both for generating theo-
rems and for producing proofs. Due to this flexibility, αleanTAP could become
the core of a larger proof system. Automated theorem provers like leanTAP are
limited in the complexity of the problems they can solve, but given the ability
to accept assistance from the user, more problems become tractable.

As an example, consider Pelletier Problem 47: Schubert’s Steamroller. This
problem is difficult for tableau-based provers like leanTAP and αleanTAP , and
neither can solve it automatically [1]. Given some help, however, αleanTAP can
prove the Steamroller. Our approach is to prove a series of smaller lemmas that
act as stepping stones toward the final theorem; as each lemma is proved, it
is added as an assumption in proving the remaining ones. The proof process
is automated—the user need only specify which lemmas to prove and in what
order. Using this strategy, αleanTAP proves the Steamroller in about five seconds;
the proof requires twenty lemmas.

αleanTAP thus offers an interesting compromise between large proof assis-
tants and smaller automated provers. It achieves some of the capabilities of
a larger system while maintaining the lean deduction philosophy introduced by
leanTAP. Like an automated prover, it is capable of proving simple theorems with-
out user guidance. Confronted with a more complex theorem, however, the user

4 The full implementation of αleanTAP includes a simple declarative translator from
negated NNF to a positive form.

can provide a partially-instantiated proof; αleanTAP can then check the proof
and fill in the trivial parts the user has left out. Because αleanTAP is declara-
tive, the user may even leave required axioms out of the theorem to be proved
and have the system derive them. This flexibility comes at no extra cost to the
user—the prover remains both concise and reasonably efficient.

The flexibility of αleanTAP means that it could be made interactive through
the addition of a read-eval-print loop and a simple proof translator between
αleanTAP ’s proofs and a more human-readable format. Since the proof given to
αleanTAP may be partially instantiated, such an interface would allow the user
to conveniently guide αleanTAP in proving complex problems. With the addition
of equality and the ability to perform single beta steps, this flexibility would
become more interesting—in addition to reasoning about programs and proving
properties about them, αleanTAP would instantiate non-ground programs during
the proof process.

4 Implementation

We now present the implementation of αleanTAP . We begin with a translation
of leanTAP from Prolog into αKanren. We then show how to eliminate the trans-
lation’s impure features through a combination of substitution and tagging.

leanTAP implements both expansion and closing of the tableau. When the
prover encounters a conjunction, it uses its argument UnExp as a stack (Figure 1):
leanTAP expands the first conjunct, pushing the second onto the stack for later
expansion. If the first conjunct cannot be refuted, the second is popped off the
stack and expansion begins again. When a disjunction is encountered, the split
in the tableau is reflected by two recursive calls. When a universal quantifier is
encountered, the quantified variable is replaced by a new logic variable, and the
formula is expanded. The FreeV argument is used to avoid replacing the free
variables of the formula. leanTAP keeps a list of the literals it has encountered
on the current branch of the tableau in the argument Lits. When a literal is
encountered, leanTAP attempts to unify its negation with each literal in Lits; if
any unification succeeds, the branch is closed. Otherwise, the current literal is
added to Lits and expansion continues with a formula from UnExp.

4.1 Translation to αKanren

While αKanren is similar to Prolog with the addition of nominal unification,
αKanren also uses a variant of interleaving depth-first search [14], so the order
of conde clauses in αKanren is irrelevant. Because of Prolog’s depth-first search,
leanTAP must use VarLim to limit its search depth; in αKanren, VarLim is not
necessary, and thus we omit it.

In Figure 1 we present mKleanTAP, our translation of leanTAP into αKanren;
we label two clauses (1©, 2©), since we will modify these clauses later. To express
Prolog’s cuts, our definition uses conda. The final two clauses of leanTAP do
not contain Prolog cuts; in mKleanTAP, they are combined into a single clause

containing a conde. In place of leanTAP ’s recursive call to prove to check the
membership of Lit in Lits, we call membero, which performs a membership
check using sound unification.5 Prolog’s copy term/2 is not built into αKanren;
this addition is available as part of the mKleanTAP source code.

(define proveo

(λ (fml unexp lits freev)

prove((E1,E2),UnExp,Lits,

FreeV,VarLim) :- !,

prove(E1,[E2|UnExp],Lits,

FreeV,VarLim).

(conda

((exist (e1 e2)
(≡ ‘(and ,e1 ,e2) fml)
(proveo e1 ‘(,e2 . ,unexp) lits freev)))

prove((E1;E2),UnExp,Lits,

FreeV,VarLim) :- !,

prove(E1,UnExp,Lits,FreeV,VarLim),

prove(E2,UnExp,Lits,FreeV,Varlim).

((exist (e1 e2)
(≡ ‘(or ,e1 ,e2) fml)
(proveo e1 unexp lits freev)
(proveo e2 unexp lits freev)))

prove(all(X,Fml),UnExp,Lits,

FreeV,VarLim) :- !,

\+ length(FreeV,VarLim),

copy_term((X,Fml,FreeV),

(X1,Fml1,FreeV)),

append(UnExp,[all(X,Fml)],UnExp1),

prove(Fml1,UnExp1,Lits,

[X1|FreeV],VarLim).

1© ((exist (x x1 body body1 unexp1)
(≡ ‘(forall ,x ,body) fml)
(copy-termo ‘(,x ,body ,freev)

‘(,x1 ,body1 ,freev))
(append o unexp ‘(,fml) unexp1)
(proveo body1 unexp1 lits

‘(,x1 . ,freev))))

prove(Lit,_,[L|Lits],_,_) :-

(Lit = -Neg; -Lit = Neg) ->

(unify(Neg,L);

prove(Lit,[],Lits,_,_)).

2© ((conde

((exist (neg)
(conda

((≡ ‘(not ,neg) fml))
((≡ ‘(not ,fml) neg)))

(membero neg lits)))

prove(Lit,[Next|UnExp],Lits,

FreeV,VarLim) :-

prove(Next,UnExp,[Lit|Lits],

FreeV,VarLim).

((exist (next unexp1)
(≡ ‘(,next . ,unexp1) unexp)
(proveo next unexp1 ‘(,fml . ,lits)

freev))))))))

Fig. 1. leanTAP and mKleanTAP : a translation from Prolog to αKanren

4.2 Eliminating copy-termo

Since copy-termo is an impure operator, its use makes proveo non-declarative:
reordering the goals in the prover can result in different behavior. For example,
moving the call to copy-termo after the call to proveo causes the prover to diverge
when given any universally quantified formula. To make our prover declarative,
we must eliminate the use of copy-termo.

Tagging the logic variables that represent universally quantified variables
allows the use of a declarative technique that creates two pristine copies of the

5 We define membero in Figure 3; it uses sound unification (≡
√

).

original term: one copy may be expanded and the other saved for later copying.
Unfortunately, this copying examines the entire body of each quantified formula
and instantiates the original term to a potentially invalid formula.

Another approach is to represent quantified variables with symbols or strings.
When a new instantiation is needed, a new variable name can be generated,
and the new name can be substituted for the old without affecting the original
formula. This solution does not destroy the prover’s input, but it is difficult to
ensure that the provided data is in the correct form declaratively: if the formula
to be proved is non-ground, then the prover must generate unique names. If the
formula does contain these names, however, the prover must not generate new
ones. This problem can be solved with a declarative preprocessor that expects
a logical formula without names and puts them in place. If the preprocessor is
passed a non-ground formula, it instantiates the formula to the correct form. The
requirement of a preprocessor, however, means the prover itself is not declarative.

We use nominal logic [4] to solve the copy-termo problem. Nominal logic is
designed to handle the complexities of dealing with names and binders declara-
tively. Since noms represent unique names, we achieve the benefits of the symbol
or string approach without the use of a preprocessor. We can generate unique
names each time we encounter a universally quantified formula, and use nominal
unification to perform the renaming of the quantified variable. If the original for-
mula is uninstantiated, our newly-generated name is unique and is put in place
correctly; we no longer need a preprocessor to perform this function.

Using the tools of nominal logic, we can modify mKleanTAP to represent
universally quantified variables using noms and to perform substitution instead
of copying. When the prover reaches a literal, however, it must replace each nom
with a logic variable, so that unification may successfully compare literals. To
accomplish this, we associate a logic variable with each unique nom, and replace
every nom with its associated variable before comparing literals. These variables
are generated each time the prover expands a quantified formula.

To implement this strategy, we change our representation of formulas slightly.
Instead of representing ∀x.F (x) as (forall x (f x)), we use a nom wrapped in a
var tag to represent a variable reference, and the term constructor ./ to represent
the ∀ binder: (forall (./ a (f (var a)))), where a is a nom. The var tag allows us
to distinguish noms representing variables from other formulas. We now write a
relation subst-lito to perform substitution of logic variables for tagged noms in
a literal, and we modify the literal case of proveo to use it. We also replace the
clause handling forall formulas and define lookupo. The two clauses of lookupo

overlap, but since each mapping in the environment is from a unique nom to a
logic variable, a particular nom will never appear twice.

We present the changes needed to eliminate copy-termo from mKleanTAP in
Figure 2. Instead of copying the body of each universally quantified formula, we
generate a logic variable x and add an association between the nom representing
the quantified variable and x to the current environment. When we prepare to
close a branch of the tableau, we call subst-lito, replacing the noms in the current
literal with their associated logic variables.

1© ((fresh (a)
(exist (x body unexp1)

(≡ ‘(forall ,(./ a body)) fml)
(append o unexp ‘(,fml) unexp1)
(proveo body unexp1 lits

‘((,a . ,x) . ,env)))))

2© ((exist (lit)
(subst-lito fml env lit)
(conde

((exist (neg)
(conda

((≡ ‘(not ,neg) lit))
((≡ ‘(not ,lit) neg)))

(membero neg lits)))
((exist (next unexp1)

(≡ ‘(,next . ,unexp1) unexp)
(proveo next unexp1 ‘(,lit . ,lits)

env))))))

(define lookupo

(λ (a env out)
(exist (first rest)

(conde

((≡ ‘((,a . ,out) . ,rest) env))
((≡ ‘(,first . ,rest) env)
(lookupo a rest out))))))

(define subst-lito

(λ (fml env out)
(conda

((exist (a)
(≡ ‘(var ,a) fml)
(lookupo a env out)))

((exist (e1 e2 r1 r2)
(≡ ‘(,e1 . ,e2) fml)
(≡ ‘(,r1 . ,r2) out)
(subst-lito e1 env r1)
(subst-lito e2 env r2)))

((≡ fml out)))))

Fig. 2. Changes to mKleanTAP to eliminate copy-termo

The original copy term/2 approach used by leanTAP and mKleanTAP avoids
replacing free variables by copying the list (x body freev). The copied version is
unified with the list (x1 body1 freev), so that only the variable x will be replaced
by a new logic variable—the free variables will be copied, but those copies will
be unified with the original variables afterwards. Since our substitution strategy
does not affect free variables, the freev argument is no longer needed, and so we
have eliminated it.

4.3 Eliminating conda

Both proveo and subst-lito use conda because the clauses that recognize literals
overlap with the other clauses. To solve this problem, we have designed a tagging
scheme that ensures that the clauses of our substitution and proveo relations do
not overlap. To this end, we tag both positive and negative literals, applications,
and variables. Constants are represented by applications of zero arguments. Our
prover thus accepts formulas of the following form:

Fml → (and Fml Fml) | (or Fml Fml) | (forall (./ Nom Fml)) | Lit
Lit → (pos Term) | (neg Term)
Term → (var Nom) | (app Symbol Term*)

This scheme has been chosen carefully to allow unification to compare lit-
erals. In particular, the tags on variables must be discarded before literals are
compared. Consider the two non-ground literals (not (f x)) and (f (p y)). These
literals are complementary: the negation of one unifies with the other, associ-
ating x with (p y). When we apply our tagging scheme, however, these literals

become (neg (app f (var x))) and (pos (app f (app p (var y)))), respectively, and
are no longer complementary: their subexpressions (var x) and (app p (var y))
do not unify. To avoid this problem, our substitution relation discards the var
tag when it replaces noms with logic variables.

(define proveo

(λ (fml unexp lits env proof)
(conde

((exist (e1 e2 prf)
(≡ ‘(and ,e1 ,e2) fml)
(≡ ‘(conj . ,prf) proof)
(proveo e1 ‘(,e2 . ,unexp)

lits env prf)))
((exist (e1 e2 prf1 prf2)

(≡ ‘(or ,e1 ,e2) fml)
(≡ ‘(split ,prf1 ,prf2) proof)
(proveo e1 unexp lits env prf1)
(proveo e2 unexp lits env prf2)))

((fresh (a)
(exist (x body unexp1 prf)

(≡ ‘(forall ,(./ a body)) fml)
(≡ ‘(univ . ,prf) proof)
(append o unexp ‘(,fml) unexp1)
(proveo body unexp1 lits

‘((,a . ,x) . ,env) prf))))
((exist (lit)

(subst-lito fml env lit)
(conde

((exist (tm neg)
(≡ ‘(close) proof)
(conde

((≡ ‘(pos ,tm) lit)
(≡ ‘(neg ,tm) neg))

((≡ ‘(neg ,tm) lit)
(≡ ‘(pos ,tm) neg)))

(membero neg lits)))
((exist (next unexp1 prf)

(≡ ‘(,next . ,unexp1) unexp)
(≡ ‘(savefml . ,prf) proof)
(proveo next unexp1 ‘(,lit . ,lits)

env prf)))))))))

(define membero

(λ (x ls)
(exist (a d)

(≡ ‘(,a . ,d) ls)
(conde

((≡
√

a x))
((membero x d))))))

(define append o

(λ (ls s out)
(conde

((≡ ’() ls) (≡ s out))
((exist (a d r)

(≡ ‘(,a . ,d) ls)
(≡ ‘(,a . ,r) out)
(append o d s r))))))

(define subst-lito

(λ (fml env out)
(conde

((exist (l r)
(≡ ‘(pos ,l) fml)
(≡ ‘(pos ,r) out)
(subst-termo l env r)))

((exist (l r)
(≡ ‘(neg ,l) fml)
(≡ ‘(neg ,r) out)
(subst-termo l env r))))))

(define subst-termo

(λ (fml env out)
(conde

((exist (a)
(≡ ‘(var ,a) fml)
(lookupo a env out)))

((exist (f d r)
(≡ ‘(app ,f . ,d) fml)
(≡ ‘(app ,f . ,r) out)
(subst-term∗o d env r))))))

(define subst-term∗o

(λ (tm∗ env out)
(conde

((≡ ’() tm∗) (≡ ’() out))
((exist (e1 e2 r1 r2)

(≡ ‘(,e1 . ,e2) tm∗)
(≡ ‘(,r1 . ,r2) out)
(subst-termo e1 env r1)
(subst-term∗o e2 env r2))))))

Fig. 3. Final definition of αleanTAP

Given our new tagging scheme, we can easily rewrite our substitution relation
without the use of conda. We simply follow the production rules of the grammar,
defining a relation to recognize each.

Finally, we modify proveo to take advantage of the same tags. We also add
a proof argument to proveo. We call this version of the prover αleanTAP , and
present its definition in Figure 3. It is declarative, since we have eliminated the
use of copy-termo and every use of conda. In addition to being a sound and
complete theorem prover for first-order logic, αleanTAP can now generate valid
first-order theorems.

5 Performance

Like the original leanTAP, αleanTAP can prove many theorems in first-order logic.
Because it is declarative, αleanTAP is generally slower at proving ground the-
orems than mKleanTAP, which is slower than the original leanTAP. Figure 4
presents a summary of αleanTAP ’s performance on the first 46 of Pelletier’s
75 problems [13], showing it to be roughly twice as slow as mKleanTAP.

leanTAP mKleanTAP αleanTAP

1 0.1 0.7 2.0
2 0.0 0.1 0.3
3 0.0 0.2 0.5
4 0.0 1.0 1.7
5 0.1 1.2 2.5
6 0.0 0.1 0.2
7 0.0 0.1 0.2
8 0.0 0.3 0.8
9 0.1 4.3 9.7

10 0.3 5.5 10.2
11 0.0 0.3 0.6
12 0.6 17.7 31.9
13 0.1 3.7 8.2
14 0.1 4.2 9.7
15 0.0 0.8 1.9
16 0.0 0.2 0.6
17 1.1 9.2 18.1
18 0.1 0.5 1.2
19 0.3 15.1 33.5
20 0.5 8.1 12.7
21 0.4 22.1 38.7
22 0.1 3.4 6.4
23 0.1 2.5 5.4

leanTAP mKleanTAP αleanTAP

24 1.7 31.9 60.3
25 0.2 7.5 14.1
26 0.8 130.9 187.5
27 2.3 40.4 79.3
28 0.3 19.1 29.6
29 0.1 27.9 57.0
30 0.1 4.2 9.6
31 0.3 13.2 23.1
32 0.2 23.9 42.4
33 0.1 15.9 39.2
34 199129.0 7272.9 8493.5
35 0.1 0.5 1.1
36 0.2 6.7 12.4
37 0.8 123.3 169.2
38 8.9 4228.8 8363.8
39 0.0 1.1 2.8
40 0.2 8.1 19.2
41 0.1 6.9 17.0
42 0.4 15.0 32.1
43 43.2 668.4 1509.6
44 0.3 15.1 35.7
45 3.4 145.3 239.7
46 7.7 505.5 931.2

Fig. 4. Performance of leanTAP, mKleanTAP, and αleanTAP on the first 46 Pelletier
Problems. All times are in milliseconds, averaged over 100 trials. All tests were run
under Debian Linux on an IBM Thinkpad X40 with a 1.1GHz Intel Pentium-M proces-
sor and 768MB RAM. leanTAP tests were run under SWI-Prolog 5.6.55; mKleanTAP and
αleanTAP tests were run under Ikarus Scheme 0.0.3+.

These performance numbers suggest that while there is a penalty to be paid
for declarativeness, it is not so severe as to cripple the prover. The advantage
mKleanTAP enjoys over the original leanTAP in Problem 34 is due to αKanren’s
interleaving search strategy; as the result for mKleanTAP shows, the original
leanTAP is faster than αleanTAP for any given search strategy.

Many automated provers now use the TPTP problem library [15] to assess
performance. Even though it is faster than αleanTAP , however, leanTAP solves
few of the TPTP problems. The Pelletier Problems, on the other hand, fall into
the class of theorems leanTAP was designed to prove, and so we feel they provide
a better set of tests for the comparison between leanTAP and αleanTAP .

6 Related Work

Through his integration of leanTAP with the Isabelle theorem prover [12], Paul-
son shows that it is possible to modify leanTAP to produce a list of Isabelle
tactics representing a proof. This approach could be reversed to produce a proof
translator from Isabelle proofs to αleanTAP proofs, allowing αleanTAP to become
interactive as discussed in section 3.2.

The leanTAP Frequently Asked Questions [16] states that leanTAP might be
made declarative through the elimination of Prolog’s cuts but does not address
the problem of copy term/2 or specify how the cuts might be eliminated. Other
provers written in Prolog include those of Manthey and Bry [17] and Stickel [18],
but each uses some impure feature and is thus not declarative.

Christiansen [19] uses constraint logic programming and metavariables (sim-
ilar to nominal logic’s names) to build a declarative interpreter based on Kowal-
ski’s non-declarative demonstrate predicate [20]. This approach is similar to
ours, but the Prolog-like language is not complicated by the presence of binders.

Higher-order abstract syntax (HOAS), presented in Pfenning and Elliott [21],
can be used instead of nominal logic to perform substitution on quantified formu-
las. Felty and Miller [22] were among the first to develop a theorem prover using
HOAS to represent formulas; Pfenning and Schurmann [23] also use a HOAS
encoding for formulas.

Kiselyov [24] uses a HOAS encoding for universally quantified formulas in
his original translation of leanTAP into miniKanren. Since miniKanren does not
implement higher-order unification, the prover cannot generate theorems.

Lisitsa’s λleanTAP [25] is a prover written in λProlog that addresses the prob-
lem of copy term/2 using HOAS, and is perhaps closest to our own work. Like
αleanTAP , λleanTAP replaces universally quantified variables with logic variables
using substitution. However, λleanTAP is not declarative, since it contains cuts.
Even if we use our techniques to remove the cuts from λleanTAP, the prover
does not generate theorems, since λProlog uses a depth-first search strategy.
Generating theorems requires the addition of a tagging scheme and iterative
deepening on every clause of the program. Even with these additions, however,
λleanTAP often generates theorems that do not have the proper HOAS encoding,
since that encoding is not specified in the prover.

7 Conclusion

We have presented αleanTAP , a declarative tableau theorem prover for first-
order classical logic. Based on the concise but non-declarative prover leanTAP,
αleanTAP retains leanTAP’s minimalism without the use of Prolog’s copy term/2
or cut. To avoid the use of copy term/2, we have represented universally quan-
tified variables with noms rather than logic variables, allowing us to perform
substitution instead of copying. To eliminate cuts, we have enhanced the tag-
ging scheme for representing formulas.

Both of these transformations are broadly applicable. When cuts are used to
handle overlapping clauses, a carefully crafted tagging scheme can often be used
to eliminate overlapping. When terms must be copied, substitution can often be
used instead of copy term/2—in the case of αleanTAP , we use a combination of
nominal unification and substitution.

The resulting theorem prover retains the strengths of leanTAP. It is slower
than mKleanTAP, our translation of leanTAP, by a factor of two, but remains con-
cise. In addition, its declarative nature makes it more flexible than leanTAP : given
non-ground values for both the theorem to be proved and its proof, αleanTAP fills
in the uninstantiated parts. Like leanTAP, αleanTAP has the capability of proving
theorems on its own, and like a proof assistant, it can accept help from the user
in proving theorems.

Acknowledgements

We thank Oleg Kiselyov for pointing out an alternative solution for making
leanTAP declarative and for his helpful comments on a draft of this paper. We
also thank Matthew Lakin for his comments on a later version. We are grate-
ful to Ramana Kumar and Christian Urban for their work on the triangular
substitution-based implementation of αKanren. We also thank Micah Linnemeier
and Adam Hinz for their participation in the early stages of this research. We
appreciate the many insightful comments provided by the anonymous referees.

References

1. Beckert, B., Posegga, J.: leanTAP: Lean tableau-based deduction. Journal of
Automated Reasoning 15(3) (1995) 339–358

2. Byrd, W.E., Friedman, D.P.: αKanren: A fresh name in nominal logic pro-
gramming. Proceedings of the 2007 Workshop on Scheme and Functional Pro-
gramming, Université Laval Technical Report DIUL-RT-0701 79–90 (see also
http://www.cs.indiana.edu/~webyrd for improvements)

3. Mellish, C.S.: The Automatic Generation of Mode Declarations for Prolog Pro-
grams. Dept. of Artificial Intelligence, University of Edinburgh (1981)

4. Pitts, A.M.: Nominal logic: A first order theory of names and binding. Lecture
Notes in Computer Science 2215 (2001) 219–242

5. Urban, C., Pitts, A., Gabbay, M.: Nominal unification. Theoretical Computer
Science 323(1-3) (2004) 473–497

6. Sperber, M., Clinger, W., Dybvig, R., Flatt, M., van Straaten, A., Kelsey, R., Rees,
J.: Revised 6 report on the algorithmic language Scheme (September 2007)

7. Baader, F., Snyder, W.: Unification theory. Handbook of Automated Reasoning 1
446–533

8. Cheney, J., Urban, C.: αProlog: A logic programming language with names, bind-
ing and α-equivalence. Lecture Notes in Computer Science 3132 (2004) 269–283

9. Byrd, W.E., Friedman, D.P.: From variadic functions to variadic relations
10. Friedman, D.P., Byrd, W.E., Kiselyov, O.: The Reasoned Schemer. The MIT Press

(2005)
11. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer (1996)
12. Paulson, L.C.: A generic tableau prover and its integration with Isabelle. Journal

of Universal Computer Science 5(3) (1999) 73–87
13. Pelletier, F.: Seventy-five problems for testing automatic theorem provers. Journal

of Automated Reasoning 2(2) (1986) 191–216
14. Kiselyov, O., Shan, C., Friedman, D., Sabry, A.: Backtracking, interleaving, and

terminating monad transformers: (functional pearl). ACM SIGPLAN Notices
40(9) (2005) 192–203

15. Sutcliffe, G., Suttner, C.: The TPTP Problem Library. Journal of Automated
Reasoning 21(2) (1998) 135–277

16. Beckert, B., Posegga, J.: The leanTAP-FAQ: Frequently asked questions about
leanTAP. http://www.uni-koblenz.de/~beckert/pub/LeanTAP_FAQ.pdf

17. Manthey, R., Bry, F.: SATCHMO: A theorem prover implemented in Prolog.
Proceedings of the 9th International Conference on Automated Deduction (1988)
415–434

18. Stickel, M.: A Prolog technology theorem prover. Proceedings of the 9th Interna-
tional Conference on Automated Deduction (1988) 752–753

19. Christiansen, H.: Automated reasoning with a constraint-based metainterpreter.
The Journal of Logic Programming 37(1-3) (1998) 213–254

20. Kowalski, R.A.: Logic for Problem Solving. Prentice Hall PTR, Upper Saddle
River, NJ, USA (1979)

21. Pfenning, F., Elliot, C.: Higher-order abstract syntax. Proceedings of the SIG-
PLAN Conference on Programming Language Design and Implementation 23(7)
(1988) 199–208

22. Felty, A., Miller, D.: Specifying theorem provers in a higher-order logic program-
ming language. Proceedings of the 9th International Conference on Automated
Deduction (1988) 61–80

23. Pfenning, F., Schurmann, C.: System description: Twelf—a meta-logical frame-
work for deductive systems. Proceedings of the 16th International Conference on
Automated Deduction (1999) 202–206

24. Friedman, D.P., Kiselyov, O.: A declarative applicative logic programming system.
http://kanren.sourceforge.net

25. Lisitsa, A.: λleanTAP: lean deduction in λProlog. Technical report, ULCS-03-017,
University of Liverpool, Department of Computer Science, 2003

