
Puzzler: An Automated Logic Puzzle Solver

Aleksandar Milicevic, Joseph P. Near, and Rishabh Singh

Massachusetts Institute of Technology (MIT)

Abstract. Solving logic puzzles is a difficult problem, requiring the
parsing of general phrases, semantic interpretation of those phrases, and
logical inference based on the resulting information. Moreover, since hu-
man reasoning is generally unsound, extra background information must
be generated to allow for the logical inference step—but without intro-
ducing facts that would result in an incorrect answer.

We present Puzzler, a tool that automatically solves logic puzzles de-
scribed using informal natural language. Our method translates the puz-
zle’s description to a formal logic, infers appropriate background infor-
mation, and automatically finds a solution. We show that Puzzler can
solve the classic Einstein puzzle, and our solution is generally applicable
to other logic puzzles.

1 Introduction

Recent research in natural language processing has been directed towards tech-
niques using statistical methods [2]. Statistical methods alone, however, may not
allow computers to replicate many of the language tasks we perform daily. Solv-
ing a logic puzzle requires a deep understanding of the underlying meaning of
the puzzle. The puzzle’s solution is not present in its superficial description, but
rather must be inferred. A similar deep understanding is required in many other
NLP applications, such as Question Answering (QA), Information Extraction
(IE), Summarization, Machine Translation and Paraphrasing, and Information
Retrieval (IR). Logic puzzles thus represent an interesting research domain, as
they allow for the exploration of the issues involved without the complexities of
larger applications.

Logic puzzles are easy for humans to understand, but very difficult for
computers—precisely because they require both semantic interpretation and the
inference of background knowledge. This background knowledge reflects the fact
that human reasoning is often unsound: it is often impossible to logically de-
rive the solution to a puzzle using only the information provided. Moreover, the
necessary background knowledge is very difficult to infer, since it is based on
the knowledge base humans build up over years of learning. Logic puzzles have
therefore been studied [5, 6], but whether a general method exists for finding
their solutions still remains an open question.

We present Puzzler, a step towards that solution. Puzzler is a general
tool for the translation of logic puzzles into formal logic, and is also capable of

producing solutions consistent with those translations. Our results are prelimi-
nary, but as evaluation on the classic Einstein puzzle shows, Puzzler is already
capable of translating and solving real puzzles. Puzzler is not a complete solu-
tion, however, since it cannot infer all of the necessary background information:
the user is still required to specify the domain of the problem.

2 Logic Puzzles

A logic puzzle generally consists of a set of natural-language rules representing
constraints on the set of solutions to the puzzle, and a query to which the correct
answer represents a proof that the user has solved the puzzle correctly. Puzzles
are typically designed so that only a single solution satisfies all of the puzzle’s
constraints, and thus there is only one possible answer to the puzzle’s query.

The solver is expected to use the information present both in the constraints
of the puzzle and in its query in preparing a solution. In addition, a large amount
of background knowledge may be expected of the solver. He or she may be ex-
pected to know, for example, that Old Gold is a brand of cigarette, or that
coffee is a drink. Moreover, assumptions about the multiplicity of relationships
between entities in the puzzle are common. Most puzzles assume that the map-
pings between entities are one-to-one, but this is not universally the case; once
again, the solver must make use of background knowledge to decide.

Soving logic puzzles is difficult for humans because we cannot efficiently solve
constraint satisfaction problems over domains of any significant size. Interpreting
the problem, on the other hand, is rarely difficult: we tend to make the same
assumptions and have access to the same background knowledge as the author
of the puzzle. For the computer, this situation is reversed: a machine can solve
constraint satisfaction problems fairly efficiently, but does not have the same
background knowledge that a human does.

2.1 Einstein’s puzzle

The Einstein puzzle (also known as the Zebra puzzle) is perhaps the most famous
logic puzzle. Albert Einstein is rumored to have invented it in the late 1800s,
but there is no real evidence for this theory; the version reproduced below was
published in the Life International magazine in 1962 [1].

1. There are five houses.
2. The Englishman lives in the red house.
3. The Spaniard owns the dog.
4. Coffee is drunk in the green house.
5. The Ukrainian drinks tea.
6. The green house is immediately to the right of the ivory house.
7. The Old Gold smoker owns snails.
8. Kools are smoked in the yellow house.
9. Milk is drunk in the middle house.

2

10. The Norwegian lives in the first house.
11. The man who smokes Chesterfields lives in the house next to the

man with the fox.
12. Kools are smoked in the house next to the house where the horse is

kept.
13. The Lucky Strike smoker drinks orange juice.
14. The Japanese smokes Parliaments.
15. The Norwegian lives next to the blue house.
Now, who drinks water? Who owns the zebra?

Formally speaking, the rules of the puzzle leave out many details. For exam-
ple, there is a total ordering on houses, but this fact is not stated in the puzzle.
Instead, we infer it based on the fact that houses are usually built next to one
another. Neither the zebra nor water is mentioned in the clues; the clever solver
could therefore answer “nobody” to both questions, but the generally accepted
answer calls for the inference that someone owns the zebra, and someone drinks
water.

2.2 Background Information

Formal logic allows the proof of a statement only if it follows directly from the
information given. This property is called soundness, and is considered desirable
in formal logics. Much of the reasoning done by humans, on the other hand, is
unsound—we tend to accept the most likely explanation for a situation, even if
we cannot show using the information we have that the explanation is correct.
The addition of background information to a formal model of a real-life situation
can allow for the sound inference of the correct answer in situations that normally
would require unsound inferences.

The background information associated with the Einstein puzzle is indicative
of the importance of this background information in general. To solve the puzzle
using sound logical inference, we must also have the following facts, even though
the puzzle gives no reason that they should hold:

1. Every person lives in one house.
2. Every person drinks one drink.
3. Every person owns one pet.
4. Every person has one citizenship.
5. Every person smokes one brand.
6. Every house has one color.
7. There exists a total order on houses.

Implicit in these facts is a segregation of the entities in the puzzle into cate-
gories, or types. For example:

1. Every Englishman is a person.
2. Every dog is an animal.
3. Red is a color.

3

4. Lucky Strike is a brand.
5. Tea is a beverage.

Automatic inference of this background and type information is known to
be a difficult task. While it seems natural to relax slightly the soundness con-
straints on logical reasoning, doing so arbitrarily results in inferences that would
be considered silly, even by humans. Distinguishing between reasonable and un-
reasonable assumptions is thus very tricky.

2.3 Semantic Translation and Solving

Logic puzzles are typically written in a style requiring the expressive power of
first-order logic. This presents no problem to the human solver, as he or she gen-
erally has little trouble reducing the problem to that of constraint satisfaction,
given the small finite domain. Automated solvers for first-order logic, however,
tend to focus on first-order theorems over unbounded domains, and due to the
undecidability of first-order logic, may fail to terminate.

While an appropriate automated solver is an issue orthogonal to that of
semantic analysis, it is nevertheless an important part of the overall solution to
the problem.

3 Approach

Puzzler combines several existing NLP tools with our own semantic translation
and background information inference engine. Each part of Puzzler is designed
to be as general as possible, and does not rely on any information specific to the
Einstein puzzle. Figure 1 summarizes the architecture of Puzzler.

Puzzler is composed of the Link Grammar [7] general-purpose English
parser, a semantic translator, and an automated logical analyzer. Our semantic
translator makes use of the structure of the parse trees generated by the parser,
along with semantic information produced by the WordNet [3] database; it is
thus also general-purpose. For logical analysis, we employ the Alloy Analyzer [4],
which solves general first-order logic problems.

3.1 Parsing

In order to make our solution as general as possible, we make use of a general-
purpose, state-of-the-art English parser. This choice allows us the flexibility to
generalize to new types of logical statements, as our parser is not specialized to
any single problem. Previous work (e.g. [5]) made use of specialized parsers to
obtain important information about problem instances, restricting their solutions
to particular sets of problems.

We employ Sleator et. al’s Link Grammar parser [7] to perform sentence
parsing. In addition to being robust, reasonably precise, and accurate, the Link

4

Fig. 1. The architecture of Puzzler

parser is small, very fast, and can produce parse trees for a very wide variety of
English entences.

In our experience, the Link parser easily parses most straightforward logi-
cal sentences of the form usually found in logic puzzles. Occasionally, however,
the parser is confused by ambiguous uses of words that can be assigned more
than one part of speech. The sentence “Coffee is drunk in the green house,” for
example, is taken from the original Einstein puzzle, and is incorrectly parsed by
the Link parser. The word “drunk” is taken to be an adjective, resulting in a
parse tree whose semantics involve coffee beans having had too much to drink.
In these cases, the user must rephrase the English sentence to avoid the ambi-
guity. While this kind of mistake is inevitable when a generalized parser is used,
we found the flexibility gained through the parser’s generality to outweigh its
drawbacks; moreover, when parse errors are made, our semantic translation can
often discover that the resulting parse tree is flawed, and notify the user of the
unresolvable ambiguity in the problem.

3.2 Semantic Translation: Facts

Our fact translation transforms parse trees produced by the Link parser into
unambiguous logical formulas. Our translation relies on the correctness of the
parse trees produced by the Link parser, but it is also able to recover from some
of the typical mistakes that the parser may commit. Sometimes it happens that
a prepositional phrase that should be linked lower than the corresponding noun
phrase is actually linked at the same level as the noun phrase or maybe even
one level above. Here is a concrete example from the Zebra puzzle: the sentence

5

Kools are smoked in the house next to the house where the horse is kept is parsed
by the Link parser as

(S (NP Kools)
(VP are

(VP smoked
(PP in

(NP the house))
(PP next to

(NP the house))
(PP where

(S (NP the horse)
(VP is

(VP kept))))))
.)

instead of as

(S (NP Kools)
(VP are

(VP smoked
(PP in

(NP the house))
(PP next to

(NP the house))
(PP where

(S (NP the horse)
(VP is

(VP kept))))))
.)

However, because of the generic design of our translation, this de-facto incor-
rect parse tree produced by the Link parser will not cause too much trouble.
The translation of the first two of the three parallel prepositional phrases will
produce a logical expression each, both of which evaluate to some house, and
the translation of the third one will produce an expression that evaluates to a
horse. Afterwards, it is left to somehow semantically interconnect (relate) those
expressions. In the case of the correct parse tree, the translator doesn’t have a
choice, the horse has to be related to the house, and then that house is related
to another house, and finally that other house is related to Kools. In the case
when the incorrect parse tree is produced by the parser (the one with the three
parallel prepositional phrases), our procedure relates all three expressions in a
sequential order which is in this case is semantically correct.

A more detailed description of the concrete translation rules we employ is
given in the Solutions section.

6

3.3 Semantic Translation: Background Information

In order to avoid errors, we take a conservative approach to the addition of
background information. When the puzzle contains words such as “next” and
“previous,” for example, we infer that there exists an ordering on the types of
the nouns these words modify. There are several other such special words that we
know how to interpret. Those words include “first”, “last”, “second”, “middle”,
“left”, “right”, etc.

There is some background information that our system cannot infer. While
we know how to infer when an ordering on a type is necessary, inferring the types
themselves is much more difficult. Our current implementation requires the user
to enumerate the types present in his or her problem, and to specify the nouns
representing members of each type. We use WordNet [3] in a limited capacity to
transform nouns into their singular forms, freeing the user from specifying both
singular and plural forms of each type member; we imagine that WordNet’s
classification facilities might be useful in inferring some information both about
the types present in a given problem and about their members. This solution
would make our technique completely automated, and is discussed in detail later.

3.4 Alloy

Alloy [4] is a formal language for modelling software designs. The language com-
prises first-order relational logic with transitive closure, written in a flexible and
concise notation. Modelling in the Alloy language is supported by the Alloy An-
alyzer, a fully automatic bounded analysis tool and visualizer. Using the Alloy
Analyzer, a modeller can examine the behavior of his or her model, check prop-
erties of the model, and produce informative graphs of the model’s instances.
The Alloy language has been used to model data structures, concurrent systems,
programming patterns, and even logic puzzles; the Alloy Analyzer allows for the
automated analysis of these models, including the solving of properly encoded
puzzles.

The Analyzer reduces an undecidable analysis to an NP-complete one by
considering only a bounded number of objects of each type. This approach al-
lows an exhaustive search to be conducted for a counterexample to the user’s
claim. This analysis is performed by the Kodkod [8] relational model finder via
a reduction to the boolean satisfiability problem. While SAT is an NP-complete
problem, modern solvers tend to perform well on the instances produced by
Kodkod, allowing for a fully automated analysis of Alloy models.

The Alloy Analyzer gives us a very appropriate tool with which to solve logic
puzzles. In contrast to general theorems in first-order logic, logic puzzles—like
many other interesting first-order logic problems—tend to be defined over finite
domains. The Einstein puzzle, for example, describes a fixed number of each
entity. For these problems, the Alloy Analyzer’s bounded analysis is a perfect
match; since first-order logic is the generally-accepted standard for semantic
interpretation of natural language, Alloy is a good fit as a target language for
the standard translation techniques.

7

4 Solution

We now present two translations of logic puzzles into Alloy, followed by the set
of rules used by Puzzler to arrive at a correct translation. Our first translation
is natural, but is not easily automated; the second contains redundant relations
that allow for a simpler translation. Finally, we present the set of translation
rules used to arrive at the simpler translation.

For simplicity, we present these translations using a smaller puzzle generated
from http://www.mensus.net/brain/logic.shtml?code=3FFE.287645C:

1. The Danish lives in the third house.
2. The third house is black.
3. The Irish lives directly next to the pink house.
4. The Danish lives directly to the right of the espresso drinking person.
5. The person drinking beer lives directly to the right of the red house.

It is also explicitly given that there are three different nationalities (Danish,
Swiss, Irish), three different house colors (Red, Black, Pink), and three different
drinks (Espresso, Wine, Beer)

The question is: Where does everybody live?

4.1 Translation to Alloy

The most natural Alloy model of this puzzle defines a Sig for each type in the
puzzle (Nationality, Color, Drink and House) and concrete instances of each Sig:

abstract sig Nat i ona l i t y {}
one sig Danish , Swiss , I r i s h extends Nat i ona l i t y {}

abstract sig House {}
one sig H1 , H2 , H3 extends House {}

abstract sig Drink {}
one sig Espresso , Wine , Beer extends Drink {}

abstract sig Color {}
one sig Red , Black , Pink extends Color {}

Next, the model should define some relations between domains. In most logic
puzzles, it is sufficient to map elements of one domain (say Nationality) to
elements of the others. Here, we define relations lives, drinks, and house color

to represent these mappings.
abstract sig Nat i ona l i t y {

l i v e s : one House ,
dr inks : one Drink ,
hou s e co l o r : one Color ,

}

The keyword one is used to express the implicit constraint that every man
lives in exactly one house, drinks one drink and has only one house color (these
constraints come from our background knowledge, as discussed earlier). This
keyword, however, does not make the appropriate relation one-to-one; without

8

any additional constraints, one potential solution to the puzzle involves every
man drinking beer. To achieve the intended solution, we introduce still more
background knowledge:

fact {
a l l h : House | one h . ˜ l i v e s
a l l d : Drink | one d . ˜ dr inks
a l l c : Color | one c . ˜ hou s e co l o r

}

~ is an operator that transposes the given relation. For example, if lives is
a relation from Nationality to House, then the ~lives is a relation from House

to Nationality and relates the same objects as the lives relation.
There is another important piece of the background knowledge that can be

easily expressed in Alloy: ordering. From the puzzle description given above, it
is clear that the set of houses is totally ordered. This information allows some
puzzle statements to talk about houses that are next to each other, a house that is
immediately to the right of some other house, etc. To model this in Alloy, we use
the ordering utility package by writing open util/ordering[House] as houseOrd.
The variable named houseOrd can then be used to conveniently express most of
the ordering-related constraints.

The last thing we need to do is to translate the puzzle statements into Alloy
facts. We start with the first one: there are exactly two houses before the house
in which the Danish lives:

fact { #houseOrd/ prevs [Danish . l i v e s] = 2} }

Danish.lives (a relational join) yields the house in which the Danish lives;
houseOrd/prevs yields all previous houses. The hash operator (#) allows us to
constrain the number of such houses.

The next statement says that the third house is black. Since there is no
direct relation between houses and color, we relate the man living in the third
house with the color Black (using the house color relation). We achieve this by
performing an additional relational join operation, which we call an intermediate
hop:

fact { one h : House | #houseOrd/ prevs [h]=2 ∧ h . ˜ l i v e s . hou s e co l o r=Black}

We present the other statements more briefly. To say that a house is im-
mediately to the left or right of another house, we use houseOrd/prev[h1]=h2

or houseOrd/next[h1]=h2. Similarly, to encode the fact that a house is next to
another house we say that it is either immediately to the left of immediately to
the right of the other house. The remaining three statements are translated to
these Alloy facts:

fact {
I r i s h . l i v e s in {houseOrd/prev [Pink . ˜ hou s e co l o r . l i v e s] ∪

houseOrd/next [Pink . ˜ hou s e co l o r . l i v e s]}
houseOrd/prev [Danish . l i v e s] = Espresso . ˜ dr inks . l i v e s
houseOrd/prev [Beer . ˜ dr inks . l i v e s] = Red . ˜ hous e co l o r . l i v e s

}

The solution to this model produced by Alloy is unique, and is shown in Figure 2.

9

Fig. 2. Alloy solution for the example puzzle

4.2 Alternative Translation to Alloy

As illustrated in the previous section, to translate puzzle statements that talk
about two unrelated domains (between which there is no direct relation), an
intermediate hop must be introduced. Automating such a translation is difficult,
because the translator itself must reason about how to build expressions. To
simplify the translation, we add redundant relations between every pair of types.

Since these additional relations should not hold any new information, we must
also introduce additional constraints to maintain synchronization between the
redundant relations. Since these constraints depend only on the explicitly-given
domains of the puzzle, however, they are simple to generate mechanically.

Consider a relation between Nationality and House (nationality house), one
between House and Color (house color), and one between Nationality and Color

(nationality color). Then, if nationality n1 and house h1 are in the relation
nationality house, and house h1 and color c1 are in the relation house color,
we must ensure that nationality n1 and color c1 are also in the relation
nationality color.

This type of constraint is simple to express in Alloy. We present the alterna-
tive translation, which does not contain intermediate hops, below.
open u t i l / o rde r ing [House] as houseOrd

abstract sig Nat i ona l i t y {
na t i ona l i t y hou s e : one House ,
n a t i o n a l i t y d r i n k : one Drink ,
n a t i o n a l i t y c o l o r : one Color ,

} {
}

one sig Danish , Swiss , I r i s h extends Nat i ona l i t y {}

abstract sig House {
house dr ink : one Drink ,
hou s e co l o r : one Color ,
next to : s e t House ,

} {
one t h i s . ˜ na t i ona l i t y hou s e
one x : Nat i ona l i t y | x . na t i ona l i t y hou s e = th i s ∧

x . n a t i o n a l i t y d r i n k=th i s . @house drink ∧

10

x . n a t i o n a l i t y c o l o r=th i s . @house co lor
t h i s . @next to = { houseOrd/next [t h i s] ∪ houseOrd/prev [t h i s] }

}

one sig H1 , H2 , H3 extends House {}

abstract sig Drink {
d r i n k c o l o r : one Color ,

} {
one t h i s . ˜ n a t i o n a l i t y d r i n k
one t h i s . ˜ house dr ink
one x : Nat i ona l i t y | x . n a t i o n a l i t y d r i n k = th i s ∧

x . n a t i o n a l i t y c o l o r=th i s . @dr ink co lo r
}

one sig Espresso , Wine , Beer extends Drink {}

abstract sig Color {
} {

one t h i s . ˜ n a t i o n a l i t y c o l o r
one t h i s . ˜ hou s e co l o r
one t h i s . ˜ d r i n k c o l o r
one x : Nat i ona l i t y | x . n a t i o n a l i t y c o l o r = th i s

}

one sig Red , Black , Pink extends Color {}

fact {
#houseOrd/ prevs [Danish . n a t i ona l i t y hou s e] = 2}
one h : House | #houseOrd/ prevs [h]=2 ∧ h . hou s e co l o r=Black
I r i s h . n a t i ona l i t y hou s e in {houseOrd/prev [Pink . ˜ hou s e co l o r] ∪

houseOrd/next [Pink . ˜ hou s e co l o r]}
houseOrd/prev [Danish . n a t i ona l i t y hou s e] = Espresso . ˜ house dr ink
houseOrd/prev [Beer . ˜ house dr ink] = Red . ˜ hou s e co l o r

}

5 Implementation

5.1 Translation Procedure

Our translation procedure is based mostly on the interpretation of noun phrases.
We decided to search only for noun phrases and try to properly interconnect
(relate) them without examining the verb that connects them. Semantically,
this is the correct thing to do because we know that in Einstein-like puzzles any
two objects from the known set of domains can be related to each other. Our
decision to have a relation between every two domains in the Alloy model helps
simplify the implementation.

For example, the fact that the Danish lives in the third house can be said in
any of the following ways:

1. The Danish lives in the third house.
2. The Danish is in the third house.
3. The Danish owns the third house.
4. The third house is owned by the Danish.
5. The third house hosts the Danish.

11

In all of these cases, we have the Danish on one side and the third house on
the other, and all we need to do is to connect them by saying that the tuple
Danish, the third house is in the relation nationality house.

First of all, we invoke the Link parser to obtain parse trees of the input
sentences. Then, we traverse the parse tree of the given input sentence in the
depth-first fashion and for every traversed node in the tree we build and return
a structure that contains the following data about that part of the sentence:
class Struct {

St r ing f a c t ;
S ig type ;
S t r ing varName ;
List<Str ing> pps ; // prepos i t i ona l phrases discovered on the way

}

This way, we create the final fact that corresponds to the whole sentence in
the bottom-up style, building up from the smaller pieces.

5.2 Pattern Matching

We begin by establishing the syntax for writing the pattens we will consider:
: one level lower in the parse tree hierarchy
: at the same level in the parse tree hierarchy

ANY : matches any part of speech (POS) tag
ANNY : matches any number of parallel POS tags
T* : matches any number of parallel T tags

The most important pattern rules are explained in Figure 3
The core part of the algorithm that is left to be explained is the relate proce-

dure. This procedure takes two structures, s1 and s2 and returns a new structure
that relates both of them. If one of the inputs is null, it returns the other one.
Otherwise, it tries to combine the two facts that correspond to these two struc-
tures using only prepositions collected for the structure s2. Prepositions collected
for the structure s1 are propagated in the resulting structure that this procedure
returns. If no prepositions are collected for s2 or none of the collected preposi-
tions can be interpreted by the embedded background knowledge database, it
combines the two structures directly by returning the fact that looks like:

sfact
1 && sfact

2 && svarName
1 .relation name = svarName

2 .
As an example of the translation procedure, we give in Figure 4 a complete

trace of our translation implementation for several sentences from the Einstein
puzzle.

6 Evaluation

We evaluated Puzzler on the following three puzzles:

– The original Einstein puzzle
– A modified (less ambiguous) Einstein puzzle
– A randomly generated puzzle in the same style

12

Pattern Description Action

NP noun phrase with no children Iterates in reverse over all words that this noun phrase
consists of and looks for words that are either do-
main/instance names or words that are supported by
our background knowledge database. As soon as it
finds a domain, it declares that domain to be the re-
turn type of this noun phrase, and all other words are
treated as its properties.

NP (ADJP)* noun phrase with any number of ad-
jectives

all adjectives are treated as properties of the enclosing
noun phrase

PP ANY prepositional phrase with exactly
one sub-node

Traverses the child node and adds the prepositions
from this prepositional phrase to the list of preposi-
tions in the structure obtained by traversing the child
node and returns that structure.

ADJP adjective with no children Gets the same treatment as a noun phrase with no
children

VP verb phrase with no children Simply returns an empty structure.

VP ANNY verb phrase with any number of chil-
dren

Traverses all children nodes and sequentially relates
two by two of the resulting structures.

VP NO VP any node having a noun phrase fol-
lowed by a verb phrase as children

Traverses both noun phrase and verb phrase and re-
lates the resulting structures.

ANY WHNP ANY any node having a pronoun followed
by anything as children

Ignores the pronoun and returns the result of the
traversal of the other child node.

ANY ANY any node having exactly one sub-
node

Traverses the child node and returns the result.

Fig. 3. Description of the most important patterns

13

The green house is immediately to the right of the ivory house .
(S (NP The green house) (VP is (ADVP immediately) (PP to (NP (NP the right) (PP of (NP the ivory house))))) .)
##| Pattern: _visit_S__NP_VP, Invoking: _visit_ANY__NP_VP
##| | Pattern: _visit_NP__, Invoking: _visit_NP__
##| | |result: one h9: House | h9.~color_house=Green, pps = []
##| | Pattern: _visit_VP__ADVP_PP, Invoking: _visit_VP__ANNY
##| | | Pattern: _visit_ADVP__, Invoking: _visit_ADVP__
##| | | |result: , pps = []
##| | | Pattern: _visit_PP__NP, Invoking: _visit_PP__ANY
##| | | | Pattern: _visit_NP__NP_PP, Invoking: _visit_NP__NP_PP
##| | | | | Pattern: _visit_NP__, Invoking: _visit_NP__
##| | | | | |result: , pps = []
##| | | | | Pattern: _visit_PP__NP, Invoking: _visit_PP__ANY
##| | | | | | Pattern: _visit_NP__, Invoking: _visit_NP__
##| | | | | | |result: one h10: House | h10.~color_house=Ivory, pps = []
##| | | | | |result: one h10: House | h10.~color_house=Ivory, pps = [of]
##| | | | |result: one h10: House | h10.~color_house=Ivory, pps = [of, the, right]
##| | | |result: one h10: House | h10.~color_house=Ivory, pps = [of, the, right, to]
##| | |result: one h10: House | h10.~color_house=Ivory, pps = [of, the, right, to]
##| |result: one h9:House | h9.~color_house=Green && one h10:House | h10.~color_house=Ivory&&houseOrd/prev[h9]=h10, pps = []
one h9: House | h9.~color_house=Green && one h10: House | h10.~color_house=Ivory && houseOrd/prev[h9] = h10

Milk is drunk in the middle house .
(S (NP Milk) (VP is (ADJP drunk (PP in (NP the middle house)))) .)
##| Pattern: _visit_S__NP_VP, Invoking: _visit_ANY__NP_VP
##| | Pattern: _visit_NP__, Invoking: _visit_NP__
##| | |result: one d15: Milk | 0==0, pps = []
##| | Pattern: _visit_VP__ADJP, Invoking: _visit_VP__ANNY
##| | | Pattern: _visit_ADJP__PP, Invoking: _visit_ANY__ANY
##| | | | Pattern: _visit_PP__NP, Invoking: _visit_PP__ANY
##| | | | | Pattern: _visit_NP__, Invoking: _visit_NP__
##| | | | | |result: one h16: House | #houseOrd/prevs[h16]=#houseOrd/nexts[h16], pps = []
##| | | | |result: one h16: House | #houseOrd/prevs[h16]=#houseOrd/nexts[h16], pps = [in]
##| | | |result: one h16: House | #houseOrd/prevs[h16]=#houseOrd/nexts[h16], pps = [in]
##| | |result: one h16: House | #houseOrd/prevs[h16]=#houseOrd/nexts[h16], pps = [in]
##| |result: one d15: Milk | one h16: House | #houseOrd/prevs[h16]=#houseOrd/nexts[h16] && d15.drink_house=h16, pps = []
one d15: Milk | one h16: House | #houseOrd/prevs[h16]=#houseOrd/nexts[h16] && d15.drink_house=h16

The Norwegian lives next to the blue house .
(S (NP The Norwegian) (VP lives (PP next to (NP the blue house))) .)
##| Pattern: _visit_S__NP_VP, Invoking: _visit_ANY__NP_VP
##| | Pattern: _visit_NP__, Invoking: _visit_NP__
##| | |result: one c30: Norwegian | 0==0, pps = []
##| | Pattern: _visit_VP__PP, Invoking: _visit_VP__ANNY
##| | | Pattern: _visit_PP__NP, Invoking: _visit_PP__ANY
##| | | | Pattern: _visit_NP__, Invoking: _visit_NP__
##| | | | |result: one h31: House | h31.~color_house=Blue, pps = []
##| | | |result: one h31: House | h31.~color_house=Blue, pps = [next, to]
##| | |result: one h31: House | h31.~color_house=Blue, pps = [next, to]
##| |result: one c30: Norwegian | one h31: House | h31.~color_house=Blue && c30.citizen_house in h31.next_to, pps = []
one c30: Norwegian | one h31: House | h31.~color_house=Blue && c30.citizen_house in h31.next_to

Fig. 4. Translation trace for some of the sentences from the Zebra puzzle

14

15

The original Einstein puzzle contains precisely the same text as the orig-
inal publication in Life magazine. The modified version contains eliminates
ambiguity, while the randomly generated puzzle was taken from the website
http://www.mensus.net/brain/logic.shtml. The generalized semantic trans-
lation rules were not able to correctly translate the original puzzle, making mod-
ifications to eliminate ambiguity necessary. To allow Puzzler to solve the orig-
inal formulation of the puzzle, we added special rules to handle the ambiguous
sentences. The solution for the original formulation is shown in Figure 5. The
randomly generated puzzle was taken directly from the website, and our gener-
alized rules were able to correctly infer its correct solution.

There are still some puzzles that Puzzler cannot solve. As we observed
with the randomly generated puzzle, however, it is relatively straightforward to
extend our framework to solve new types of puzzles.

7 Future Work

We briefly describe some ways to extend and improve on the work we have
presented.

7.1 Queries

Our current solution produces instances consistent with the set of constraints
represented by a logic puzzle—that is, a solution. To answer questions like who
owns the zebra, however, the user currently must examine the resulting instance
manually. This compromise is reasonable, since examining the instance is not
difficult and yields far more information than the answer to a single question.
However, it is also desirable to be able to answer the queries directly.

Parsing these queries is straightforward, and can be accomplished using our
existing parsing strategy. The semantic translation presents a more difficult task,
as new types of background information are required. The word who, for example,
expresses a query over a particular type—that of people. This kind of type
inference is difficult, since a particular puzzle may contain many types that
could apply; picking the correct one requires background knowledge.

Given an appropriate Alloy encoding, however, extracting the desired answer
from the Alloy Analyzer should not be difficult: given the right background in-
formation, the query can be translated directly to a constraint that instantiates
a special variable to the appropriate result. The solution instance, then, would
contain an assignment for that variable representing the answer to the query.
Transforming this solution into an English-language answer would be more dif-
ficult. The process of translation into logical constraints results in the loss of
language-specific information vital to the reconstruction of a natural-language
answer. Given the assignment x = Englishman, for example, we would like the
answer The Englishman. Even this simple transformation requires the addition of
a determiner that was present in the original puzzle but was eliminated during
the semantic translation. Moreover, producing such natural-language answers is
a difficult problem in itself.

Fig. 5. Alloy solution for the Zebra puzzle

16

7.2 Background Information

Our solution requires the user to enumerate the domains of a problem. As we
have discussed, inferring these domains is a very difficult task, but our inability
to do so means that our analysis is not completely automatic.

Currently, we use WordNet [3] to find canonical forms of nouns (transforming
plural nouns to their singular forms, for example). But WordNet also provides
the ability to categorize words—a capability that could be used to automatically
infer the types present in a problem. WordNet associates English words with
hierarchies representing categories to which the word belongs, moving from most
specific to most general. Given a set of words, then, it is possible to use WordNet
to find the most specific category to which all words in the set belong.

This facility could be used to make an educated guess at the types present
in a given problem. Most logic puzzles consist of a set of people, each of whom
is mapped to a single member of each other type in the puzzle. While this is not
always the case, it can generally be used to determine the size of each type; once
these sizes are fixed, different possibilities for the sets of members of each type
can be given to WordNet, and the possibility yielding the most specific set of
categories will most likely be correct. These categories become the set of types
of the problem.

This solution may be difficult to apply in general, because it relies on as-
sumptions that may not always hold. The number of members of each type, for
example, may not always be the same; even worse, the permutation of members
yielding the most specific categorization may not actually be correct. Both of
these situations could cause incorrect answers to be given without notification
that something is wrong. A smart set of heuristics could make this possibility
rare, but building such a set of heuristics was beyond the scope of this project.

7.3 Other Applications

In this work, we have treated logic puzzles as an appropriate starting point for
automatic analysis of natural language in many domains that require similar
background information inference. Many such domains exist, and, interestingly,
are characterized well by logic puzzles. That is, the problems we have tackled are
precisely those that are relevant to other domains: many require logical reasoning
in addition to information extraction, and most require “human intuition” in the
form of background knowledge.

Security policies, for example, are often written in natural language; inter-
preting them has traditionally been the job of humans. Using our technique, such
policies could be interpreted automatically, and logically sound analysis could
be performed to determine whether or not the security policy has been broken.

Applying our tools to these domains should be relatively straightforward,
since we have designed them to be as general as possible. We expect that some
domain-specific changes will be necessary to make our techniques effective in
some domains, but that these changes will be reasonable.

17

8 Related Work

Scwhitter [6] assumes the informal description of the puzzle to be generated from
a controlled natural language rather than a more general description grammar;
this assumption helps in making the logical content of the puzzle explicit and
machine-processable. Our approach does not restrict the grammar of the puzzle
description language and therefore is much more general. Schwitter says that
there exists no natural language processing system that can take the original
version of Einstein’s Riddle as input and infer the correct solution automatically.
While Puzzler does not solve the puzzle completely on its own, it represents
the next step forward towards automating the solution.

Lev et. all [5] present a similar system which tries to infer solutions from the
logic puzzles. The logic puzzles they consider are multiple choice questions of
the sort found in the Law School Admission Test (LSAT) and the old analytic
section of the Graduate Record Exam (GRE). The Zebra puzzles are usually
much larger than them, and also the answers to them are not known apriori
unlike the case of multiple choice questions. The multiple choice options can
be used to perform consistency check with the question description whereas in
Zebra puzzles the solution needs to be inferred only from the description itself.

9 Conclusions

We have presented Puzzler, a mostly-automated solver for logic puzzles in
the style of the Einstein puzzle. Unlike previous approaches, our tool requires
only the set of domains present in a given puzzle, and infers the remaining
background information. This results in possibly unsound inferences, but these
inferences are often required to solve logic puzzles; Puzzler takes a conservative
approach to background information to avoid making mistakes. We expect a
similar approach to be applicable to many other NLP domains that require
background knowledge.

References

1. Life international: Who owns the zebra? Life International magazine 17,95, Decem-
ber, 1962.

2. M. Collins. Head-driven statistical models for natural language parsing. Computa-
tional Linguistics, 29(4):589–637, 2003.

3. C. Fellbaum. Wordnet: An Electronic Lexical Database. MIT Press, 1998.
4. D. Jackson. Software Abstractions: logic, language, and analysis. The MIT Press,

2006.
5. I. Lev, B. MacCartney, C. D. Manning, and R. Levy. Solving logic puzzles: From

robust processing to precise semantics. In Proceedings of the 2nd Workshop on Text
Meaning and Interpretation at ACL 2004, pages 9–16, 2004.

6. R. Schwitter. Reconstructing hard problems in a human-readable and machine-
processable way. In PRICAI, pages 1046–1052, 2008.

18

7. D. D. K. Sleator and D. Temperley. Parsing english with a link grammar. In Third
International Workshop on Parsing Technologies, 1991.

8. E. Torlak and D. Jackson. Kodkod: A relational model finder. In O. Grumberg
and M. Huth, editors, TACAS, volume 4424 of Lecture Notes in Computer Science,
pages 632–647. Springer, 2007.

A Complete Model Listing

For completeness, we list the complete Alloy model generated by Puzzler for
the original Einstein puzzle.

1 /∗ ∗∗
2 /∗ Automatical ly generated at Sat May 16 11:41:06 EDT 2009
3 /∗ @author Al loyPuzz ler
4 /∗ ∗∗/
5
6 open u t i l / o rde r ing [House] as houseOrd
7
8 abstract sig Ci t i z en {
9 c i t i z e n d r i n k : one Drink ,

10 c i t i z e n p e t : one Pet ,
11 c i t i z en smoke : one Smoke ,
12 c i t i z e n c o l o r : one Color ,
13 c i t i z e n hou s e : one House ,
14 } {
15 }
16
17 one sig Englishman extends Ci t i z en {}
18 one sig Spaniard extends Ci t i z en {}
19 one sig Norwegian extends Ci t i z en {}
20 one sig Japanese extends Ci t i z en {}
21 one sig Ukrainian extends Ci t i z en {}
22
23
24 abstract sig Drink {
25 dr ink pe t : one Pet ,
26 drink smoke : one Smoke ,
27 d r i n k c o l o r : one Color ,
28 dr ink house : one House ,
29 } {
30 one t h i s . ˜ c i t i z e n d r i n k
31 one x : C i t i z en | x . c i t i z e n d r i n k = th i s ∧
32 x . c i t i z e n p e t=th i s . @drink pet ∧
33 x . c i t i z en smoke=th i s . @drink smoke ∧
34 x . c i t i z e n c o l o r=th i s . @dr ink co lo r ∧
35 x . c i t i z e n hou s e=th i s . @drink house
36 }
37
38 one sig Cof fee extends Drink {}
39 one sig Milk extends Drink {}
40 one sig Orange Juice extends Drink {}
41 one sig Water extends Drink {}
42 one sig Tea extends Drink {}
43
44
45 abstract sig Pet {
46 pet smoke : one Smoke ,
47 p e t c o l o r : one Color ,
48 pet house : one House ,
49 } {
50 one t h i s . ˜ c i t i z e n p e t
51 one t h i s . ˜ d r ink pe t
52 one x : C i t i z en | x . c i t i z e n p e t = th i s ∧
53 x . c i t i z en smoke=th i s . @pet smoke ∧

19

54 x . c i t i z e n c o l o r=th i s . @pet co lor ∧
55 x . c i t i z e n hou s e=th i s . @pet house
56 }
57
58 one sig Dog extends Pet {}
59 one sig Sna i l extends Pet {}
60 one sig Horse extends Pet {}
61 one sig Zebra extends Pet {}
62 one sig Fox extends Pet {}
63
64
65 abstract sig Smoke {
66 smoke co lor : one Color ,
67 smoke house : one House ,
68 } {
69 one t h i s . ˜ c i t i z en smoke
70 one t h i s . ˜ drink smoke
71 one t h i s . ˜ pet smoke
72 one x : C i t i z en | x . c i t i z en smoke = th i s ∧
73 x . c i t i z e n c o l o r=th i s . @smoke color ∧
74 x . c i t i z e n hou s e=th i s . @smoke house
75 }
76
77 one sig Old Gold extends Smoke {}
78 one sig Kool extends Smoke {}
79 one sig Che s t e r f i e l d s extends Smoke {}
80 one sig Lucky Str ike extends Smoke {}
81 one sig Parl iaments extends Smoke {}
82
83
84 abstract sig Color {
85 co l o r hou s e : one House ,
86 } {
87 one t h i s . ˜ c i t i z e n c o l o r
88 one t h i s . ˜ d r i n k c o l o r
89 one t h i s . ˜ p e t c o l o r
90 one t h i s . ˜ smoke co lor
91 one x : C i t i z en | x . c i t i z e n c o l o r = th i s ∧
92 x . c i t i z e n hou s e=th i s . @color house
93 }
94
95 one sig Red extends Color {}
96 one sig Green extends Color {}
97 one sig Ivory extends Color {}
98 one sig Yellow extends Color {}
99 one sig Blue extends Color {}

100
101
102 abstract sig House {
103 next to : s e t House ,
104 } {
105 one t h i s . ˜ c i t i z e n hou s e
106 one t h i s . ˜ dr ink house
107 one t h i s . ˜ pet house
108 one t h i s . ˜ smoke house
109 one t h i s . ˜ co l o r hou s e
110 one x : C i t i z en | x . c i t i z e n hou s e = th i s
111 t h i s . @next to = { houseOrd/next [t h i s] ∪ houseOrd/prev [t h i s] }
112 }
113
114 one sig H1 extends House {}
115 one sig H2 extends House {}
116 one sig H3 extends House {}
117 one sig H4 extends House {}
118 one sig H5 extends House {}
119
120
121 fact f House o rde r ing {

20

122 houseOrd/ f i r s t=H1
123 houseOrd/next [H1]=H2
124 houseOrd/next [H2]=H3
125 houseOrd/next [H3]=H4
126 houseOrd/next [H4]=H5
127 }
128
129 −− There are f i v e houses .
130 fact f 0 {
131 one h0 : House | #houseOrd/ prevs [h0]=4
132 }
133
134 −− The Englishman l i v e s in the red house .
135 fact f 1 {
136 one c1 : Englishman | one h2 : House | h2 . ˜ co l o r hou s e=Red ∧

c1 . c i t i z e n hou s e=h2
137 }
138
139 −− The Spaniard owns the dog .
140 fact f 2 {
141 one c3 : Spaniard | one p4 : Dog | c3 . c i t i z e n p e t=p4
142 }
143
144 −− Coffee i s drunk in the green house .
145 fact f 3 {
146 one d5 : Cof f ee | one h6 : House | h6 . ˜ co l o r hou s e=Green ∧

d5 . dr ink house=h6
147 }
148
149 −− The Ukrainian drinks tea .
150 fact f 4 {
151 one c7 : Ukrainian | one d8 : Tea | c7 . c i t i z e n d r i n k=d8
152 }
153
154 −− The green house i s immediately to the r i g h t of the ivory house .
155 fact f 5 {
156 one h9 : House | h9 . ˜ co l o r hou s e=Green ∧ one h10 : House | h10 . ˜ co l o r hou s e=Ivory ∧

houseOrd/prev [h9] = h10
157 }
158
159 −− The Old Gold smoker owns sna i l s .
160 fact f 6 {
161 one s11 : Old Gold | one p12 : Sna i l | s11 . ˜ pet smoke=p12
162 }
163
164 −− Kools are smoked in the ye l low house .
165 fact f 7 {
166 one s13 : Kool | one h14 : House | h14 . ˜ co l o r hou s e=Yellow ∧

s13 . smoke house=h14
167 }
168
169 −− Milk i s drunk in the middle house .
170 fact f 8 {
171 one d15 : Milk | one h16 : House | #houseOrd/ prevs [h16]=#houseOrd/ nexts [h16] ∧

d15 . dr ink house=h16
172 }
173
174 −− The Norwegian l i v e s in the f i r s t house .
175 fact f 9 {
176 one c17 : Norwegian | one h18 : House | houseOrd/ f i r s t=h18 ∧

c17 . c i t i z e n hou s e=h18
177 }
178
179 −− The man who smokes Che s t e r f i e l d s l i v e s in the house which i s next to the man who has the fox .
180 fact f 10 {
181 one s19 : Ch e s t e r f i e l d s | one h20 : House | one p21 : Fox | h20 in p21 . pet house . next to ∧

s19 . smoke house=h20
182 }

21

183
184 −− Kools are smoked in the house which i s next to the house in which the horse i s kept .
185 fact f 11 {
186 one s22 : Kool | one h23 : House | one p24 : Horse | h23 in p24 . pet house . next to ∧

s22 . smoke house=h23
187 }
188
189 −− The Lucky Str ike smoker drinks Orange Juice .
190 fact f 12 {
191 one s25 : Lucky Str ike | one d26 : Orange Juice | s25 . ˜ drink smoke=d26
192 }
193
194 −− The Japanese smokes Parliaments .
195 fact f 13 {
196 one c27 : Japanese | one s28 : Par l iaments | c27 . c i t i z en smoke=s28
197 }
198
199 −− The Norwegian l i v e s next to the b lue house .
200 fact f 14 {
201 one c29 : Norwegian | one h30 : House | h30 . ˜ co l o r hou s e=Blue ∧

c29 . c i t i z e n hou s e in h30 . next to
202 }
203
204 pred s o l v e {}
205
206 run s o l v e f o r 5

22

