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Clustering: A Classic Data Analysis Task

Partition data points according to similarity :

Similar points should be in the same part.

ClusteringClustering

Distances represent similarities

Geographic
distances

E.g.: 
Redistricting,
Facility location

E.g.: 
similarities between data elements
(images, texts, musics, DNA, etc.)
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This talk:

Clustering of:

Euclidean metrics

Graphs
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Euclidean Clustering:

(k , z)-Clustering:

Input: A point set X ⊂ Rd ;

Output: A set of k representatives C ⊂ Rd , called centers s.t.:

▶ |C | = k

▶ That minimizes
∑

x∈X minc∈C ||c − x ||zp

This talk p = 2, we work with Euclidean distances.

k-median ⇐⇒ z = 1

k-means ⇐⇒ z = 2
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Sublinear Algorithms?

Observation: Solution size is k points in Rd

(so we are ok with a running time that is polynomial in kd)

Observation: If no good solution with balanced clusters =⇒ needle in a haystack

phenomenon.

Assumption: OPT clusters are of balanced size and we look for a running time of

Θ(kd).

This Talk: Approximate (1, z)-clustering with few samples
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Power Mean Objective

(1, z)-clustering is also known as Power mean objective

Our question:

How many points from the input are needed to find an (1+ε)-approximation

to the power mean of the whole input?
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Why do we care about z ̸∈ {1, 2}?

Why Power Mean?

Max-likelihood estimator of a Generalized normal distribution

∼ exp(−|x − µ|z)

Taking a larger z approximates the Minimum Enclosing Ball objective

(find the smallest ball containing the input)
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Approach: Coreset

Given a set of points A, a weighted subset Ω ⊂ A is a (k, ε)-coreset if for

all sets S of k centers it holds

|costw (Ω,S)− cost(A,S)| ≤ ε · cost(A,S)
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Coreset for Sublinear Time Algorithms

Weak Coresets

Given a point set A, a weighted point set Ω is a weak (k, ε)-coreset if

for any point c ′ such that costw (Ω, c
′) ≤ (1 + ε)minc∈Rd costw (Ω, c)

we have cost(A, c ′) ≤ (1 + O(ε))minc∈Rd cost(A, c)
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Our Contribution:

Weak Coreset Constructed by Uniform Sampling

State of the Art

Weak coresets of size Õ(ε−2 · min(ε−2, d)) (see e.g. [Feldman, Langberg,

STOC’ 11]).

Theorem – C.-A., Saulpic, Schwiegelshohn’21

One can construct a weak coreset of size 2O(z)ε−2 by sampling Õ(ε−z−3)

points.

To obtain a (1 + ε)-approximation algorithm with constant probability, one

need to query at least Ω(ε−z+1) points, even when d = 1.
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Naive Approach and Analysis

Algorithm:

Sample δ points uniformly at random. Assign weight n/δ.

Analysis for a fixed center s:

In Expectation: E[costw (Ω, s)] = cost(A, s)

E[costw (Ω, s)] = E

∑
p∈Ω

n

δ
· ||p − s||z2


=

∑
p∈A

n

δ
· ||p − s||z2 · Pr[p ∈ Ω]

=
∑
p∈A

||p − s||z2 = cost(A, s)

For a fixed center s, we are happy!
Vincent Cohen-Addad Sublinear Algorithms for Clustering 11 / 31



Naive Approach and Analysis

Algorithm:

Sample δ points uniformly at random. Assign weight n/δ.

Challenge

We would like to have this holds for all near-optimal s simultaneously.

⇐⇒ We look for concentration bounds.
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Variance Reduction

Observation:

If all the points contribute the same amount to the objective,

Then good concentration using e.g.: Hoeffding inequality.

Idea

1 Partition the points into groups s.t.: points in the same group

contribute the same amount to the objective.

2 Apply uniform sampling within the groups.
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Idea

1 Partition the points into groups s.t.: points in the same group

contribute the same amount to the objective.

Not very well defined: contribution of a point depends on the location

of the center!

Fix: points in the same group contribute the same amount in an

approximate solution

Intuition: Points that contributes the same amount in an approximate solution S

are not too far from each other.

⇐⇒ we can tolerate an error proportional to ε times their contribution in S .
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Algorithm and Analysis

1 Sample a point q u.a.r.

a good approximation

2 Sample a set S of Õ(ε−z−3) points u.a.r.

3 Compute the maximum distance ℓ such that there exist ≈ 2/3εz+1|S | points
with distance at least d from q.

Discard all points at distance greater than d.

“Variance reduction”: Remove far points that have high contribution to the

cost.

4 Define groups Ri s.t. Ri ∩ S contains all the points at distance

(d · 2−i , d · 2−i+1] from q.

5 For all i s.t. |Ri ∩ S | ≤≈ εz+1|S |, remove all points in Ri ∩ S from S .

Remaining points form the coreset.

6 Solve the problem on the coreset S .
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Main Arguments

Infinitely many solutions s!

Problem is intrinsically low-dimensional because we look for one center.

∃ Discretization of Rd =⇒ small number of (1 + ε)-approx solutions that

are different.
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Main Arguments

Small number of “interesting solutions”

Combined with

Chaining: Inductive analysis showing that as we sample more and more points

the error gets smaller and smaller.
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Recent for Euclidean space

Feldman, Langberg (STOC11) O(dk log kϵ−2z)

∗ Sohler, Woodruff (FOCS18) O((k/ε)O(z))

Huang, Vishnoi (STOC20) O(k log2 kϵ−2−2z)

Braverman, Jiang, Krauthgamer, Wu (SODA21) O(k2 log2 kϵ−4)

C.-A., Saulpic, Schwiegelshohn (STOC21) Õ(kϵ−2−max(2,z))

C.-A., Saulpic, Schwiegelshohn (Neurips21) O(2zε−2)

C.-A., Larsen, Saulpic., Schwiegelshohn (STOC22) Õ(kϵ−2 min(k2z , ε−z))

The Power of Uniform Sampling

[Braverman, C.-A., Krauthgamer, Jiang, Schwiegelshohn, Toftrup, Xuan

FOCS’22]

New framework for uniform sampling =⇒ new bounds for k-clustering with

extra constraints capacitated, fair, etc..
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Further Recent Results

Finite Metrics

Feldman, Langberg (STOC’11) O(kε−2z log n log k)

C.-A., Saulpic, Schwiegelshohn O(kε−max(2,z) log n)

Doubling Metrics of dim. D

Huang, Jiang, Li, Wu (FOCS’18) Õ(k3Dε−max(2,z))

C.-A., Saulpic, Schwiegelshohn Õ(kDε−max(2,z))

Graphs with Treewidth t

Baker, Braverman, Huang,
O(k3tε−2)

Jiang, Krauthgamer, Wu (ICML’20)

C.-A., Saulpic, Schwiegelshohn Õ(ktε−max(2,z))

Minor-free Graphs

Braverman, Jiang, Krauthgamer, Wu (SODA’21) O(k2ε−4)

C.-A., Saulpic, Schwiegelshohn O(k log2 kε−6)
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Future Challenges

Closing the gap for Euclidean coreset bounds:

k-means: Õ(kε−4) vs Ω(kε−2).

Coresets for other problems? Set cover, submodular optimization? In

statistics?
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Intermission

?
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Graph Clustering

Similarity is given by edges, two adjacent nodes are similar.

Goal: Identify dense subgraphs

Input: A social network, set of genes of species, the world wide web.

Goal: Find communities in social networks, groups of related organisms, designing

heuristics or compression schemes...Vincent Cohen-Addad Sublinear Algorithms for Clustering 22 / 31



Correlation Clustering:

Input: A complete graph, each edge e has a label ℓe ∈ {+,−}.
Goal: A partition {V1, . . . ,Vk} of V that minimizes

k∑
i=1

∑
u∈Vi

∑
v ̸∈Vi

[ℓ(u,v) = +] +
∑
u∈Vi

∑
v∈Vi

[ℓ(u,v) = −]

Intuition:

Pay each edge (u, v) where ℓ(u,v) = + if u and v are in ̸= clusters.

Pay each edge (u, v) where ℓ(u,v) = − if u and v are in same cluster.

In practice: −-edges are the “no-edges”, +-edges are “normal edges”.
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Previous classic work

A simple “pivot-based” 3-approximation by [Ailon, Charikar Newman ’04]:

- Pick a random vertex, put it and all its +-neighbor in a cluster - Recurse

on the rest.

An LP-rounding-based 2.06-approximation by [Chawla, Makarychev,

Schramm, Yaroslavtsev ’15]:

- Solve the LP

- Round it using a pivot-based approach.

[NEW! C.-A., Lee, Newman ’22]

A Sherali-Adams-LP-rounding-based 1.994-approximation.
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Why Correlation Clustering

G consists of disjoint cliques C1, . . . ,Ck =⇒ Min Correlation

Clustering Cost is 0.

The number of clusters is function the input

Important Properties

Clusters are very dense +-edges subgraphs with little expansion.

There exists an O(1)-approx such that:

Clusters have +-edge density ≥ .9, and

Each vertex has ≥ .9 fraction of its +-neighbors inside its own cluster.
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Clusters we are interested in
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Agreement

Key Insight

Symmetric difference between +-neighborhood sets of two vertices in the

same cluster is small.

If u, v in same cluster, then |N+(u)∆N+(v)| is much smaller than

max(|N+(u)|, |N+(v)|).

Lemma

There exists an Oε(1)-approximation to correlation clustering such that for

any u, v in the same cluster, then

|N+(u)∆N+(v)| ≤ εmax(|N+(u)|, |N+(v)|).

Call such pairs of vertices in agreement.
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Simple Parallel Algorithm

ParallelCorrelationClustering:

1 Discard all +-edges (u, v) whenever u and v are not in agreement. We know

they are not in the same cluster anyway.

2 Call a vertex light if its +-degree has decreased by Ω(1).

Discard all +-edges between light vertices.

Vertices of very dense subgraphs with low expansion are not light.

3 Compute the connected components of the resulting graph, these are the

correlation clustering clusters.

Connected components have diameter at most 4 so can be done efficiently!

Sampling O(log n) neighbors uniformly for each node is enough
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Simple Parallel Algorithm

ParallelCorrelationClustering:

1 Discard all +-edges (u, v) whenever u and v are not in agreement. We know

they are not in the same cluster anyway.

2 Call a vertex light if its +-degree has decreased by Ω(1).

Discard all +-edges between light vertices.

Vertices of very dense subgraphs with low expansion are not light.

3 Compute the connected components of the resulting graph, these are the

correlation clustering clusters.

Connected components have diameter at most 4 so can be done efficiently!

Sampling O(log n) neighbors uniformly for each node is enough

Vincent Cohen-Addad Sublinear Algorithms for Clustering 28 / 31



Simple Parallel Algorithm

ParallelCorrelationClustering:

1 Discard all +-edges (u, v) whenever u and v are not in agreement. We know

they are not in the same cluster anyway.

2 Call a vertex light if its +-degree has decreased by Ω(1).

Discard all +-edges between light vertices.

Vertices of very dense subgraphs with low expansion are not light.

3 Compute the connected components of the resulting graph, these are the

correlation clustering clusters.

Connected components have diameter at most 4 so can be done efficiently!

Sampling O(log n) neighbors uniformly for each node is enough

Vincent Cohen-Addad Sublinear Algorithms for Clustering 28 / 31



Simple Parallel Algorithm

ParallelCorrelationClustering:

1 Discard all +-edges (u, v) whenever u and v are not in agreement. We know

they are not in the same cluster anyway.

2 Call a vertex light if its +-degree has decreased by Ω(1).

Discard all +-edges between light vertices.

Vertices of very dense subgraphs with low expansion are not light.

3 Compute the connected components of the resulting graph, these are the

correlation clustering clusters.

Connected components have diameter at most 4 so can be done efficiently!

Sampling O(log n) neighbors uniformly for each node is enough

Vincent Cohen-Addad Sublinear Algorithms for Clustering 28 / 31



Results: Theory and Practice

[C.-A., Lattanzi, Mitrović, Norouzi-Fard, Parotsidis, Tarnawski ’21]

Theorem

MPC-CorrelationClustering achieves an O(1)-approximation in O(1) MPC

rounds (total memory is Õ(number of +−edges)).
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Open Problems

Improved by [Assadi, Wang] and [Behnezhad, Charikar, Ma, Tan] to

3 + ε-approximation in O(1/ε) parallel rounds.

What is the best approximation one can obtain in time Õ(n)?

(or 1, 2, 3, 4, . . . , 10 rounds in distributed?)

O(log n)-approximation for the weighted case in time Õ(n)?

FPT approximation scheme in sublinear time (parameterized by # clusters)?

Vincent Cohen-Addad Sublinear Algorithms for Clustering 30 / 31



Future Challenges

- Lower Bound: What is the best approximation ratio we can get in sublinear

time?

- Differential privacy better: Faster, more accurate.

- Fair, aware, diverse: More constraints to favor some specific solutions.
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