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Clustering: A Classic Data Analysis Task

Partition data points according to similarity:
Similar points should be in the same part.
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This talk:

Clustering of:

o Euclidean metrics

o Graphs
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Euclidean Clustering:

(k, z)-Clustering:

e Input: A point set X C RY;

@ Output: A set of k representatives C C RY, called centers s.t.:

» That minimizes > _, mincec ||c — x|[;

This talk p = 2, we work with Euclidean distances.

k-median <— z=1
k-means <— z =2
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Sublinear Algorithms?

Observation: Solution size is k points in R?
(so we are ok with a running time that is polynomial in kd)
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Sublinear Algorithms?

Observation: Solution size is k points in R?
(so we are ok with a running time that is polynomial in kd)

Observation: If no good solution with balanced clusters = needle in a haystack
phenomenon.

Assumption: OPT clusters are of balanced size and we look for a running time of

O(kd).

This Talk: Approximate (1, z)-clustering with few samples
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Power Mean Objective

(1, z)-clustering is also known as Power mean objective
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Power Mean Objective

(1, z)-clustering is also known as Power mean objective

Our question:

How many points from the input are needed to find an (1+¢)-approximation
to the power mean of the whole input?
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Why do we care about z & {1,2}7

Why Power Mean?

@ Max-likelihood estimator of a Generalized normal distribution
~ exp(—|x — pl*)
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Why do we care about z & {1,2}7

Why Power Mean?

o Max-likelihood estimator of a Generalized normal distribution
el =)

o Taking a larger z approximates the Minimum Enclosing Ball objective
(find the smallest ball containing the input)
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Why do we care about z & {1,2}7

Why Power Mean?

@ Max-likelihood estimator of a Generalized normal distribution
~ exp(—[x — p*)

@ Taking a larger z approximates the Minimum Enclosing Ball objective
(find the smallest ball containing the input)
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Approach: Coreset

Given a set of points A, a weighted subset Q C A is a (k,¢)-coreset if for
all sets S of k centers it holds

|costy (€2, S) — cost(A, S)| < - cost(A, S)
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Approach: Coreset

Given a set of points A, a weighted subset 2 C A is a (k,e)-coreset if for
all sets S of k centers it holds

|costy (€2, S) — cost(A, S)| < - cost(A, S)
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Coreset for Sublinear Time Algorithms

Weak Coresets

Given a point set A, a weighted point set Q is a weak (k, ¢)-coreset if
for any point ¢’ such that cost,, (€2, ¢’) < (1 + &) min_cge cost,, (€2, ¢)
we have cost(A, ¢’) < (1 + O(g)) min cga cost(A, c)
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Our Contribution:
Weak Coreset Constructed by Uniform Sampling

State of the Art

Weak coresets of size O(¢~2 - min(¢~2,d)) (see e.g. [Feldman, Langberg,
STOC' 11]).

Theorem — C.-A., Saulpic, Schwiegelshohn’21

One can construct a weak coreset of size 20(¥)e=2 by sampling 0(6’2*3)
points.

To obtain a (1 4 ¢)-approximation algorithm with constant probability, one
need to query at least Q(¢~?*1) points, even when d = 1.
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Naive Approach and Analysis

Algorithm:

Sample ¢ points uniformly at random. Assign weight n/d.

Analysis for a fixed center s:

In Expectation: E[cost, (£, s)] = cost(A, s)

n z
Efcosty (2,5)] =E | > < |lp—s|[3

peEQ
n z
=Y 5 llp=sli3-Prlpeql
pEA
= llp — s[5 = cost(A, s)
pEA

For a fixed center s, we are happy!
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Naive Approach and Analysis

Algorithm:

Sample 0 points uniformly at random. Assign weight n/d.

Challenge

We would like to have this holds for all near-optimal s simultaneously.
<= We look for concentration bounds.
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Variance Reduction

Observation:

If all the points contribute the same amount to the objective,
Then good concentration using e.g.: Hoeffding inequality.

Idea

@ Partition the points into groups s.t.: points in the same group
contribute the same amount to the objective.

@ Apply uniform sampling within the groups.
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Idea

@ Partition the points into groups s.t.: points in the same group
contribute the same amount to the objective.
Not very well defined: contribution of a point depends on the location

of the center!

Intuition: Points that contributes the same amount in an approximate solution S

are not too far from each other.
<= we can tolerate an error proportional to € times their contribution in S.




Idea

@ Partition the points into groups s.t.: points in the same group
contribute the same amount to the objective.
Not very well defined: contribution of a point depends on the location
of the center!
Fix: points in the same group contribute the same amount in an

approximate solution

Intuition: Points that contributes the same amount in an approximate solution S
are not too far from each other.
<= we can tolerate an error proportional to € times their contribution in S.
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Algorithm and Analysis

@ Sample a point g u.a.r.
a good approximation

@ Sample a set S of O(¢~273) points u.a.r.

@ Compute the maximum distance ¢ such that there exist ~ 2/3z71|S| points
with distance at least d from q.
Discard all points at distance greater than d.
“Variance reduction”: Remove far points that have high contribution to the
cost.

@ Define groups R; s.t. R; NS contains all the points at distance
(d-277 d-271] from q.

Q Forall i s.t. |[RiNS| <~ e#*1|S|, remove all points in R, NS from S.

Remaining points form the coreset.

@ Solve the problem on the coreset S.
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@ Infinitely many solutions s!



Main Arguments

@ Problem is intrinsically low-dimensional because we look for one center.
3 Discretization of R? == small number of (1 + )-approx solutions that
are different.

: wa }
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Main Arguments

Small number of “interesting solutions”
Combined with

Chaining: Inductive analysis showing that as we sample more and more points
the error gets smaller and smaller.
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Recent for Euclidean space

Feldman, Langberg (STOC11) | O(dk log k(zz)
* Sohler, Woodruff (FOCS18) | O((k/e)°))
Huang, Vishnoi (STOC20) | O(k log? ke=2—2%)
Braverman, Jiang, Krauthgamer, Wu (SODA21) | O(k? log? ke—*)
C.-A., Saulpic, Schwiegelshohn (STOC21) | O(ke—2~max(2:2)y
C.-A., Saulpic, Schwiegelshohn (Neurips21) 0(225 2)
O(

C.-A., Larsen, Saulpic., Schwiegelshohn (STOC22)

ke=2 min(k2?,

_Z))

The Power of Uniform Sampling

[Braverman, C.-A., Krauthgamer, Jiang, Schwiegelshohn, Toftrup, Xuan

FOCS'22]

New framework for uniform sampling = new bounds for k-clustering with

extra constraints capacitated, fair, etc..

Vincent Cohen-Addad
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Further Recent Results

O(

ke=2Zlog nlog k)

Finite Metrics
Feldman, Langberg (STOC'11)

O(ke~m2x(2:2) |og n)

C.-A., Saulpic, Schwiegelshohn

(k3DE_ max(2,z))

Doubling Metrics of dim. D
0

Huang, Jiang, Li, Wu (FOCS'18)

O(kDE_ max(2,z))

C.-A., Saulpic, Schwiegelshohn

Graphs with Treewidth t

Jiang, Krauthgamer, Wu (ICML'20)

Baker, Braverman, Huang, O(k3t5_2)

é(kt&‘* max(2,z))

C.-A., Saulpic, Schwiegelshohn

Minor-free Graphs

O(k%e™*)

Braverman, Jiang, Krauthgamer, Wu (SODA'21)
C.-A., Saulpic, Schwiegelshohn

O(k log? ke~®)

19/31

Sublinear Algorithms for Clustering

Vincent Cohen-Addad



Future Challenges

@ Closing the gap for Euclidean coreset bounds:
k-means: O(ke*) vs Q(ke2).

@ Coresets for other problems? Set cover, submodular optimization? In

statistics?
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Graph Clustering

Similarity is given by edges, two adjacent nodes are similar.
Goal: Identify dense subgraphs

Input: A social network, set of genes of species, the world wide web.

Goal: Find communities in social networks, groups of related organisms, designing

Vincent Cohen-Addad Sublinear Algorithms for Clustering 22 /31



Correlation Clustering:

Input: A complete graph, each edge e has a label ¢, € {4, —}.
Goal: A partition {V4,..., Vi} of V that minimizes

k
DD =+ + DD Epwm=-]

i=1 ueV; vgV; ueV;veV;

Intuition:

Pay each edge (u, v) where £, ,y = + if u and v are in # clusters.

Pay each edge (u, v) where £(, .,y = — if uand v are in same cluster.

In practice: —-edges are the “no-edges”, +-edges are “normal edges”.

Vincent Cohen-Addad Sublinear Algorithms for Clustering
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Previous classic work

A simple “pivot-based” 3-approximation by [Ailon, Charikar Newman '04]:
- Pick a random vertex, put it and all its +-neighbor in a cluster - Recurse
on the rest.

An LP-rounding-based 2.06-approximation by [Chawla, Makarychev,
Schramm, Yaroslavtsev '15]:

- Solve the LP

- Round it using a pivot-based approach.

[NEW! C.-A., Lee, Newman ’'22]

A Sherali-Adams-LP-rounding-based 1.994-approximation.
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Why Correlation Clustering

@ G consists of disjoint cliques Cy, ..., Cx = Min Correlation
Clustering Cost is 0.

@ The number of clusters is function the input

Important Properties

Clusters are very dense +-edges subgraphs with little expansion.

There exists an O(1)-approx such that:
@ Clusters have +-edge density > .9, and

@ Each vertex has > .9 fraction of its +-neighbors inside its own cluster.
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Clusters we are interested in
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Agreement

Key Insight

Symmetric difference between +-neighborhood sets of two vertices in the
same cluster is small.

If u,v in same cluster, then |[N*(u)AN*(v)| is much smaller than
max([N* (), [NV (V).
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Agreement

Key Insight

Symmetric difference between +-neighborhood sets of two vertices in the
same cluster is small.

If u,v in same cluster, then |[N*(u)AN*(v)| is much smaller than
max([N* (), [NV (V).

Lemma

There exists an O.(1)-approximation to correlation clustering such that for
any u, v in the same cluster, then

INT(u)ANT(v)] < emax(INT(u)], INT(v)]).

Call such pairs of vertices in agreement.

Vincent Cohen-Addad Sublinear Algorithms for Clustering 27 /31



Simple Parallel Algorithm

ParallelCorrelationClustering:

@ Discard all +-edges (u, v) whenever u and v are not in agreement. We know
they are not in the same cluster anyway.
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@ Discard all +-edges (u, v) whenever u and v are not in agreement. We know
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@ Call a vertex light if its +-degree has decreased by Q(1).
Discard all 4+-edges between light vertices.
Vertices of very dense subgraphs with low expansion are not light.
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Simple Parallel Algorithm

ParallelCorrelationClustering:

@ Discard all +-edges (v, v) whenever u and v are not in agreement. We know

they are not in the same cluster anyway.

@ Call a vertex light if its +-degree has decreased by Q(1).
Discard all 4+-edges between light vertices.
Vertices of very dense subgraphs with low expansion are not light.

© Compute the connected components of the resulting graph, these are the
correlation clustering clusters.
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Simple Parallel Algorithm

ParallelCorrelationClustering:

@ Discard all +-edges (v, v) whenever u and v are not in agreement. We know
they are not in the same cluster anyway.

@ Call a vertex light if its +-degree has decreased by Q(1).
Discard all 4+-edges between light vertices.

Vertices of very dense subgraphs with low expansion are not light.

© Compute the connected components of the resulting graph, these are the
correlation clustering clusters.

Connected components have diameter at most 4 so can be done efficiently!

Sampling O(log n) neighbors uniformly for each node is enough
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Results: Theory and Practice

[C.-A., Lattanzi, Mitrovi¢, Norouzi-Fard, Parotsidis, Tarnawski '21]

Theorem

MPC-CorrelationClustering achieves an O(1)-approximation in O(1) MPC
rounds (total memory is O(number of + —edges)).
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Open Problems

@ Improved by [Assadi, Wang] and [Behnezhad, Charikar, Ma, Tan] to
3 + e-approximation in O(1/¢) parallel rounds.
What is the best approximation one can obtain in time O(n)?
(or 1,2,3,4,...,10 rounds in distributed?)

o O(log n)-approximation for the weighted case in time O(n)?

e FPT approximation scheme in sublinear time (parameterized by # clusters)?
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Future Challenges

- Lower Bound: What is the best approximation ratio we can get in sublinear

time?

- Differential privacy better: Faster, more accurate.

- Fair, aware, diverse: More constraints to favor some specific solutions.
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