Sublinear Algorithms for Euclidean Clustering and Correlation Clustering

Vincent Cohen-Addad

Google Research

Partition data points according to *similarity*: Similar points should be in the same part.

Clustering of:

• Euclidean metrics

• Graphs

(k, z)-Clustering:

- Input: A point set $X \subset \mathbb{R}^d$;
- Output: A set of k representatives $C \subset \mathbb{R}^d$, called *centers* s.t.:

$$\bullet |C| = k$$

• That minimizes $\sum_{x \in X} \min_{c \in C} ||c - x||_p^z$

This talk p = 2, we work with Euclidean distances.

k-median $\iff z = 1$ k-means $\iff z = 2$

Observation: If no good solution with balanced clusters \implies needle in a haystack phenomenon.

Observation: If no good solution with balanced clusters \implies needle in a haystack phenomenon.

Assumption: OPT clusters are of balanced size and we look for a running time of $\Theta(kd)$.

Observation: If no good solution with balanced clusters \implies needle in a haystack phenomenon.

Assumption: OPT clusters are of balanced size and we look for a running time of $\Theta(kd)$.

This Talk: Approximate (1, z)-clustering with few samples

(1, z)-clustering is also known as Power mean objective

(1, z)-clustering is also known as Power mean objective

Our question:

How many points from the input are needed to find an $(1+\varepsilon)$ -approximation to the power mean of the whole input?

Why do we care about $z \notin \{1, 2\}$?

Why Power Mean?

- Max-likelihood estimator of a Generalized normal distribution $\sim \exp(-|x-\mu|^z)$
- Taking a larger z approximates the Minimum Enclosing Ball objective (find the smallest ball containing the input)

Why Power Mean?

- Max-likelihood estimator of a Generalized normal distribution $\sim \exp(-|x-\mu|^z)$
- Taking a larger z approximates the Minimum Enclosing Ball objective (find the smallest ball containing the input)

Weak Coresets

Given a point set A, a weighted point set Ω is a weak (k, ε) -coreset if for any point c' such that $\operatorname{cost}_w(\Omega, c') \leq (1 + \varepsilon) \min_{c \in \mathbb{R}^d} \operatorname{cost}_w(\Omega, c)$ we have $\operatorname{cost}(A, c') \leq (1 + O(\varepsilon)) \min_{c \in \mathbb{R}^d} \operatorname{cost}(A, c)$

Our Contribution:

Weak Coreset Constructed by Uniform Sampling

State of the Art

Weak coresets of size $\tilde{O}(\varepsilon^{-2} \cdot \min(\varepsilon^{-2}, d))$ (see e.g. [Feldman, Langberg, STOC' 11]).

Theorem – C.-A., Saulpic, Schwiegelshohn'21

One can construct a weak coreset of size $2^{O(z)}\varepsilon^{-2}$ by sampling $\tilde{O}(\varepsilon^{-z-3})$ points.

To obtain a $(1 + \varepsilon)$ -approximation algorithm with constant probability, one need to query at least $\Omega(\varepsilon^{-z+1})$ points, even when d = 1.

Naive Approach and Analysis

Algorithm:

Sample δ points uniformly at random. Assign weight n/δ .

Analysis for a fixed center s:

In Expectation: $\mathbb{E}[\operatorname{cost}_w(\Omega, s)] = \operatorname{cost}(A, s)$

$$\mathbb{E}[\operatorname{cost}_{w}(\Omega, s)] = \mathbb{E}\left[\sum_{p \in \Omega} \frac{n}{\delta} \cdot ||p - s||_{2}^{z}\right]$$
$$= \sum_{p \in A} \frac{n}{\delta} \cdot ||p - s||_{2}^{z} \cdot \Pr[p \in \Omega]$$
$$= \sum_{p \in A} ||p - s||_{2}^{z} = \operatorname{cost}(A, s)$$

For a fixed center *s*, we are happy!

Algorithm:

Sample δ points uniformly at random. Assign weight n/δ .

Challenge

We would like to have this holds for all near-optimal s simultaneously. \iff We look for concentration bounds.

Observation:

If all the points contribute the same amount to the objective, Then good concentration using e.g.: Hoeffding inequality.

Idea

- Partition the points into groups s.t.: points in the same group contribute the same amount to the objective.
- Apply uniform sampling within the groups.

Idea

Partition the points into groups s.t.: points in the same group contribute the same amount to the objective.
Not very well defined: contribution of a point depends on the location of the center!

Intuition: Points that contributes the same amount in an approximate solution S are not too far from each other.

 \iff we can tolerate an error proportional to ε times their contribution in S.

ldea	
9	Partition the points into groups s.t.: points in the same group contribute the same amount to the objective. Not very well defined: contribution of a point depends on the location of the center! Fix: points in the same group contribute the same amount in an approximate solution

Intuition: Points that contributes the same amount in an approximate solution S are not too far from each other.

 \iff we can tolerate an error proportional to ε times their contribution in S.

Algorithm and Analysis

- Sample a point q u.a.r. a good approximation
- ② Sample a set S of $\tilde{O}(\varepsilon^{-z-3})$ points u.a.r.

Ocompute the maximum distance ℓ such that there exist ≈ 2/3ε^{z+1}|S| points with distance at least d from q.
 Discard all points at distance greater than d.
 "Variance reduction": Remove far points that have high contribution to the cost.

- Define groups R_i s.t. R_i ∩ S contains all the points at distance (d · 2⁻ⁱ, d · 2⁻ⁱ⁺¹] from q.
- For all *i* s.t. $|R_i \cap S| \leq \epsilon^{z+1}|S|$, remove all points in $R_i \cap S$ from *S*. Remaining points form the coreset.
- Solve the problem on the coreset S.

• Infinitely many solutions s!

Main Arguments

Problem is intrinsically low-dimensional because we look for one center.
 ∃ Discretization of ℝ^d ⇒ small number of (1 + ε)-approx solutions that are different.

Small number of "interesting solutions"

Combined with

Chaining: Inductive analysis showing that as we sample more and more points the error gets smaller and smaller.

Recent for Euclidean space

	1
Feldman, Langberg (STOC11)	$O(dk \log k \epsilon^{-2z})$
* Sohler, Woodruff (FOCS18)	$O((k/\varepsilon)^{O(z)})$
Huang, Vishnoi (STOC20)	$O(k \log^2 k \epsilon^{-2-2z})$
Braverman, Jiang, Krauthgamer, Wu (SODA21)	$O(k^2 \log^2 k \epsilon^{-4})$
CA., Saulpic, Schwiegelshohn (STOC21)	$ ilde{O}(k\epsilon^{-2-\max(2,z)})$
CA., Saulpic, Schwiegelshohn (Neurips21)	$O(2^z \varepsilon^{-2})$
CA., Larsen, Saulpic., Schwiegelshohn (STOC22)	$\tilde{O}(k\epsilon^{-2}\min(k2^z,\varepsilon^{-z}))$

The Power of Uniform Sampling

[Braverman, C.-A., Krauthgamer, Jiang, Schwiegelshohn, Toftrup, Xuan FOCS'22]

New framework for uniform sampling \implies new bounds for *k*-clustering with extra constraints capacitated, fair, etc..

Further Recent Results

Feldman, Langberg (STOC'11)	$O(k\varepsilon^{-2z}\log n\log k)$
CA., Saulpic, Schwiegelshohn	$O(k\varepsilon^{-\max(2,z)}\log n)$
Doubling Metrics of dim. D	
Huang, Jiang, Li, Wu (FOCS'18)	$ ilde{O}(k^3 D \varepsilon^{-\max(2,z)})$
CA., Saulpic, Schwiegelshohn	$\tilde{O}(kD\varepsilon^{-\max(2,z)})$
Graphs with Treewidth t	
Baker, Braverman, Huang,	$O(k^3 t \varepsilon^{-2})$
Jiang, Krauthgamer, Wu (ICML'20)	
CA., Saulpic, Schwiegelshohn	$ ilde{O}(ktarepsilon^{-\max(2,z)})$
Minor-free Graphs	
Braverman, Jiang, Krauthgamer, Wu (SODA'21)	$O(k^2 \varepsilon^{-4})$
C-A Saulnic Schwiegelshohn	$O(k \log^2 k \varepsilon^{-6})$

- Closing the gap for Euclidean coreset bounds: *k*-means: $\tilde{O}(k\varepsilon^{-4})$ vs $\Omega(k\varepsilon^{-2})$.
- Coresets for other problems? Set cover, submodular optimization? In statistics?

Intermission

Similarity is given by edges, two adjacent nodes are similar. **Goal:** Identify dense subgraphs

Input: A social network, set of genes of species, the world wide web.

Goal: Find communities in social networks, groups of related organisms, designing

Input: A complete graph, each edge *e* has a label $\ell_e \in \{+, -\}$. **Goal:** A partition $\{V_1, \ldots, V_k\}$ of *V* that minimizes

$$\sum_{i=1}^{\kappa} \sum_{u \in V_i} \sum_{v \notin V_i} [\ell_{(u,v)} = +] + \sum_{u \in V_i} \sum_{v \in V_i} [\ell_{(u,v)} = -]$$

Intuition:

Pay each edge (u, v) where $\ell_{(u,v)} = +$ if u and v are in \neq clusters. Pay each edge (u, v) where $\ell_{(u,v)} = -$ if u and v are in same cluster.

In practice: --edges are the "no-edges", +-edges are "normal edges".

A simple "pivot-based" 3-approximation by [Ailon, Charikar Newman '04]: - Pick a random vertex, put it and all its +-neighbor in a cluster - Recurse on the rest.

An LP-rounding-based 2.06-approximation by [Chawla, Makarychev, Schramm, Yaroslavtsev '15]:

- Solve the LP
- Round it using a pivot-based approach.

[NEW! C.-A., Lee, Newman '22]

A Sherali-Adams-LP-rounding-based 1.994-approximation.

Why Correlation Clustering

- G consists of disjoint cliques $C_1, \ldots, C_k \implies$ Min Correlation Clustering Cost is 0.
- The number of clusters is function the input

Important Properties

Clusters are very dense +-edges subgraphs with little expansion.

There exists an O(1)-approx such that:

- Clusters have +-edge density \geq .9, and
- Each vertex has \geq .9 fraction of its +-neighbors inside its own cluster.

Clusters we are interested in

Key Insight

Symmetric difference between $+\mbox{-neighborhood}$ sets of two vertices in the same cluster is small.

If u, v in same cluster, then $|N^+(u)\Delta N^+(v)|$ is much smaller than $\max(|N^+(u)|, |N^+(v)|)$.

Key Insight

Symmetric difference between +-neighborhood sets of two vertices in the same cluster is small. If u, v in same cluster, then $|N^+(u)\Delta N^+(v)|$ is much smaller than

If u, v in same cluster, then $|N^+(u)\Delta N^+(v)|$ is much smaller than $\max(|N^+(u)|, |N^+(v)|)$.

Lemma

There exists an $O_{\varepsilon}(1)$ -approximation to correlation clustering such that for any u, v in the same cluster, then

$$|N^+(u)\Delta N^+(v)| \leq \varepsilon \max(|N^+(u)|, |N^+(v)|).$$

Call such pairs of vertices in agreement.

Discard all +-edges (u, v) whenever u and v are not in agreement. We know they are not in the same cluster anyway.

- Discard all +-edges (u, v) whenever u and v are not in agreement. We know they are not in the same cluster anyway.
- Call a vertex *light* if its +-degree has decreased by Ω(1).
 Discard all +-edges between light vertices.
 Vertices of very dense subgraphs with low expansion are not light.

- Discard all +-edges (u, v) whenever u and v are not in agreement. We know they are not in the same cluster anyway.
- Call a vertex *light* if its +-degree has decreased by Ω(1).
 Discard all +-edges between light vertices.
 Vertices of very dense subgraphs with low expansion are not light.
- Compute the connected components of the resulting graph, these are the correlation clustering clusters.

- Discard all +-edges (u, v) whenever u and v are not in agreement. We know they are not in the same cluster anyway.
- Call a vertex *light* if its +-degree has decreased by Ω(1).
 Discard all +-edges between light vertices.
 Vertices of very dense subgraphs with low expansion are not light.
- Compute the connected components of the resulting graph, these are the correlation clustering clusters.
 Connected components have diameter at most 4 so can be done efficiently!

Sampling $O(\log n)$ neighbors uniformly for each node is enough

Results: Theory and Practice

[C.-A., Lattanzi, Mitrović, Norouzi-Fard, Parotsidis, Tarnawski '21]

Theorem

MPC-CorrelationClustering achieves an O(1)-approximation in O(1) MPC rounds (total memory is $\tilde{O}(\text{number of } + -\text{edges}))$.

- Improved by [Assadi, Wang] and [Behnezhad, Charikar, Ma, Tan] to 3 + ε-approximation in O(1/ε) parallel rounds. What is the best approximation one can obtain in time Õ(n)? (or 1, 2, 3, 4, ..., 10 rounds in distributed?)
- $O(\log n)$ -approximation for the weighted case in time $\tilde{O}(n)$?
- FPT approximation scheme in sublinear time (parameterized by # clusters)?

- Lower Bound: What is the best approximation ratio we can get in sublinear time?

- Differential privacy better: Faster, more accurate.
- Fair, aware, diverse: More constraints to favor some specific solutions.

- Lower Bound: What is the best approximation ratio we can get in sublinear time?

- Differential privacy better: Faster, more accurate.
- Fair, aware, diverse: More constraints to favor some specific solutions.

