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Experts Problem

a problem of sequential prediction
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Performance

Make no distributional assumptions
We judge our algorithm based on regret.

Definition (Regret)

# of mistakes our algorithm makes more than the best expert

# of days




Prediction with Expert Advice

a fundamental problem of sequential prediction
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Prediction with Expert Advice

a problem of sequential prediction
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The Online Learning with Experts Problem

* n experts who decide either {0,1} on each of T days

* Algorithm sees expert predictions and predicts either {0,1} on each
day

* Algorithm sees the outcome, which isin {0,1}, of each day and can
use this information on future days

* The cost of the algorithm is the number of incorrect predictions

* Regret is (# of mistakes we make — M)/T, where M is the number of
mistakes of best expert



Applications of the Experts Problem

* Ensemble learning, e.g., AdaBoost

* Forecast and portfolio optimization

* Online convex optimization



Weighted Majority (Littlestone, Warmuth 89)
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Guarantee for Weighted Majority

Theorem (Deterministic Weighted Majority)
# m of mistakes by

2
deterministic weighted < (2+e)M+-=Inn
majority €

where M is the # of mistakes the best expert makes, n is # of experts.

m
e (1 —e)M < sum of the weights < (1 — g) n



Guarantee for Weighted Majority

Theorem (Deterministic Weighted Majority)
# m of mistakes by 2
deterministic weighted < (2+e)M+=Inn
€

majority

where M is the # of mistakes the best expert makes, n is # of experts.

Theorem (Randomized Weighted Majority, i.e, Multiplicative Weights)
For € > 0, can construct algorithm A such that

Inn )

E[# of mistakes by A] < (1+g)M +0Of
£




Previous Work

* Weighted majority algorithm down-weights each expert that is
incorrect on each day and selects the weighted majority as the output

Weighted majority algorithm gets (2+&)M + ° In n total mistakes

E

Randomized weighted majority algorithm randomly follows an expert
on a day with probability proportional to the weight of the expert

Randomized weighted majority algorithm achieves regret O < lo? )



Memory Bounds for the Expert Problem

* These algorithms require 2(n) memory to maintain a weight for each
expert — but what if n is very large and we want sublinear space?

e Can use no memory and just randomly guess each day — still good if
the best expert makes a lot of mistakes but bad if the best expert

makes very few mistakes

* What are the space/accuracy tradeoffs for the experts problem?



The Streaming Model

? except a note
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The Streaming Model

The complete sequence of T days is the data stream.

(prediction,, outcome,), . . ., (prediction;, outcome;)

Definition (Arbitrary Order Model)
An adversary chooses a worst-case set of outcomes and orderings of the days in the

stream beforehand

Definition (Random Order Model)
An adversary chooses a worst-case set of outcomes, then the order of days is

randomly shuffled




Natural Ideas

 What if we can just identify the best expert?

* This requires Q(n) space



Set Disjointness Communication Problem

 Set disjointness communication problem: Alice has aset X € {0,1}"
and Bob hasaset Y € {0,1}" and the promise is that either |[X N Y| =
Qor|lXNnY|=1

 Set disjointness requires total (randomized) communication Q.(n)



Reduction

* Holds even for 2 days (can copy each day T/2 times if desired)

* Alice creates a stream S so that each element of X is an expert that is
correct on day 1

* Bob creates a stream S’ so that each element of Y is an expert that is
correct on day 2



Reduction

* Alice runs streaming algorithm A on the stream S and passes the
state of A to Bob, who continues the algorithm on the stream S’

* At the end, A will output an experti € [n], and then Alice and
Bob will check whether X NY =i

* Solves set disjointness* so A must use (.(n) space

* Not end of story: low-regret algorithm need not find best expert!



Our Results ()

: : 1 . . 3
e Any algorithm that achieves § < 5 regret with probability at least "
n
must use () ((SZ—T) space

* Lower bound holds for arbitrary-order, random-order, and i.i.d.
streams



Our Results (Il)

: : 1 :
* There exists an algorithm that uses O ((;;—Tlogz nlog E) space and achieves
/81 :
expected regret § > (;gn in the random-order model

* The algorithm is almost-tight with the space lower bounds and oblivious to
M, the number of mistakes made by the best expert

e Can achieve regret almost matching randomized weighted majority

* Result extends to general costs in |0, p| with expected regret pé



Our Results (Ill)

e ForM = 0(log -

2
)and § > \/12817?g = there exists an algorithm that
uses 0 (;) space and achieves regret 6 with high probability

* The algorithm beats the lower bounds, showing that the hardness
comes from the best expert making a lot of mistakes

* Can achieve regret almost matching randomized weighted majority

* The algorithm is oblivious to M, the number of mistakes made by the
best expert
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Lower Bound

: : 1 . . 3
e Any algorithm that achieves § < 5 regret with probability at least "
n
must use () ((SZ—T) space

* Lower bound holds for arbitrary-order, random-order, and i.i.d.
streams



Communication Problem for Lower Bound

* Distributed detection problem

e &-DIFFDIST problem: T players each hold n bits and must distinguish
between two cases.

e Case 1:(NO) Every bit of every player is dra\ivn i.i.d. from a fair coin,

i.e., a Bernoulli distribution with parameter >

* Case 2: (YES) Anindex L € [n] is selected arbitrarily. The L-th bit of
each player is chosen i.i.d. from a Bernoulli distribution with

1 . . .
parameter > + ¢ and all the other bits are chosen i.i.d. from a fair coin

* Blackboard communication model



Communication Problem for Lower Bound
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e-DIFFDIST Problem

e &-DIFFDIST problem: T players each hold n bits and must distinguish
between two cases.

e Protocol: Randomly choose O (812) players and send all bits of those

players, see whether some bit has bias at Ieastg



Communication Problem for Lower Bound
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e-DIFFDIST Problem

e &-DIFFDIST problem: T players each hold n bits and must distinguish
between two cases.

e Protocol: Randomly choose O (812) players and send all bits of those

players, see whether some bit has bias at Ieastg

e Communication of protocol: O (giz)

n . . .
* Theorem: () (—) communication Is necessary

2



e-DIFFDIST Problem

n

* Theorem: Q( ) communication is necessary

2

1 o .
e Fact: () (3_2) samples are necessary to distinguish between a fair coin,

i.e., a Bernoulli distribution with parameter > and a coin with bias ¢

* Intuition: players roughly need to solve the single coin problem on
each of the n coins (actually just need the OR of n instances)



e-DIFFDIST Problem

* Formally, all the coins are independent in the NO distribution

e Can use a direct sum theorem for OR [BJKS04], so reduces to showing
high information cost under NO distribution on a single coin

e () (8—2) information necessary to distinguish between a single fair

coin, i.e., a Bernoulli distribution with parameter 5 and a coin with
bias &, even when information is measured under the NO distribution

* Uses strong data processing inequality [DJWZ13, GMIN14, BGM+16]



e-DIFFDIST Summary

e &-DIFFDIST problem: T players each hold n bits and must distinguish
between two cases.

e Case 1:(NO) Every index for every player is drawn i.i.d. from a fair
coin, i.e., a Bernoulli distribution with parameter%

* Case 2:(YES) Anindex L € |n] is selected arbitrarily. The L-th bit of
each player is chosen i.i.d. from a Bernoulli distribution with

1 . . .
parameter > + ¢ and all the other bits are chosen i.i.d. from a fair coin

* Fact: Q (312) communication is necessary to solve the problem



Reduction Intuition

e Each player in the -DIFFDIST Problem corresponds to a different day
e Each bit in the e-DIFFDIST Problem corresponds to a different expert

e Reduction: distinguishing whether there exists a slightly biased
random bit corresponds to distinguishing whether there exists a

slightly “better” expert



Reduction Challenge
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Reduction

* We would like to use an online learning with experts algorithm for
solving e-DIFFDIST Problem for e = 0(6)

* However, an algorithm with bad guarantees can still have good cost
by just outputting 1 every day

* Use masking argument — outcome of each day is masked by an
independent fair coin flip on each day (expert advice also flipped)
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Reduction

1, : : : : :
e Foro < > if there is no biased coin, no expert and no algorithm will
1,68 . 1
do better than S + 3 with probability at least ”

1 . . . , 1
* For § < > if there is a biased coin, an expert will do better than 5 +

25 . . 1
~ with probability at least ”



Reduction Summary

* The online learning with experts algorithm with regret 6 will be able
to solve the e-DIFFDIST Problem with probability at least % for e =

0(6). Must use Q) (;—2) total communication
: : 1 : . 3
* Any algorithm that achieves 6 < p regret with probability at least "
n
must use () (CSZ_T) space
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No Mistake Regime

2 2
* For M = O( ° ZT )and 6 > \/12810g =, there exists an algorithm that
log“n T
uses 0 (:—T) space and achieves regret ¢ with high probability

 We know there is a really accurate expert. What if we iteratively pick
“pools” of experts and delete them if they run “poorly”?



Reduction Problem
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No Mistake Regime

* |f iteratively pick pool of next k experts (“rounds”) and output the
majority vote of the pool while deleting any incorrect expert, each
pool will have at most O(log k) errors

* |f best expert makes no mistakes, use % pools to achieve regret 6T

nlogn)
6T

means setting k = 0 (



No Mistake Regime Summary

e Algorithm: Iteratively pick pool of k = O (;—T) experts (“rounds”) and

output the majority vote of the pool while deleting any incorrect
expert

 |f the number of rounds is small, the pools must have done well so
the overall regret is small

* The number of rounds cannot be large because at some point the
best expert would have been chosen and retained



“Low-Mistake” Regime

e Algorithm: Iteratively pick pool of next k = O (;—T) experts and

output the majority vote of the pool while deleting any incorrect
expert

: M :
 |f best expert makes M mistakes, use n? pools to achieve regret 6T

: ~ (MM .
means setting k = 0 (1;7)’ but this is too large!



Randomly Sampling Pools

* Fix: Randomly sample pools of experts instead of iteratively picking
pools

* Problem: Cannot guarantee that the best expert will be retained



“Low-Mistake” Regime

e Algorithm: Repeatedly sample a pool of k = O (;—T) experts and
output the majority vote of the pool while deleting any expert with

lower than 1 — accuracy since it was sampled

8logn

WANT TO SHOW

* If the number of rounds is small, the pools must have done well so
the overall regret is small

* The number of rounds cannot be large because at some point the
best expert would have been sampled and retained



“Low-Mistake” Regime: First Property

e Algorithm: Repeatedly sample a pool of k = O (;—T) experts and
output the majority vote of the pool while deleting any expert with

lower than 1 — accuracy since it was sampled

8logn

* Lemma: A pool used for t days can only make % + 4 log n mistakes

rounds

* For the algorithm to make T'6 mistakes, need at least 5 log



“Low-Mistake” Regime: Second Property

rounds

* For the algorithm to make T'6 mistakes, need at least S log

 “BAD” day: the best expert is deleted by the pool if it is sampled on
that day

8Mlogn

. |BAD| <



“Low-Mistake” Regime: Second Property

* For the algorithm to make T'6 mistakes, need at least S log rounds
. 8M1 54T TS
* Using that |BAD| < 2l and M = O( ), then at least
) log2n 16 logn

rounds starting on good days

ST
sample best expert on a good day

nlog?n : - ,
e 0 experts sampled in each round - low probability don’t



Analysis

* Define a set of random variables d4, d, ... for each round’s day

* Given d;, draw d;, 1 from the distribution of possible days for the next
round based on possible experts sampled in the pool conditioned on
entire history

dq dy d3 dy
”GOOD” IIBAD” IIGOOD” ”GOOD”
% % oy

4 & T4



Arbitrary Order Model Summary

n

e Algorithm: Repeatedly sample a pool of k = O (ST) experts and
output the majori’%y vote of the pool while deleting any expert with
lower than 1 — accuracy since it was sampled

8logn

 |f the number of rounds is small, the pools must have done well so
the overall regret is small

 The number of rounds cannot be large because at some point the
best expert would have been sampled and retained
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Random-Order Streams

e Algorithm: Repeatedly sample a pool of k = 0 (SZLT) experts and run

multiplicative weights on pool, resample if the expected cost of the
pool over t time “is bad”

* Can compute this expected cost, so if it doesn’t follow the theory, it
means you didn’t sample the best expert

* Main idea: there are no BAD days
* we will never delete the pool if it contains the best expert



Summary of Results

Any algorithm achieving 6 < % regret with probability % uses () (SZLT) space

There is an algorithm using O (—SSTlog2 n) space in the random-order model
84T : : N
For M < , there exists an algorithm using O (
1280 log?n

arbitrary-order model with regret 6

n
ST

) space in the
If the costs are in |0, p], the regret is pé for both models

Questions: tight bounds for arbitrary order streams?
how general is this framework?
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Followup Work

=
=
e

* [Peng, W, Zhang, Zhou] Any deterministic algorithm must use
Omega(n) bits of memory to achieve constant regret

* Seems to generalize to a tight Omega(nM/T) bits (still verifying this)

* [Peng, W, Zhang, Zhou] Black box adversarial robustness with
constant regret and roughly n/(8T->) memory

« [Peng, Zhang] Let n << T. There’s an algorithm with poly(n) T?2/(2+9)
errors and using n® memory for any § € (0,1)



Follow the Perturbed Leader

Algorithm 2 The follow the perturbed leader algorithm (FPL*) from [KV05], instantiated for
the experts problem.
Input: Number n of experts, number T of rounds, parameter ¢

1: for t € [T'] do

2:  forie€ [n| do

3: Choose pgt) independently, according to +(2r/c), where r is drawn from a standard expo-

nential distribution
4:  end for
5:  Follow the expert i for whom the sum of their total cost so far and pgt) is the lowest

6: end for

 Theorem (Kalai and Vempala 2005): Expected number of mistakes by
the algorithm is at most @ +(1+e)M



Multiplicative Weights Algorithm

Algorithm 4 The multiplicative weights algorithm.

Input: Number n of experts, number T" of rounds, parameter
1: Initialize w( )= 1foralli€ [n).
2: for t € [T| do

O " &

3: pl z: - luj(.‘.)

Follow the advice of expert 7 with probability 'p( )

4
5. Let (_5 ) be the cost for the decision of expert i € [n].
6: wz(t Flb wy') (1 = Ecgt))

7: end for

Theorem (Arora, Hazan Kale 2012): Expected cost of the algorithm is
t=1 21 C(t) (t) < — In 7 + (1 + e) Zt 1c( ) for each i € In] (andin

partlcular the best expert), e, <—+(1+e)M

* ¢ is trade-off term between multlpllcatlve and additive error



Follow the Perturbed Leader

Algorithm 2 The follow the perturbed leader algorithm (FPL*) from [KV05], instantiated for
the experts problem.
Input: Number n of experts, number T of rounds, parameter ¢
1: for t € [T'] do
2:  forie€ [n| do
3: Choose pgl’) independently, according to 4(2r /<), where r is drawn from a standard expo-
nential distribution
4:  end for
5:  Follow the expert i for whom the sum of their total cost so far and p;

6: end for

() ;

is the lowest

. (;I'E\eorem (Kalai and VemB)aIa 2005): Expected cost of the algorithm is
(nn) +(1+8)X, ¢; ~ foreach i € [n] (and in particular the best

0(“”” + (1 + oM

e ¢istrade-off term between multiplicative and additive error

expert), e, < ——



Follow the Perturbed Leader

Algorithm 2 The follow the perturbed leader algorithm (FPL*) from [KV05], instantiated for
the experts problem.
Input: Number n of experts, number 7T of rounds, parameter &

1: for t € [T] do

2: for i€ [n] do

3: Choose p_gt) independently, according to +(2r/c), where r is drawn from a standard expo-

nential distribution

4:  end for

5:  Follow the expert ¢ for whom the sum of their total cost so far and pz(-t) is the lowest

6

- end for




Random-Order Streams: First Property

e Structural lemma: Let X, ..., X; be independent random variables in
10,1] with expectation a and X be their sum. Then Pr [lX —at| =

1
4/tlogT| < =
* By the guarantee for multiplicative weights for ¢ = é, the cost of each

pool is at most (1 + g) (at + 4 tIOgT) n Zl;n

16 log? M
* For 6 > \/ (;g - , 0 > = number of rounds must be at least

2
Q((S T)
logn




Random-Order Streams: Second Property

S52T
* Number of rounds must be at least () (log n)

2

: : 82T
* Must avoid sampling the best expert on at least () (log n) rounds

nlog?n : .
N0, 27 experts sampled in each round - low probability

* Must use same “decoupling” argument

. , M
e Similar analysis for 6 < -



“Low-Mistake” Regime: Second Property

rounds

* For the algorithm to make T'6 mistakes, need at least S log

 “BAD” day: the best expert is deleted by the pool if it is sampled on
8Mlogn 5°T

that day
 |[BAD| < and M < , S0 the remaining rounds must
1280 log2n

be sampled on “GOOD” days and avoid the best expert

rounds

* Must avoid sampling the best expert on at least o log n

nlog?n : .
N0, o experts sampled in each round - low probability



Guarantee for Weighted Majority

Theorem (Deterministic Weighted Majority)
# of mistakes by

deterministic weighted < 241 (M + log, n)
majority

where M is the # of mistakes the best expert makes, n is # of experts.

m

. G)M < sum of the weights < G)

M+log, n

4
log; 3

o Mm<



“Low-Mistake” Regime: Second Property

rounds

* For the algorithm to make T'6 mistakes, need at least S log

* To fail, algorithm must not sample the best expert on a “GO0OD” day

IIGOOD” IIBAD”
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