
Memory Bounds for the
Expert Problem

Vaidehi Srinivas
Ziyu (Neil) Xu

David Woodruff
Samson Zhou

Northwestern and Carnegie Mellon Universities

a problem of sequential prediction

Day You Actual outcome

1

2

3

4

?

?

?

?

Experts Problem

Make no distributional assumptions
We judge our algorithm based on regret.

Definition (Regret)

of mistakes our algorithm makes more than the best expert

of days

Performance

a fundamental problem of sequential prediction

Day You Actual outcome

1

2

3

4

?

?

?

?

Prediction with Expert Advice

a problem of sequential prediction

Day You Actual outcome

1

2

3

4

Prediction with Expert Advice

1/4 Regret

Algorithm
makes 2
mistakes

Best expert
makes 1
mistake

The Online Learning with Experts Problem

• experts who decide either on each of days
• Algorithm sees expert predictions and predicts either on each

day
• Algorithm sees the outcome, which is in , of each day and can

use this information on future days
• The cost of the algorithm is the number of incorrect predictions

• Regret is (# of mistakes we make – M)/T, where M is the number of
mistakes of best expert

Applications of the Experts Problem

• Ensemble learning, e.g., AdaBoost

• Forecast and portfolio optimization

• Online convex optimization

Day Algorithm Actual outcome

1

2

3

4

weights 1 1 1 1

1

(1- ε)

1 1

1 1

Weighted Majority (Littlestone, Warmuth 89)

(1- ε)

𝟏 − 𝛜 𝟐

(1- ε)

(1- ε)

(1- ε)

(1- ε)

(1- ε)

𝟏 − 𝛜 𝟐 𝟏 − 𝛜 𝟐

𝟏 − 𝛜 𝟐

Theorem (Deterministic Weighted Majority)

where M is the # of mistakes the best expert makes, n is # of experts.

m of mistakes by
deterministic weighted

majority
≤ (2+)M + ଶ

ఌ
ln

n

Guarantee for Weighted Majority

●
୑ sum of the weights க

ଶ

୫

Theorem (Randomized Weighted Majority, i.e, Multiplicative Weights)

For ε > 0, can construct algorithm A such that

E[# of mistakes by A] ≤ (1 + ε) M + O(
ln n

ε

Guarantee for Weighted Majority

)

Previous Work

• Weighted majority algorithm down-weights each expert that is
incorrect on each day and selects the weighted majority as the output

• Weighted majority algorithm gets (2+)M + ଶ
ఌ
 ln

n total mistakes

• Randomized weighted majority algorithm randomly follows an expert
on a day with probability proportional to the weight of the expert

• Randomized weighted majority algorithm achieves regret ୪୭୥

்

Memory Bounds for the Expert Problem

• These algorithms require memory to maintain a weight for each
expert – but what if is very large and we want sublinear space?

• Can use no memory and just randomly guess each day – still good if
the best expert makes a lot of mistakes but bad if the best expert
makes very few mistakes

• What are the space/accuracy tradeoffs for the experts problem?

wake up with
no memory

except a note
from your past

self
(at most s bits)

see expert predictions for today make a prediction see outcome

write a note to your future self
(at most s bits)

fall asleep and forget everything

repeat

The Streaming Model

Definition (Arbitrary Order Model)

An adversary chooses a worst-case set of outcomes and orderings of the days in the

stream beforehand

Definition (Random Order Model)

An adversary chooses a worst-case set of outcomes, then the order of days is

randomly shuffled

The complete sequence of T days is the data stream.

(prediction1, outcome1), . . . , (predictionT, outcomeT)

The Streaming Model

Natural Ideas

• What if we can just identify the best expert?

• This requires space

Set Disjointness Communication Problem

• Set disjointness communication problem: Alice has a set ௡

and Bob has a set ௡ and the promise is that either
or

• Set disjointness requires total (randomized) communication

Reduction

• Holds even for 2 days (can copy each day T/2 times if desired)

• Alice creates a stream so that each element of is an expert that is
correct on day 1

• Bob creates a stream S’ so that each element of is an expert that is
correct on day 2

Reduction

• Alice runs streaming algorithm on the stream and passes the
state of to Bob, who continues the algorithm on the stream S’

• At the end, will output an expert , and then Alice and
Bob will check whether

• Solves set disjointness* so must use space

• Not end of story: low-regret algorithm need not find best expert!

Our Results (I)

• Any algorithm that achieves ଵ

ଶ
regret with probability at least ଷ

ସ

must use ௡

ఋమ்
space

• Lower bound holds for arbitrary-order, random-order, and i.i.d.
streams

Our Results (II)

• There exists an algorithm that uses ௡

ఋమ்
ଶ ଵ

ఋ
space and achieves

expected regret ଼ ୪୭୥ ௡

்
in the random-order model

• The algorithm is almost-tight with the space lower bounds and oblivious to
, the number of mistakes made by the best expert

• Can achieve regret almost matching randomized weighted majority

• Result extends to general costs in with expected regret

Our Results (III)

• For ఋమ்

୪୭୥మ ௡
and ଵଶ଼ ୪୭୥మ ௡

்
, there exists an algorithm that

uses ௡

ఋ்
space and achieves regret with high probability

• The algorithm beats the lower bounds, showing that the hardness
comes from the best expert making a lot of mistakes

• Can achieve regret almost matching randomized weighted majority

• The algorithm is oblivious to , the number of mistakes made by the
best expert

Questions?Format

 Part 1: Background
 Part 2: Lower Bound
 Part 3: Arbitrary Model
 Part 4: Random-Order Model

Lower Bound

• Any algorithm that achieves ଵ

ଶ
regret with probability at least ଷ

ସ

must use ௡

ఋమ்
space

• Lower bound holds for arbitrary-order, random-order, and i.i.d.
streams

Communication Problem for Lower Bound

• Distributed detection problem
• -DIFFDIST problem: players each hold bits and must distinguish

between two cases.
• Case 1: (NO) Every bit of every player is drawn i.i.d. from a fair coin,

i.e., a Bernoulli distribution with parameter ଵ
ଶ

• Case 2: (YES) An index is selected arbitrarily. The -th bit of
each player is chosen i.i.d. from a Bernoulli distribution with
parameter ଵ

ଶ
and all the other bits are chosen i.i.d. from a fair coin

• Blackboard communication model

Communication Problem for Lower Bound

H T H T H

T H H H H

H H T H T

H T H T T

H T H T H

T H H H H

H H T H T

H H H T T

YESNO

-DIFFDIST Problem

• -DIFFDIST problem: players each hold bits and must distinguish
between two cases.

• Protocol: Randomly choose ଵ

ఌమ players and send all bits of those
players, see whether some bit has bias at least ఌ

ଶ

Communication Problem for Lower Bound

H T H T H

T H H H H

H H T H T

H T H T T

H T H T H

T H H H H

H H T H T

H H H T T

YESNO

-DIFFDIST Problem

• -DIFFDIST problem: players each hold bits and must distinguish
between two cases.

• Protocol: Randomly choose ଵ

ఌమ players and send all bits of those
players, see whether some bit has bias at least ఌ

ଶ

• Communication of protocol: ௡

ఌమ

• Theorem: ௡

ఌమ communication is necessary

-DIFFDIST Problem

• Theorem: ௡

ఌమ communication is necessary

• Fact: ଵ

ఌమ samples are necessary to distinguish between a fair coin,

i.e., a Bernoulli distribution with parameter ଵ
ଶ

and a coin with bias

• Intuition: players roughly need to solve the single coin problem on
each of the coins (actually just need the OR of n instances)

-DIFFDIST Problem

• Formally, all the coins are independent in the NO distribution

• Can use a direct sum theorem for OR [BJKS04], so reduces to showing
high information cost under NO distribution on a single coin

•
ଵ

ఌమ information necessary to distinguish between a single fair

coin, i.e., a Bernoulli distribution with parameter ଵ
ଶ

and a coin with
bias , even when information is measured under the NO distribution

• Uses strong data processing inequality [DJWZ13, GMN14, BGM+16]

-DIFFDIST Summary

• -DIFFDIST problem: players each hold bits and must distinguish
between two cases.

• Case 1: (NO) Every index for every player is drawn i.i.d. from a fair
coin, i.e., a Bernoulli distribution with parameter ଵ

ଶ

• Case 2: (YES) An index is selected arbitrarily. The -th bit of
each player is chosen i.i.d. from a Bernoulli distribution with
parameter ଵ

ଶ
and all the other bits are chosen i.i.d. from a fair coin

• Fact: ௡

ఌమ communication is necessary to solve the problem

Reduction Intuition

• Each player in the -DIFFDIST Problem corresponds to a different day

• Each bit in the -DIFFDIST Problem corresponds to a different expert

• Reduction: distinguishing whether there exists a slightly biased
random bit corresponds to distinguishing whether there exists a
slightly “better” expert

Day You Actual outcome

1

2

3

4

Reduction Challenge

Reduction

• We would like to use an online learning with experts algorithm for
solving -DIFFDIST Problem for

• However, an algorithm with bad guarantees can still have good cost
by just outputting 1 every day

• Use masking argument – outcome of each day is masked by an
independent fair coin flip on each day (expert advice also flipped)

Day YouActual outcome

1

2

3

4

Reduction Challenge

Actual outcome

MASK=0

MASK=1

MASK=1

MASK=1

Reduction

• For ଵ

ଶ
, if there is no biased coin, no expert and no algorithm will

do better than ଵ
ଶ

ఋ

ଷ
with probability at least ଵ

ସ

• For ଵ

ଶ
, if there is a biased coin, an expert will do better than ଵ

ଶ
ଶఋ

ଷ
with probability at least ଵ

ସ

Reduction Summary

• The online learning with experts algorithm with regret will be able
to solve the -DIFFDIST Problem with probability at least ଷ

ସ
for

Must use ௡

ఋమ total communication

• Any algorithm that achieves ଵ

ଶ
regret with probability at least ଷ

ସ

must use ௡

ఋమ்
space

Questions?Format

 Part 1: Background
 Part 2: Lower Bound
 Part 3: Arbitrary Model
 Part 4: Random-Order Model

No Mistake Regime

• For ఋమ்

 ୪୭୥మ௡
and ଵଶ଼ ୪୭୥మ ௡

்
, there exists an algorithm that

uses ௡

ఋ்
space and achieves regret with high probability

• We know there is a really accurate expert. What if we iteratively pick
“pools” of experts and delete them if they run “poorly”?

Day You Actual outcome

1

2

3

4

Reduction Problem

No Mistake Regime

• If iteratively pick pool of next experts (“rounds”) and output the
majority vote of the pool while deleting any incorrect expert, each
pool will have at most errors

• If best expert makes no mistakes, use ௡
௞

pools to achieve regret

means setting ௡ ୪୭୥ ௡

ఋ்

No Mistake Regime Summary

• Algorithm: Iteratively pick pool of ௡

ఋ்
experts (“rounds”) and

output the majority vote of the pool while deleting any incorrect
expert

• If the number of rounds is small, the pools must have done well so
the overall regret is small

• The number of rounds cannot be large because at some point the
best expert would have been chosen and retained

“Low-Mistake” Regime

• Algorithm: Iteratively pick pool of next ௡

ఋ்
experts and

output the majority vote of the pool while deleting any incorrect
expert

• If best expert makes mistakes, use ௡ெ

௞
pools to achieve regret

means setting ௡ெ

ఋ்
, but this is too large!

Randomly Sampling Pools

• Fix: Randomly sample pools of experts instead of iteratively picking
pools

• Problem: Cannot guarantee that the best expert will be retained

“Low-Mistake” Regime

• Algorithm: Repeatedly sample a pool of ௡

ఋ்
experts and

output the majority vote of the pool while deleting any expert with
lower than ఋ

଼ ୪୭୥ ௡
accuracy since it was sampled

• If the number of rounds is small, the pools must have done well so
the overall regret is small

• The number of rounds cannot be large because at some point the
best expert would have been sampled and retained

WANT TO SHOW

“Low-Mistake” Regime: First Property

• Algorithm: Repeatedly sample a pool of ௡

ఋ்
experts and

output the majority vote of the pool while deleting any expert with
lower than ఋ

଼ ୪୭୥ ௡
accuracy since it was sampled

• Lemma: A pool used for days can only make ௧ఋ

ଶ
mistakes

• For the algorithm to make mistakes, need at least ்ఋ

଼ ୪୭୥ ௡
rounds

“Low-Mistake” Regime: Second Property

• For the algorithm to make mistakes, need at least ்ఋ

଼ ୪୭୥ ௡
rounds

• “ ” day: the best expert is deleted by the pool if it is sampled on
that day

•
଼ெ୪୭୥ ௡

ఋ

X X X X X X

“Low-Mistake” Regime: Second Property

• For the algorithm to make mistakes, need at least ்ఋ

଼ ୪୭୥ ௡
rounds

• Using that ଼ெ୪୭୥ ௡

ఋ
and ఋమ்

 ୪୭୥మ௡
, then at least ்ఋ

ଵ଺ ୪୭୥ ௡

rounds starting on good days

•
௡ ୪୭୥మ ௡

ఋ்
experts sampled in each round → low probability don’t

sample best expert on a good day

Analysis
• Define a set of random variables ଵ ଶ for each round’s day
• Given ௜, draw ௜ାଵ from the distribution of possible days for the next

round based on possible experts sampled in the pool conditioned on
entire history

𝑑ଵ 𝑑ଶ 𝑑ଷ 𝑑ସ

“GOOD” “𝐵𝐴𝐷” “GOOD” “GOOD”

Arbitrary Order Model Summary

• Algorithm: Repeatedly sample a pool of ௡

ఋ்
experts and

output the majority vote of the pool while deleting any expert with
lower than ఋ

଼ ୪୭୥ ௡
accuracy since it was sampled

• If the number of rounds is small, the pools must have done well so
the overall regret is small

• The number of rounds cannot be large because at some point the
best expert would have been sampled and retained

Questions?Format

 Part 1: Background
 Part 2: Lower Bound
 Part 3: Arbitrary Model
 Part 4: Random-Order Model

Random-Order Streams

• Algorithm: Repeatedly sample a pool of ୬

ஔమ୘
experts and run

multiplicative weights on pool, resample if the expected cost of the
pool over time “is bad”

• Can compute this expected cost, so if it doesn’t follow the theory, it
means you didn’t sample the best expert

• Main idea: there are no BAD days
• we will never delete the pool if it contains the best expert

Summary of Results

• Any algorithm achieving ଵ

ଶ
regret with probability ଷ

ସ
uses ୬

ஔమ୘
space

• There is an algorithm u ୬

ஔమ୘
ଶ space in the random-order model

• For ஔమ୘

ଵଶ଼଴ ୪୭୥మ୬
, there exists an algorithm using ୬

ஔ୘
space in the

arbitrary-order model with regret
• If the costs are in , the regret is for both models

• Questions: tight bounds for arbitrary order streams?
how general is this framework?

Followup Work

• [Peng, W, Zhang, Zhou] Any deterministic algorithm must use
Omega(n) bits of memory to achieve constant regret

• Seems to generalize to a tight Omega(nM/T) bits (still verifying this)

• [Peng, W, Zhang, Zhou] Black box adversarial robustness with
constant regret and roughly n/ .ହ memory

• [Peng, Zhang] Let n << T. There’s an algorithm with poly(n) ଶ/(ଶାஔ)

errors and using ஔ memory for any

Follow the Perturbed Leader

• Theorem (Kalai and Vempala 2005): Expected number of mistakes by
the algorithm is at most ை(୪୬ ௡)

ఌ

Multiplicative Weights Algorithm

• Theorem (Arora, Hazan, Kale 2012): Expected cost of the algorithm is

௜
(௧)

௜
(௧)௡

௜ୀଵ
்
௧ୀଵ

୪୬ ௡

ఌ ௜
(௧)்

௧ୀଵ for each (and in
particular the best expert), i.e, ୪୬ ௡

ఌ

• is trade-off term between multiplicative and additive error

Follow the Perturbed Leader

• Theorem (Kalai and Vempala 2005): Expected cost of the algorithm is
ை(୪୬ ௡)

ఌ ௜
(௧)்

௧ୀଵ for each (and in particular the best
expert), i.e, ை(୪୬ ௡)

ఌ

• is trade-off term between multiplicative and additive error

Follow the Perturbed Leader

Random-Order Streams: First Property

• Structural lemma: Let ଵ ௧ be independent random variables in
with expectation and be their sum. Then

ଵ

்మ

• By the guarantee for multiplicative weights for ఋ

ଶ
, the cost of each

pool is at most ఋ

ଶ

ଶ ୪୬ ௡

ఋ

• For ଵ଺ ୪୭୥మ ௡

்
, ெ

்
, number of rounds must be at least

ఋమ்

୪୭୥ ௡

Random-Order Streams: Second Property

• Number of rounds must be at least ఋమ்

୪୭୥ ௡

• Must avoid sampling the best expert on at least ఋమ்

୪୭୥ ௡
rounds

•
௡ ୪୭୥మ ௡

ఋమ்
experts sampled in each round → low probability

• Must use same “decoupling” argument

• Similar analysis for ெ

்

“Low-Mistake” Regime: Second Property

• For the algorithm to make mistakes, need at least ்ఋ

଼ ୪୭୥ ௡
rounds

• “ ” day: the best expert is deleted by the pool if it is sampled on
that day

•
଼ெ୪୭୥ ௡

ఋ
and ఋమ்

ଵଶ଼଴ ୪୭୥మ௡
, so the remaining rounds must

be sampled on “ ” days and avoid the best expert

• Must avoid sampling the best expert on at least ்ఋ

ଵ଺ ୪୭୥ ௡
rounds

•
௡ ୪୭୥మ ௡

ఋ்
experts sampled in each round → low probability

Theorem (Deterministic Weighted Majority)

where M is the # of mistakes the best expert makes, n is # of experts.

of mistakes by
deterministic weighted

majority
≤ 2.41 (M + log2 n)

Guarantee for Weighted Majority

●
ଵ

ଶ

ெ
sum of the weights ଷ

ସ

௠

●
ெା୪୭୥మ ௡

୪୭୥మ
ర

య

“Low-Mistake” Regime: Second Property

• For the algorithm to make mistakes, need at least ்ఋ

଼ ୪୭୥ ௡
rounds

• To fail, algorithm must not sample the best expert on a “ ” day

“GOOD” “𝐵𝐴𝐷” “GOOD” “GOOD”

A Bad Case Study

• Suppose ଵ

ଶ

• Example shows that the pool of
sampled experts can make

roughly errors

