Memory Bounds for the Expert Problem

Vaidehi Srinivas Ziyu (Neil) Xu David Woodruff Samson Zhou

Northwestern and Carnegie Mellon Universities

Experts Problem

a problem of sequential prediction

Performance

Make no distributional assumptions We judge our algorithm based on **regret**.

Definition (Regret)

of mistakes our algorithm makes more than the best expert

of days

Prediction with Expert Advice

a fundamental problem of sequential prediction

Prediction with Expert Advice

a problem of sequential prediction

The Online Learning with Experts Problem

- *n* experts who decide either $\{0,1\}$ on each of *T* days
- Algorithm sees expert predictions and predicts either {0,1} on each day
- Algorithm sees the outcome, which is in {0,1}, of each day and can use this information on future days
- The cost of the algorithm is the number of incorrect predictions
- Regret is (# of mistakes we make M)/T, where M is the number of mistakes of best expert

Applications of the Experts Problem

• Ensemble learning, e.g., AdaBoost

• Forecast and portfolio optimization

• Online convex optimization

Weighted Majority (Littlestone, Warmuth 89)

Guarantee for Weighted Majority

Theorem (Deterministic Weighted Majority) # m of mistakes by deterministic weighted $\leq (2+\varepsilon)M + \frac{2}{\varepsilon} \ln n$ majority

where *M* is the # of mistakes the best expert makes, *n* is # of experts.

•
$$(1-\varepsilon)^{M} \leq \text{sum of the weights} \leq \left(1-\frac{\varepsilon}{2}\right)^{m} n$$

Guarantee for Weighted Majority

Theorem (Deterministic Weighted Majority)

m of mistakes by deterministic weighted majority

$$\leq (2+\varepsilon)M + \frac{2}{\varepsilon}\ln n$$

where *M* is the # of mistakes the best expert makes, *n* is # of experts.

Theorem (Randomized Weighted Majority, i.e, Multiplicative Weights)

For $\varepsilon > 0$, can construct algorithm *A* such that

$$E[\# \text{ of mistakes by } A] \leq (1 + \varepsilon) M + O(\frac{\ln n}{\varepsilon})$$

Previous Work

- Weighted majority algorithm down-weights each expert that is incorrect on each day and selects the weighted majority as the output
- Weighted majority algorithm gets $(2+\varepsilon)M + \frac{2}{\varepsilon} \ln n$ total mistakes
- Randomized weighted majority algorithm randomly follows an expert on a day with probability proportional to the weight of the expert
- Randomized weighted majority algorithm achieves regret *O*

$$\left(\sqrt{\frac{\log}{T}}\right)$$

Memory Bounds for the Expert Problem

- These algorithms require $\Omega(n)$ memory to maintain a weight for each expert but what if n is very large and we want sublinear space?
- Can use no memory and just randomly guess each day still good if the best expert makes a lot of mistakes but bad if the best expert makes very few mistakes
- What are the space/accuracy tradeoffs for the experts problem?

The Streaming Model

The Streaming Model

The complete sequence of *T* days is the **data stream**.

(prediction₁, outcome₁), . . . , (prediction_T, outcome_T)

Definition (Arbitrary Order Model)

An adversary chooses a worst-case set of outcomes and orderings of the days in the

stream beforehand

Definition (Random Order Model)

An adversary chooses a worst-case set of outcomes, then the order of days is

randomly shuffled

Natural Ideas

- What if we can just identify the best expert?
- This requires $\Omega(n)$ space

Set Disjointness Communication Problem

• Set disjointness communication problem: Alice has a set $X \in \{0,1\}^n$ and Bob has a set $Y \in \{0,1\}^n$ and the promise is that either $|X \cap Y| = 0$ or $|X \cap Y| = 1$

• Set disjointness requires total (randomized) communication $\Omega(n)$

Reduction

- Holds even for 2 days (can copy each day T/2 times if desired)
- Alice creates a stream S so that each element of X is an expert that is correct on day 1
- Bob creates a stream S' so that each element of Y is an expert that is correct on day 2

Reduction

- Alice runs streaming algorithm *A* on the stream *S* and passes the state of *A* to Bob, who continues the algorithm on the stream *S*'
- At the end, A will output an expert $i \in [n]$, and then Alice and Bob will check whether $X \cap Y = i$
- Solves set disjointness* so A must use $\Omega(n)$ space
- Not end of story: low-regret algorithm need not find best expert!

Our Results (I)

- Any algorithm that achieves $\delta < \frac{1}{2}$ regret with probability at least $\frac{3}{4}$ must use $\Omega\left(\frac{n}{\delta^2 T}\right)$ space
- Lower bound holds for arbitrary-order, random-order, and i.i.d. streams

Our Results (II)

- There exists an algorithm that uses $O\left(\frac{n}{\delta^2 T}\log^2 n\log\frac{1}{\delta}\right)$ space and achieves expected regret $\delta > \sqrt{\frac{8\log n}{T}}$ in the random-order model
- The algorithm is almost-tight with the space lower bounds and oblivious to *M*, the number of mistakes made by the best expert
- Can achieve regret almost matching randomized weighted majority
- Result extends to general costs in $[0, \rho]$ with expected regret $\rho\delta$

Our Results (III)

• For $M = O(\frac{\delta^2 T}{\log^2 n})$ and $\delta > \sqrt{\frac{128 \log^2 n}{T}}$, there exists an algorithm that uses $\tilde{O}\left(\frac{n}{\delta T}\right)$ space and achieves regret δ with high probability

- The algorithm beats the lower bounds, showing that the hardness comes from the best expert making a lot of mistakes
- Can achieve regret almost matching randomized weighted majority
- The algorithm is oblivious to M, the number of mistakes made by the best expert

Format

- Part 1: Background
- Part 2: Lower Bound
- Part 3: Arbitrary Model
- Part 4: Random-Order Model

Questions?

Lower Bound

- Any algorithm that achieves $\delta < \frac{1}{2}$ regret with probability at least $\frac{3}{4}$ must use $\Omega\left(\frac{n}{\delta^2 T}\right)$ space
- Lower bound holds for arbitrary-order, random-order, and i.i.d. streams

Communication Problem for Lower Bound

- Distributed detection problem
- *e*-DIFFDIST problem: *T* players each hold *n* bits and must distinguish between two cases.
- Case 1: (NO) Every bit of every player is drawn i.i.d. from a fair coin, i.e., a Bernoulli distribution with parameter ¹/₂
- Case 2: (YES) An index $L \in [n]$ is selected arbitrarily. The L-th bit of each player is chosen i.i.d. from a Bernoulli distribution with parameter $\frac{1}{2} + \varepsilon$ and all the other bits are chosen i.i.d. from a fair coin
- Blackboard communication model

Communication Problem for Lower Bound

NO

- *e*-DIFFDIST problem: *T* players each hold *n* bits and must distinguish between two cases.
- Protocol: Randomly choose $\tilde{O}\left(\frac{1}{\epsilon^2}\right)$ players and send all bits of those players, see whether some bit has bias at least $\frac{\epsilon}{2}$

Communication Problem for Lower Bound

- *e*-DIFFDIST problem: *T* players each hold *n* bits and must distinguish between two cases.
- Protocol: Randomly choose $\tilde{O}\left(\frac{1}{\epsilon^2}\right)$ players and send all bits of those players, see whether some bit has bias at least $\frac{\epsilon}{2}$
- Communication of protocol: $\tilde{O}\left(\frac{n}{\epsilon^2}\right)$
- Theorem: $\Omega\left(\frac{n}{\epsilon^2}\right)$ communication is necessary

- Theorem: $\Omega\left(\frac{n}{\epsilon^2}\right)$ communication is necessary
- Fact: $\Omega\left(\frac{1}{\epsilon^2}\right)$ samples are necessary to distinguish between a fair coin, i.e., a Bernoulli distribution with parameter $\frac{1}{2}$ and a coin with bias ϵ
- Intuition: players roughly need to solve the single coin problem on each of the *n* coins (actually just need the OR of n instances)

- Formally, all the coins are independent in the NO distribution
- Can use a direct sum theorem for OR [BJKS04], so reduces to showing high information cost under NO distribution on a single coin
- $\Omega\left(\frac{1}{\varepsilon^2}\right)$ information necessary to distinguish between a single fair coin, i.e., a Bernoulli distribution with parameter $\frac{1}{2}$ and a coin with bias ε , even when information is measured under the NO distribution
 - Uses strong data processing inequality [DJWZ13, GMN14, BGM+16]

ε-DIFFDIST Summary

- *e*-DIFFDIST problem: *T* players each hold *n* bits and must distinguish between two cases.
- Case 1: (NO) Every index for every player is drawn i.i.d. from a fair coin, i.e., a Bernoulli distribution with parameter $\frac{1}{2}$
- Case 2: (YES) An index L ∈ [n] is selected arbitrarily. The L-th bit of each player is chosen i.i.d. from a Bernoulli distribution with parameter ¹/₂ + ε and all the other bits are chosen i.i.d. from a fair coin
- Fact: $\Omega\left(\frac{n}{\varepsilon^2}\right)$ communication is necessary to solve the problem

Reduction Intuition

- Each player in the *e*-DIFFDIST Problem corresponds to a different day
- Each bit in the *e*-DIFFDIST Problem corresponds to a different expert
- Reduction: distinguishing whether there exists a slightly biased random bit corresponds to distinguishing whether there exists a slightly "better" expert

Reduction Challenge

You	Actual outcome
No.	

Reduction

- We would like to use an online learning with experts algorithm for solving ε -DIFFDIST Problem for $\varepsilon = O(\delta)$
- However, an algorithm with bad guarantees can still have good cost by just outputting 1 every day
- Use masking argument outcome of each day is masked by an independent fair coin flip on each day (expert advice also flipped)

Reduction Challenge

Reduction

- For $\delta < \frac{1}{2}$, if there is no biased coin, no expert and no algorithm will do better than $\frac{1}{2} + \frac{\delta}{3}$ with probability at least $\frac{1}{4}$
- For $\delta < \frac{1}{2}$, if there is a biased coin, an expert will do better than $\frac{1}{2} + \frac{2\delta}{3}$ with probability at least $\frac{1}{4}$

Reduction Summary

- The online learning with experts algorithm with regret δ will be able to solve the ε -DIFFDIST Problem with probability at least $\frac{3}{4}$ for $\varepsilon = O(\delta)$. Must use $\Omega\left(\frac{n}{\delta^2}\right)$ total communication
- Any algorithm that achieves $\delta < \frac{1}{2}$ regret with probability at least $\frac{3}{4}$ must use $\Omega\left(\frac{n}{\delta^2 T}\right)$ space

Format

- Part 1: Background
- Part 2: Lower Bound
- Part 3: Arbitrary Model
- Part 4: Random-Order Model

Questions?

No Mistake Regime

• For $M = O(\frac{\delta^2 T}{\log^2 n})$ and $\delta > \sqrt{\frac{128 \log^2 n}{T}}$, there exists an algorithm that uses $\tilde{O}\left(\frac{n}{\delta T}\right)$ space and achieves regret δ with high probability

• We know there is a really accurate expert. What if we iteratively pick "pools" of experts and delete them if they run "poorly"?

Reduction Problem

YouActual outcome \checkmark \checkmark </

No Mistake Regime

- If iteratively pick pool of next k experts ("rounds") and output the majority vote of the pool while deleting any incorrect expert, each pool will have at most O(log k) errors
- If best expert makes no mistakes, use $\frac{n}{k}$ pools to achieve regret $\frac{\delta T}{\delta T}$ means setting $k = O\left(\frac{n \log n}{\delta T}\right)$

No Mistake Regime Summary

- Algorithm: Iteratively pick pool of $k = \tilde{O}\left(\frac{n}{\delta T}\right)$ experts ("rounds") and output the majority vote of the pool while deleting any incorrect expert
- If the number of rounds is small, the pools must have done well so the overall regret is small
- The number of rounds cannot be large because at some point the best expert would have been chosen and retained

"Low-Mistake" Regime

- Algorithm: Iteratively pick pool of next $k = \tilde{O}\left(\frac{n}{\delta T}\right)$ experts and output the majority vote of the pool while deleting any incorrect expert
- If best expert makes M mistakes, use $\frac{nM}{k}$ pools to achieve regret δT means setting $k = \tilde{O}\left(\frac{nM}{\delta T}\right)$, but this is too large!

Randomly Sampling Pools

- Fix: Randomly sample pools of experts instead of iteratively picking pools
- Problem: Cannot guarantee that the best expert will be retained

"Low-Mistake" Regime

- Algorithm: Repeatedly sample a pool of $k = \tilde{O}\left(\frac{n}{\delta T}\right)$ experts and output the majority vote of the pool while deleting any expert with lower than $1 \frac{\delta}{8 \log n}$ accuracy since it was sampled WANT TO SHOW
- If the number of rounds is small, the pools must have done well so the overall regret is small
- The number of rounds cannot be large because at some point the best expert would have been sampled and retained

"Low-Mistake" Regime: First Property

- Algorithm: Repeatedly sample a pool of $k = \tilde{O}\left(\frac{n}{\delta T}\right)$ experts and output the majority vote of the pool while deleting any expert with lower than $1 \frac{\delta}{8 \log n}$ accuracy since it was sampled
- Lemma: A pool used for t days can only make $\frac{t\delta}{2} + 4\log n$ mistakes

• For the algorithm to make $T\delta$ mistakes, need at least $\frac{T\delta}{8 \log n}$ rounds

"Low-Mistake" Regime: Second Property

- For the algorithm to make $T\delta$ mistakes, need at least $\frac{T\delta}{8\log n}$ rounds
- "BAD" day: the best expert is deleted by the pool if it is sampled on that day

• $|\text{BAD}| \le \frac{8M\log n}{\delta}$

"Low-Mistake" Regime: Second Property

- For the algorithm to make $T\delta$ mistakes, need at least $\frac{T\delta}{8 \log n}$ rounds
- Using that $|BAD| \le \frac{8M\log n}{\delta}$ and $M = O(\frac{\delta^2 T}{\log^2 n})$, then at least $\frac{T\delta}{16\log n}$ rounds starting on good days
- $O\left(\frac{n \log^2 n}{\delta T}\right)$ experts sampled in each round \rightarrow low probability don't sample best expert on a good day

Analysis

- Define a set of random variables d_1, d_2, \dots for each round's day
- Given d_i , draw d_{i+1} from the distribution of possible days for the next round based on possible experts sampled in the pool conditioned on entire history

Arbitrary Order Model Summary

- Algorithm: Repeatedly sample a pool of $k = \tilde{O}\left(\frac{n}{\delta T}\right)$ experts and output the majority vote of the pool while deleting any expert with lower than $1 \frac{\delta}{8 \log n}$ accuracy since it was sampled
- If the number of rounds is small, the pools must have done well so the overall regret is small
- The number of rounds cannot be large because at some point the best expert would have been sampled and retained

Format

- Part 1: Background
- Part 2: Lower Bound
- Part 3: Arbitrary Model
- Part 4: Random-Order Model

Questions?

Random-Order Streams

- Algorithm: Repeatedly sample a pool of $k = \tilde{O}\left(\frac{n}{\delta^2 T}\right)$ experts and run multiplicative weights on pool, resample if the expected cost of the pool over t time "is bad"
- Can compute this expected cost, so if it doesn't follow the theory, it means you didn't sample the best expert
- Main idea: there are no BAD days
 - we will never delete the pool if it contains the best expert

Summary of Results

- Any algorithm achieving $\delta < \frac{1}{2}$ regret with probability $\frac{3}{4}$ uses $\Omega\left(\frac{n}{\delta^2 T}\right)$ space
- There is an algorithm using $O\left(\frac{n}{\delta^2 T}\log^2 n\right)$ space in the random-order model
- For $M < \frac{\delta^2 T}{1280 \log^2 n}$, there exists an algorithm using $\widetilde{O}\left(\frac{n}{\delta T}\right)$ space in the arbitrary-order model with regret δ
- If the costs are in $[0, \rho]$, the regret is $\rho\delta$ for both models
- Questions: tight bounds for arbitrary order streams?

how general is this framework?

Followup Work

- [Peng, W, Zhang, Zhou] Any deterministic algorithm must use Omega(n) bits of memory to achieve constant regret
 - Seems to generalize to a tight Omega(nM/T) bits (still verifying this)
- [Peng, W, Zhang, Zhou] Black box adversarial robustness with constant regret and roughly n/($\delta T^{.5}$) memory
- [Peng, Zhang] Let n << T. There's an algorithm with poly(n) $T^{2/(2+\delta)}$ errors and using n^{δ} memory for any $\delta \in (0,1)$

Follow the Perturbed Leader

Algorithm 2 The follow the perturbed leader algorithm (FPL*) from [KV05], instantiated for the experts problem.

Input: Number *n* of experts, number *T* of rounds, parameter ε

- 1: for $t \in [T]$ do
- 2: for $i \in [n]$ do
- 3: Choose $p_i^{(t)}$ independently, according to $\pm (2r/\varepsilon)$, where r is drawn from a standard exponential distribution
- 4: end for
- 5: Follow the expert *i* for whom the sum of their total cost so far and $p_i^{(t)}$ is the lowest
- 6: end for
- Theorem (Kalai and Vempala 2005): Expected number of mistakes by the algorithm is at most $\frac{O(\ln n)}{\varepsilon} + (1 + \varepsilon)M$

Multiplicative Weights Algorithm

 Algorithm 4 The multiplicative weights algorithm.

 Input: Number n of experts, number T of rounds, parameter ε

 1: Initialize $w_i^{(1)} = 1$ for all $i \in [n]$.

 2: for $t \in [T]$ do

 3: $p_i^{(t)} \leftarrow \frac{w_i^{(t)}}{\sum_{i \in [n]} w_i^{(t)}}$

 4: Follow the advice of expert i with probability $p_i^{(t)}$.

 5: Let $c_i^{(t)}$ be the cost for the decision of expert $i \in [n]$.

 6: $w_i^{(t+1)} \leftarrow w_i^{(t)} \left(1 - \varepsilon c_i^{(t)}\right)$

 7: end for

- Theorem (Arora, Hazan, Kale 2012): Expected cost of the algorithm is $\sum_{t=1}^{T} \sum_{i=1}^{n} c_i^{(t)} p_i^{(t)} \leq \frac{\ln n}{\varepsilon} + (1 + \varepsilon) \sum_{t=1}^{T} c_i^{(t)}$ for each $i \in [n]$ (and in particular the best expert), i.e, $\leq \frac{\ln n}{\varepsilon} + (1 + \varepsilon)M$
- *c* is trade-off term between multiplicative and additive error

Follow the Perturbed Leader

Algorithm 2 The follow the perturbed leader algorithm (FPL*) from [KV05], instantiated for the experts problem.

Input: Number *n* of experts, number *T* of rounds, parameter ε

- 1: for $t \in [T]$ do
- 2: for $i \in [n]$ do
- 3: Choose $p_i^{(t)}$ independently, according to $\pm (2r/\varepsilon)$, where r is drawn from a standard exponential distribution
- 4: end for
- 5: Follow the expert *i* for whom the sum of their total cost so far and $p_i^{(t)}$ is the lowest
- 6: end for
- Theorem (Kalai and Vempala 2005): Expected cost of the algorithm is $\frac{O(\ln n)}{\varepsilon} + (1 + \varepsilon) \sum_{t=1}^{T} c_i^{(t)}$ for each $i \in [n]$ (and in particular the best expert), i.e, $\leq \frac{O(\ln n)}{\varepsilon} + (1 + \varepsilon)M$
- *c* is trade-off term between multiplicative and additive error

Follow the Perturbed Leader

Algorithm 2 The follow the perturbed leader algorithm (FPL*) from [KV05], instantiated for the experts problem.

Input: Number *n* of experts, number *T* of rounds, parameter ε

- 1: for $t \in [T]$ do
- 2: for $i \in [n]$ do
- 3: Choose $p_i^{(t)}$ independently, according to $\pm (2r/\varepsilon)$, where r is drawn from a standard exponential distribution
- 4: end for
- 5: Follow the expert *i* for whom the sum of their total cost so far and $p_i^{(t)}$ is the lowest
- 6: end for

Random-Order Streams: First Property

- Structural lemma: Let $X_1, ..., X_t$ be independent random variables in [0,1] with expectation α and X be their sum. Then $\Pr\left[|X \alpha t| \ge 4\sqrt{t \log T}\right] \le \frac{1}{T^2}$
- By the guarantee for multiplicative weights for $\varepsilon = \frac{\delta}{2}$, the cost of each pool is at most $\left(1 + \frac{\delta}{2}\right)\left(\alpha t + 4\sqrt{t\log T}\right) + \frac{2\ln n}{\delta}$
- For $\delta > \sqrt{\frac{16 \log^2 n}{T}}$, $\delta > \frac{M}{T}$, number of rounds must be at least $\Omega\left(\frac{\delta^2 T}{\log n}\right)$

Random-Order Streams: Second Property

- Number of rounds must be at least $\Omega\left(\frac{\delta^2 T}{\log n}\right)$
- Must avoid sampling the best expert on at least $\Omega\left(\frac{\delta^2 T}{\log n}\right)$ rounds
- $O\left(\frac{n\log^2 n}{\delta^2 T}\right)$ experts sampled in each round \rightarrow low probability
- Must use same "decoupling" argument
- Similar analysis for $\delta \leq \frac{M}{T}$

"Low-Mistake" Regime: Second Property

- For the algorithm to make $T\delta$ mistakes, need at least $\frac{T\delta}{8\log n}$ rounds
- "BAD" day: the best expert is deleted by the pool if it is sampled on that day
- $|BAD| \le \frac{8M\log n}{\delta}$ and $M < \frac{\delta^2 T}{1280 \log^2 n}$, so the remaining rounds must be sampled on "GOOD" days and avoid the best expert
- Must avoid sampling the best expert on at least $\frac{T\delta}{16 \log n}$ rounds
- $O\left(\frac{n\log^2 n}{\delta T}\right)$ experts sampled in each round \rightarrow low probability

Guarantee for Weighted Majority

Theorem (Deterministic Weighted Majority)

of mistakes by deterministic weighted majority

$$\leq 2.41 (M + \log_2 n)$$

where *M* is the # of mistakes the best expert makes, *n* is # of experts.

•
$$\left(\frac{1}{2}\right)^{M} \leq \text{sum of the weights} \leq \left(\frac{3}{4}\right)^{m} n$$

• $m \leq \frac{M + \log_2 n}{\log_2 \frac{4}{3}}$

"Low-Mistake" Regime: Second Property

- For the algorithm to make $T\delta$ mistakes, need at least $\frac{T\delta}{8 \log n}$ rounds
- To fail, algorithm must not sample the best expert on a "GOOD" day

A Bad Case Study

