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Insertion-Deletion (Insdel) Codes

Forx € X5,y € Xt

ED (x,y) =minimum number of insertions and deletions in x to obtain y.
Example: x = 0101; y =1111then ED(x,y) = 4

Ham(x,y) = |#i,s.t.x; # y;|
Observation: ED(x,y) < 2 Ham(x,y)

Message x € L™, Code C:X™ —» X™, Decoder D: ™ — 2", D(C(x) o error) = x.

min Ham (C(x1),C(x3)) min_ED (C(x1),C(x3))

Relative min distance of code: §yam(C) = E122 — ; 8gp (C) = Bax2 —

Rate: r(C) = =

m
Goals of constructions: r = (1), = 0(1). ('good” codes )
Algorithmic goals: efficient encoder/decoder.



Brief History of Insdel Codes

[Levenstein 66] introduced insdel/edit codes

[Schulman, Zuckerman 99] first constructions of good codes with efficient encoding/decoding
schemes

Lots of recent follow-up works [MatousekKiwiLoebl05, GuruswamiWangl7,
HaeuplerShahrasbil7, GuruswamiLil8, BrakensiekGuruswamiZbarskyl18, ChengJinLiWul8,
HaeuplerShahrasbiSudanl8, HaeuplerRubinsteinShahrasbil9, LiuTjuawinataXingl9,
ChengLi21, ChenZhang22].

Excellent surveys
[Sloane02, MercierBhargavaTarokh10, Mitzenmacher08, HaeuplerShahrashbi21]



A code C:{0,1}* - {0,1}™is
Local C()d es a Locally Decodable Code (LDC)
If there exists a decoder Dec such that
« Dec makes at most g queries (" locality” of code)
0 0 1  Vx and y with dist(C(x),y) < § and for every message

f bit i
Pr[Dec(y,i) =x;] = Y% +¢€

iEN *| Decoder o x; € {0,1}

Example of Hamming LDC: Hadamard code Had: F; — F*" ,Had(x) = ({ a,x)) yepm

x-(0..0)  x-(0..01) _ x-(11..1) | y= Had(x) + err

Dec(i): pick a € {0,1}" u.a.r and query a and a + e;. Output y(a) + y(a + e;).
Claim: Hadamard is a 2-query LDC for § = %4 — €/2 Hamming errors

(Open) Question: Do 0(1)-query insdel LDCs exist?



Motivation: DNA Storage

While considerable effort in DNA data storage has focused on
increasing the scale of DNA synthesis, as well as improving encoding
schemes, an additional crucial aspect of data storage systems is the
ability to efficiently retrieve specific files or arbitrary subsets of files.

IBSBHRABB] (Nature materials, 2021)




Construction of Insdel LDCs from Hamming LDCs

Theorem [Ostrovky, Paskin-Cherniavsky 2015]:

q-query Hamming LDC C:X™ —» =™ correcting §-fraction of Hamming errors

U

q poly log(m)-query Insdel LDC C:{0,1}"— {0,1}™ with m" = ©(m) that can
correct from O(d)-fraction of Insdel Errors

Block, Blocki, G., Kulkarni, Zhu 2020] reprove this result using different techniques.

Other works on insdel LDCs: [Cheng, Li, Zheng 20, Block Blocki 21]



Corollaries to OPC: Hamming vs Insdel LDCs

Hamming LDCs Insdel LDCs

cq=2; m=2" —> e« g =polyn; m=002")
* q = 3 (constant); m = exp(n°®) — + g =n°M; m = exp(n°M®)
[Yek08, DKY11, Efr12]

. ¢ = polylogn; m =nl*e —> « g = polylogn; m = o(n?)

¢ g =n; n°@. m = 0(n); [KI\/IRSl7]':> *q= (logn)loglogn; m=0(n)



The OPC Reduction: Overview of the Encoder

C,u: 'S a Hamming LDC: C,,4: X" - ™
C;, is the Schulman-Zuckerman code: SZ:X1°8 ™ x [m] — {0, 1}0(ogmlog)
C:{0,1} 108 X _, fg 1}0(mlogZ) i5 the new Insdel LDC.

X = Cout(x) Bj—1

@J’

SZ(Bj_1°(j—1))  SZ(Bj°J))

U

C(x) 0 0 0 0 SZ(Bj_1°(—-1)0 0 0 0 SZ(Bjoj) 0 0 0 0

] )
®(logm) bits O (logm) bits
buffers




The Local Decoder

0O 0 0 O SZ(Bj_lo(i—l))O 0O 0 O SZ(B]-oj) 0O 0 0 O

To decode x;:

* Simulate local Hamming outer decoder to find respective block of query g;

* Decode block using SZ code and output the bits corresponding to query q;

* Output the output of outer Hamming LDC decoder for the queries q; q3, ..., q;

Challenges:

« Searching for an index j in an insdel-corrupted codeword
 Finding the buffers



Helpful Properties of the SZ Code

o o 0o 01 11010 0 0 0 01 011 0 0 0O

1. Constant rate: SZ:{0,1}* - {0,1}9®)

2. Decoder can decode from §;,, fraction of insdel errors

3. Encoder and decoder are poly-time algorithms

4. For every x, every interval of length (k) of SZ(x) has fractional Hamming weight 2/5.

Implications:
e 1, 2 and 3 implies decoding of queries in (poly log m) time.

« 4 implies can locally distinguish between high-weight and small-weight segments of the
code, so can distinguish the buffers from information segments

Question: How to find block j in the codeword corrupted with insdel errors?
Useful idea: Most blocks are in correct order, so in increasing order of indices j
Solution: Perform a "'noisy” binary search



Noisy Binary Search

Toy problem: Find element j in an array that is §-sorted, i.e. array that becomes
sorted after removing én elements

Example:o = (1,6,3,4,5,10,7,8,9,2,11,15) is 0.25-sorted. Find element 9.

Theorem: Can perform a ""noisy binary search” to locate element j in §-sorted
array of size n in polylog n time (caveat: for a constant fraction of j's)

Proof idea: most indices are in order. Pick a random set of indices and perform
binary search around the median.

Can find the j’s that are “locally good”, i.e. every interval containing j has small
error density.



Summarizing

« Can transform Hamming LDCs into Insdel LDCs with (poly log m) loss in
guery complexity, ©(1) loss in rate, ©(1) loss in decoding radius.

« No implications to the constant-query regime

* Questions: Is noisy binary search inherent to insdel LDCs?
If not, do constant-query insdel LDCs exist?

» Next: strong lower bounds for Insdel LDCs for g = 0(1)



State-of-the-art for Hamming LDCs

Regime Query Upper bound Lower bound
o= 2 2" exp(n)
(Hadamard codes) [KdW04, BRdWO08]
constant -
S 3 exp (no(l)) Q (nq—l / log n)
q >
[Yek08, DGY11, Efrl2] [Wo007]
1+ 7215 +o(1)
olylo — log* ! ?
POYIRE q = log"(n) (Reed-Muller codes)
_ O(n)
sub-)polynomial — n¢, n°) QQ(n
(sub-)poly q=n"nm KMRS17] (n)




Our Results for Insdel LDCs [BCGLZZ21]

Regime Query Upper bound Lower bound
. : xp(1)
constant oo if linear
qg>3 ? exp (nqu—d)
9 < st 7 exp (log?~2(n))
polylog Pt g2y to(1)
— log®™>(n ?
9=18""(") | 'opc1s, BBGH20)
O(n)
(sub-)polynomial | g = n¢, n°® [KMRS17] 2(n)

| [OPC15, BBG*20] |




Previous Strategies for Hamming Errors for LDCs

LDC implies ""'smooth” decoding: each index j € [m]is queried w.p. O(1/m)

For each i € n, view the g queries as hyperedge in hypergraph with m vertices.
Then 3 a large matching of hyperedges of size Q(m/q).

Remainder of proofs analyze matching via:

- Quantum/information theory [KT00, KdWO04, Woo07]
- Matrix hypercontractivity [BRdWOS]

- Combinatorial arguments [KT00, BCG20]

- Reduction from g-query to 2-query [Woo007, Woo012]



Insdel LDCs Lower Bounds Ideas

Analyze the sets of Good queries for decoding each index:

Good; = {Q = (iy, iz, ..., iy )|3 £:{0,1}9 - {0,1} s.t. Pr,[f(C(x) ) = x;] = % + €/4}
Packing lemma [KatzTrevisan00]. Each @ is good for O(q) many message bits i
Hitting Lemma: For every i, Dec(i) must hit Good; with probability > 3 €/2

Next: What deletion patterns make Dec work hard?



Deletion Patterns and Queries ()

k/ k’ _|_ d’f

y o , 5 - Pattern type 1: Pick random e and delete the first e
J:f;‘i%’n”sl / symbols of codeword.

K k+d X — C(x) = 01100111110001111

i i y = 11110001111

Observation: Query tuple (k, k + d) comes from (k + e, k + e + d) for some random e.

Observation: Distance between queries stays the same, regardless of e.

Definition: Distribution of (k + e,k + e + d) is the “induced” distribution by query (k, d)
under error distribution.



LDC for Deletion Pattern 1?

K’ K +d’'
v [ ] ] - Recall Pattern type 1: Pick random e and delete the first e
;sfzizﬁsJ ] / symbols of codeword.
. |k| ,JH ‘ Important point: Distance between queries stays the same.

Recall Hadamard code: Had:F3 - F?" ,Had(x) = ({ @,x )) gepn
x-(0..0) x-(0..01) x-(11..1)

Dec(i): Pick random locations a and a + e;.
Dec(i) restated: Pick a random pair at distance 2!~ (assuming lex ordering of indices)

Claim: There is a 2-query LDCs with m = exp(n), correcting a ©(1) fraction of type 1 deletions.

Proof: Hadamard code with some massaging.



Deletion Patterns and Queries (ll)

Pattern type 2: fix p < é and delete each bit with probability p.

x - C(x)=0110011110001111,p =§

y = 010011101111

Observation: Distribution induced by query (k, k + d) corresponds to (k', k' + d’)
where d’ Is concentrated around d/(1 — p); probabillity of any d’ around mean

~ 1//d. (negative binomial distribution)

Pattern type 3: Pick p uniformly from [§/8, /4] and delete each bit of the
codeword with probability p independently.

Our deletion distribution: type 1, then type 3.
Outcome: Flatter and better distribution



Properties of the Hard Error Distribution
(Towards a Lower Bound for 2-Query Insdel LDCs)

Lemma: For every (k,d), under our error distribution:

 d € [d,20d]w.p. 1 — € (concentration)

 Foranyj € [d,20d], Pr[d’ = j] = 0(1/d) (anticoncentration/smoothness)
Recall Hitting Lemma: For every i, Dec(i) must hit Good; with probability > 3 €/2

Hitting lemma implies: 3 “good query” (k,d) such that
Pr|(k’,d’) € Good;| > 3 €/2

Next: What does the induced distribution (k’,d’) look like?



Towards a Lower Bound for 2-Query Insdel LDCs
Good; = {(K',k' +d')|3 f:{0,1} - {0,1}? 5.t. Pr[f (C(X)1o)] = Yo + €/4}
For biti € [n], let (k,d) be good for i.

What does the (support of) induced distribution (k’, d")
look like?

Split m into t = log,, m intervals [20/71,20/).
Let P; = [m] x [20/7%,20/)

Let r = r(i) be such that 2071 < d < 20".
Claim: |Good; N P.| = Q(md)



Towards a Lower Bound for 2-Query Insdel LDCs
Good; = {(K, k' + d')|3 f:{0,1}" - {0,1} 5.t. Pre[f(C(x)p)] = % + €/4}
For biti € [n], let (k,d) be good for i.
What does the (support of) induced distribution (k’, d")

look like? m

Split m into t = log,, m intervals [20/71,20/).
Let P; = [m] x [20/7%,20/)

@
Let r = r(i) be such that 207! < d < 20. P e o © .
Claim: |Good; N P.| = Q(md) o - O C o
Proof: Consequence of concentration, hitting lemma
and smoothness. o
Corollary: 3r s.t. 'GOTgilnP’”' = (1) °




Wrapping up the Lower Bound

Theorem: Any 2-query Insdel LDC has m = exp(n)

|Good ;NP ;

Bounding 2§=12?=1 i L from above and below we get:

t n IGOOdiﬂPjI> n |GoodinPr|>

|Good ;NP
P

Since each (k, d) is good for 0(1) many i’s then for every j: >, i< 0(1). So:

1 2, 2 < 0(6) = 0(logm)

Hence m = Q(exp(n)). QED.



Generalizations

* Observation: The m = Q(exp(n)) lower bound [Kerenidis-deWolf] for
Hamming 2-query LDC does hold for insdel LDCs. Uses quantum arguments.

Our proof is via classical arguments.
* Proof generalizes to non-existence of affine/linear 2-query insdel LDCs
* Proof generalizes to g = 3 queries

e Strategy: Need generalized smoothness properties of the deletion distributions



Nice Properties of the Deletion Process

View deletion pattern as set S € [m|.

. Boundedness: |S| < dm with probability 1 — o(1).

. Concentration: For any interval | C [m], |[SN /| < 0.9|/| with
probability > 1 — e.

. Anti-concentration: For any disjoint intervals
117I23 . °alk C [m]r and any 0<n < “1|7' . -jO < < ‘Ik"l

Bmk

PriiSNnhl=i,....|SN k| =i] < ARAESTD




Generalizing, our Distribution Satisfies

Lemma (Smoothness)

For any (j1,..-,Jq) € [m]9, we have

log?~%(m) ) |

Pri(k',dy, .. dg_1) = (1s---Jg)] <
I’[( , dp, ? q—l) (Jl’ j"]q")]_O(n"?dl”"dqf—l

Open question: what Is the best upper bound possible?



Variant: Relaxed LDC

0 0 1
\ t /
i €En *| Decoder o {x;, 1}

A code C:{0,1}" - {0,1}™ is a Relaxed Locally Decodable
Code (RLDC) if there exists a g-query decoder Dec such that
(1) Vx,i Pr[Dec(C(x),m',i) = x;] = 1 (perfect completeness)

(2) vx and y with dist(C(x),y) < dm and for every i
Pr[Dec(y,m’,i) = {x;, 1}] = Yo+ ¢€

(3) vx and y with dist(C(x),y) < dmand Vi € [n],3] S [n] with
|I| = Q(n) such that x; is output with probability %2 + €

Theorem [BenSassonGoldreichHarshaSudanVadhan06, AsadiShinkar21]
3 g = 0(1) s.t. there exists g-query Hamming RLDC with m = nl*?.

Theorem [BGHSV06]

Condition (1)+(2) (i.e. "weak” RLDC) = Condition (3) (i.e. 'strong” RLDC)
for g = 0(1) query, and 0(1) rate code

Theorem [GurLachish21, Dal’AgnonGurLachish21] Matching lower bounds.
Question [GurLachish21]: For g = 2 are there short (Hamming ) RLDCs?



Our New Results BsceLzz2z

Theorem: 2-query Hamming RLDC must have m = exp(n).

Corollary: Phase transition for some g = O(1): m drops from
Super-poly(n) at some g, to poly(n) at q + 1.

Question: Where?

Question: Constructions/lower bounds for insdel RLDCs?



Other New Results

« 3 weak 0(1)-query insdel RLDC with m = n'*¢
Hence, binary search is not inherent to weak insdel RLDCs.

 Strong insdel 0(1)-query RLDC must have m = Q(exp(n))

« Hence weak insdel RLDCs are not equivalent to strong RLDCs (unlike weak
and strong Hamming RLDCs)



Final Open Problems about RLDCs and LDCs

Exact phase-transition thresholds for Hamming/weak insdel RLDC.

Lower bounds for Hamming 2-query RLDCs without perfect completeness?

Is noisy binary search inherent to constructions of O(1)-queries insdel LDCs/strong RLDCs?
Do O(1)-query insdel LDCs exist?

Constructions of o(log? n)-query Insdel LDCs?

Applications of insdel local codes: analogies to PIR, PCPs, self-correction, fault-tolerant
circuits, data structures, quantum computing?

Thanks for your attention!



