Theoretically and Practically Efficient Nucleus Decomposition

<u>Jessica Shi</u> (MIT / Google)

Laxman Dhulipala (University of Maryland)

Julian Shun (MIT)

How do we cluster a graph?

▷ A fundamental idea:

How well-connected are certain nodes or subsets of nodes in a graph?

"Well-connected" nodes

▷ k-core: Repeatedly find + "delete" min degree vertex

Formally: A k-core is an induced subgraph where every vertex has degree at least k

A problem with k-core

▷ k-core: Repeatedly find + "delete" min degree vertex

s-clique peeling

- ▷ s-clique degree: Number of s-cliques each vertex participates in
- s-clique peeling: Repeatedly find + "delete" min s-clique degree vertex

(r, s)-nucleus decomposition

- s-clique degree of a r-clique: Number of s-cliques each r-clique participates in
- (r, s)-nucleus decomposition: Repeatedly find + "delete" r-clique with min s-clique degree

(r. s)-nucleus decomposition

Sariyuce, Seshadhri, Pinar, Catalyurek (2017)

facebook graph (88k edges)

(r, s)-nucleus decomposition

(3, 4)-nuclei

facebook graph (88k edges)

Sariyuce, Seshadhri, Pinar, Catalyurek (2017)

Main results

New shared-memory parallel algorithms for nucleus decomposition with strong theoretical guarantees

Comprehensive evaluation, showing we outperform state-of-theart parallel algorithms by a couple orders of magnitude Computational barriers: Sequential subgraph decomposition can be slow

Environment: 30-core GCP instance (2-way hyperthreading), 240 GiB main memory

Graph	# Edges	Sequential (3, 4)- nucleus decomp ^[1]
as-skitter	11 million	8.5 minutes
livejournal	34 million	3.3 hours
orkut	117 million	> 6 hours

 \triangleright Goal: < 15 min

Theoretically efficient algorithms are fast

▷ Previous parallel nucleus decomposition ^[2]: Not theoretically efficient

Practical optimizations

100,000

Preliminaries

Preliminaries

- Work = total # operations
- Span = longest dependency path
- ▷ Running time ≤ (work / # processors) + O(span)
- Work-efficient = work matches best sequential time complexity

Parallel computation graph

Graph orientation

- $\triangleright \alpha$ = arboricity = minimum # of spanning forests needed to cover all edges of the graph
 - Upper bounded by $O(\sqrt{m})$ where m = # edges
- c-orientation: Direct graph such that each vertex's out-degree is upper bounded by c
- \triangleright Arboricity orientation: O(α)-orientation
- Our prior work: Two theoretically efficient arboricity orientation algorithms^[1]

Parallel nucleus decomposition

- Direct the graph (DG) using an arboricity orientation
- Count # s-cliques per r-clique using DG
- Construct a bucketing structure mapping rcliques to a bucket based on # s-cliques
- ▷ While not all r-cliques have been peeled:
 - Peel set of r-cliques with minimum s-clique count
 - Update s-clique counts of remaining r-cliques

- Direct the graph (DG) using an arboricity orientation
- Count # s-cliques per r-clique using DG
- Construct a bucketing structure mapping rcliques to a bucket based on # s-cliques
- ▷ While not all r-cliques have been peeled:
 - Peel set of r-cliques with minimum s-clique count
 - Update s-clique counts of remaining r-cliques

No 4-cliques: cdg

One 4-clique: All triples in {a,b,e,f} except abe

Two 4-cliques: All triples in {a,b,c,d,e} except abe

Three 4-cliques: abe

- Direct the graph (DG) using an arboricity orientation
- Count # s-cliques per r-clique using DG
- Construct a bucketing structure mapping rcliques to a bucket based on # s-cliques
- ▷ While not all r-cliques have been peeled:
 - Peel set of r-cliques with minimum s-clique count
 - Update s-clique counts of remaining r-cliques

No 4-cliques: cdg

One 4-clique: All triples in {a,b,e,f} except abe

Two 4-cliques: All triples in {a,b,c,d,e} except abe Three 4-cliques: abe

- Direct the graph (DG) using an arboricity orientation
- Count # s-cliques per r-clique using DG
- Construct a bucketing structure mapping rcliques to a bucket based on # s-cliques
- ▷ While not all r-cliques have been peeled:
 - Peel set of r-cliques with minimum s-clique count
 - Update s-clique counts of remaining r-cliques

No 4-cliques:

One 4-clique: All triples in {a,b,e,f} except abe

Two 4-cliques: All triples in {a,b,c,d,e} except abe Three 4-cliques: abe

- Direct the graph (DG) using an arboricity orientation
- Count # s-cliques per r-clique using DG
- Construct a bucketing structure mapping rcliques to a bucket based on # s-cliques
- ▷ While not all r-cliques have been peeled:
 - Peel set of r-cliques with minimum s-clique count
 - Update s-clique counts of remaining r-cliques

No 4-cliques:

One 4-clique: All triples in {a,b,e,f} except abe

Two 4-cliques: All triples in {a,b,c,d,e} except abe

Three 4-cliques: abe

- Direct the graph (DG) using an arboricity orientation
- Count # s-cliques per r-clique using DG
- Construct a bucketing structure mapping rcliques to a bucket based on # s-cliques
- ▷ While not all r-cliques have been peeled:
 - Peel set of r-cliques with minimum s-clique count
 - Update s-clique counts of remaining r-cliques

No 4-cliques:

One 4-clique: Two 4-cliques: All triples in {a,b,c,d,e} Three 4-cliques:

- Direct the graph (DG) using an arboricity orientation
- Count # s-cliques per r-clique using DG
- Construct a bucketing structure mapping rcliques to a bucket based on # s-cliques
- ▷ While not all r-cliques have been peeled:
 - Peel set of r-cliques with minimum s-clique count
 - Update s-clique counts of remaining r-cliques

No 4-cliques:

One 4-clique: Two 4-cliques: All triples in {a,b,c,d,e} Three 4-cliques:

- Direct the graph (DG) using an arboricity orientation
- Count # s-cliques per r-clique using DG
- Construct a bucketing structure mapping rcliques to a bucket based on # s-cliques
- ▷ While not all r-cliques have been peeled:
 - Peel set of r-cliques with minimum s-clique count
 - Update s-clique counts of remaining r-cliques

No 4-cliques:

One 4-clique: Two 4-cliques: Three 4-cliques:

- Direct the graph (DG) using an arboricity orientation
- ▷ Count # s-cliques per r-clique using DG
- Construct a bucketing structure mapping rcliques to a bucket based on # s-cliques
- ▷ While not all r-cliques have been peeled:
 - Peel set of r-cliques with minimum s-clique count
 - Update s-clique counts of remaining r-cliques

(r, s)-nucleus decomposition

O(m) work, $O(\log^2 n)$ span \triangleright

 $O(m\alpha^{s-2})$ work, $O(s \log n)$ span whp an Direct the graph (DG) using an arboricity orientation

- > Count # s-cliques per r-clique using DG
- Construct a bucketing structure mapping rcliques to a bucket based on # s-cliques
- ▷ While not all r-cliques have been peeled:
 - Peel set of r-cliques with minimum s-clique count
 - Update s-clique counts of remaining r-cliques

(r, s)-nucleus decomposition

 $O(s \log n)$ span whp

Subgoal 1

Subgoal 2

O(m) work, $O(\log^2 n)$ span \triangleright Direct the graph (DG) using an arboricity orientation $O(m\alpha^{s-2})$ work, \bigcirc

Count # s-cliques per r-clique using DG

 Construct a bucketing structure mapping rcliques to a bucket based on # s-cliques

▷ While not all r-cliques have been peeled:

Peel set of r-cliques with minimum s-clique count

> Update s-clique counts of remaining r-cliques

How do we peel r-cliques?

- ▷ Subgoal 1: A way to keep track of r-cliques with min s-clique count
- ▷ In theory: Use a batch-parallel Fibonacci heap^[1]
 - k insertions: O(k) amortized expected work, $O(\log n)$ span whp
 - Extract min: $O(\log n)$ amortized expected work, $O(\log n)$ span whp
- In practice: Fibonacci heaps are not efficient
 Julienne: Efficient parallel bucketing structure ^[2]

(r, s)-nucleus decomposition

O(m) work, $O(\log^2 n)$ span

 $O(m\alpha^{s-2})$ work, $O(s \log n)$ span whp

 $O(m\alpha^{r-2} + \rho \log n)$ amortized expected work, $O(\rho \log n)$ span whp

where ρ = # rounds to peel entire graph

n > Direct the graph (DG) using an arboricity orientation

- Count # s-cliques per r-clique using DG
- Construct a bucketing structure mapping rcliques to a bucket based on # s-cliques
- ▷ While not all r-cliques have been peeled:
 - Peel set of r-cliques with minimum s-clique count
 - Update s-clique counts of remaining r-cliques

How do we update s-clique counts?

- Subgoal 2: A way to update s-clique counts after "deleting" rcliques
 - In theory and practice: We use a key lemma that improves upon the previous best theoretical bounds for sequential nucleus decomposition
 - In practice: Also use software optimizations

Subgoal 2: A way to update s-clique counts after "deleting" rcliques

Modify parallel s-clique counting subroutine to efficiently obtain updated s-clique counts from "deleted" r-cliques

▷ Theorem: Over all c-cliques in a graph $C_c = \{v_1, ..., v_c\},$ $\sum_{C_c} \min_{1 \le i \le c} \deg(v_i) = O(m\alpha^{c-1}).^{[1]}$

▷ Theorem: Over all c-cliques in a graph $C_c = \{v_1, ..., v_c\},$ $\sum_{c_c} \min_{1 \le i \le c} \deg(v_i) = O(m\alpha^{c-1}).$

a

С

е

- For each peeled r-clique R, compute intersection of neighbors of each vertex in R (= set S)
- Parallel for each v in S, intersect arboricity-oriented neighbors of v with S
 Recurse on S

S = R = abe $S = N(a) \cap N(b) \cap N(e) = \{c, d, f\}$

▷ Theorem: Over all c-cliques in a graph $C_c = \{v_1, ..., v_c\},$ $\sum_{C_c} \min_{1 \le i \le c} \deg(v_i) = O(m\alpha^{c-1}).$

a

e

- For each peeled r-clique R, compute intersection of neighbors of each vertex in R (= set S)
- Parallel for each v in S, intersect arboricity-oriented neighbors of v with S
 Recurse on S

P = R = abeprevious $S = \{c, d, f\}, v = c$ $S' = N_{\rightarrow}(c) \cap S = \{d\}$

- ▷ Theorem: Over all c-cliques in a graph $C_c = \{v_1, ..., v_c\},$ $\sum_{C_c} \min_{1 \le i \le c} \deg(v_i) = O(m\alpha^{c-1}).$
- a e С

- For each peeled r-clique R, compute intersection of neighbors of each vertex in R (= set S)
- Parallel for each v in S, intersect arboricity-oriented neighbors of v with S
 Recurse on S

R = abenew $S = \{d\}$

▷ Theorem: Over all c-cliques in a graph $C_c = \{v_1, ..., v_c\},$ $\sum_{C_c} \min_{1 \le i \le c} \deg(v_i) = O(m\alpha^{c-1}).$

a

С

e

- For each peeled r-clique R, compute intersection of neighbors of each vertex in R (= set S)
- Parallel for each v in S, intersect arboricity-oriented neighbors of v with S
 Recurse on S

▷ Theorem: Over all c-cliques in a graph $C_c = \{v_1, ..., v_c\},$ $\sum_{C_c} \min_{1 \le i \le c} \deg(v_i) = O(m\alpha^{c-1}).$

a

g

С

e

For each peeled r-clique R, compute intersection of neighbors of each vertex in R (= set S)

r = 3, s = 5

37

- Parallel for each v in S, intersect arboricity-oriented neighbors of v with S
 Recurse on S
 R = abe
- previous $v = \{c, d\}$
- This gives a 5-clique {a, b, c, d, e} affected by peeling {a, b, e}

▷ Theorem: Over all c-cliques in a graph $C_c = \{v_1, ..., v_c\},$ $\sum_{C_c} \min_{1 \le i \le c} \deg(v_i) = O(m\alpha^{c-1}).^{[1]}$

> $O(m\alpha^{r-1})$ > For each peeled r-clique R, compute intersection of neighbors of each vertex in R (= set S)

$$O(\alpha^{s-r-1})$$

 Parallel for each v in S, intersect arboricity-oriented neighbors of v with S
 Recurse on S

 $= O(m\alpha^{s-2})$ work

(r, s)-nucleus decomposition

O(m) work, $O(\log^2 n)$ span

 $O(m\alpha^{s-2})$ work, $O(s \log n)$ span whp

 $O(m\alpha^{r-2} + \rho \log n)$ amortized expected work, $O(\rho \log n)$ span whp

where ρ = # rounds to peel entire graph

 $O(m\alpha^{s-2})$ amortized expected work, $O(\rho \log n)$ span whp

n > Direct the graph (DG) using an arboricity orientation

- Count # s-cliques per r-clique using DG
- Construct a bucketing structure mapping rcliques to a bucket based on # s-cliques
- ▷ While not all r-cliques have been peeled:
 - Peel set of r-cliques with minimum s-clique count
 - Update s-clique counts of remaining r-cliques

(r, s)-nucleus decomposition

O(m) work, $O(\log^2 n)$ span \triangleright Direct the graph (DG) using an arboricity

- Practical optimizations:
- Up to a 5x speedup over our unoptimized parallel nucleus decomposition
- O(n) amc
 Up to a 2.5x reduction in space over our unoptimized parallel nucleus decomposition

count

 $O(m\alpha^{s-2})$ amortized expected \bigcirc Update s-clique counts of remaining r-cliques work, $O(\rho \log n)$ span whp

ue

Experiments

Environment

- 30-core GCP instance (2-way hyperthreading), 240 GiB main memory
- Used real-world Stanford Network Analysis Platform (SNAP) graphs

Comparison to other implementations

AND, AND-NN, PND: Sariyuce, Seshadhri, Pinar (2018)

Other implementations are not theoretically efficient

- ▷ Speedups up to 55x, median 9x over fastest of PND, AND, AND-NN (r = 3, s = 4)
- ▷ Up to 40x self-relative speedups ($r < s \leq 7$)
- PND, AND, AND-NN have large span, are not workefficient, or are not space-efficient (runs OOM)

Conclusion

Conclusion

- ▷ Summary:
 - Shared-memory parallel clustering algorithms developed with strong theoretical guarantees + practical optimizations = highly efficient and scalable implementations
- ▷ Future directions:
 - Dynamic nucleus decomposition
 - Other subgraph decompositions for other classes of graphs (e.g., bipartite graphs)
 - Generalization of (α, β) -decomposition

Conclusion

Nucleus Decomposition Github: <u>https://github.com/jeshi96/arb-nucleus-decomp</u>

Contact me: jeshi@mit.edu

Thank you!

In practice: Keep track of r-cliques

▷ Subgoal 1: A way to keep track of r-cliques with min s-clique count

- > Julienne: Efficient parallel bucketing structure ^[1]
- Requirement 1: Map r-cliques to unique keys
- Requirement 2: Obtain constituent r-clique vertices from keys

In practice: Keep track of r-cliques

▷ Julienne: Efficient parallel bucketing structure ^[1]

In practice: Map r-cliques to keys

- ▷ An option for space savings:
- ▷ Two-level array and hash table:

Additional optimization for cache behavior: Store last-level tables contiguously in memory ⁵¹

In practice: Obtain r-clique vertices from keys

In practice: Obtain r-clique vertices from keys

▷ Stored pointers:

In practice: Update s-clique counts

Subgoal 2: A way to update s-clique counts after "deleting" rcliques

How do we aggregate r-cliques with updated s-clique counts in parallel?

In practice: Obtain set of updated r-cliques

▷ List buffer:

Contention only when getting a new block

Other implementations are not theoretically efficient

- PND: Large span (> 80,000x sequential rounds compared to our alg)
- AND: Not work-efficient (up to 46x # of 4-cliques discovered compared to our alg)
- AND-NN: Not work-efficient and not space-efficient (up to 3.5x # of 4-cliques discovered compared to our alg, out of memory for skitter, livejournal, and orkut)

Comparison to other implementations

- Up to 55x speedups over PND (average 23x)
- Up to 60x speedups over AND (average 14x)
- Up to 9x speedups over AND-NN (average 3x)
- AND-NN runs out of memory on graphs with > 11 million edges
- Up to 40x self-relative parallel speedups

925K edges 1.05M edges 2.99M edges 11.1M edges 34.7M edges 117M edges ND: Sariyuce, Seshadhri, Pinar, Catalyurek (17) AND, AND-NN, PND: Sariyuce, Seshadhri, Pinar (18)

(r, s)-nucleus decomposition

- s-clique degree of a r-clique: Number of s-cliques each r-clique participates in
- (r, s)-nucleus decomposition: Repeatedly find + "delete" r-clique with min s-clique degree

Entire graph is in a 3-triangle-core

Entire graph is in a 2-(2, 3) nucleus

(r, s)-nucleus decomposition

- s-clique degree of a r-clique: Number of s-cliques each r-clique participates in
- (r, s)-nucleus decomposition: Repeatedly find + "delete" r-clique with min s-clique degree
- 1-(3, 4) nuclei (r = 3, s = 4)

