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weights on edges

Insertion-only stream



Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream (ideally one pass)

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream



Ω(n) space is often needed:
Ï output size often Ω(n) (e.g., matching, sparsifier, spanner)
Ï even if output is a number (e.g. testing connectivity)

But not always:

K.-Khanna-Sudan’14 – can approximate matching size to
poly(logn) factor using poly(logn) space in random streams.

Matching, connected components, random walks:
Efsaniari-Hajiaghayi-Liaghat-Monemizadeh-Onak’15, Bury-Schwiegelsohn’15,
McGregor-Vorotnikova’16,
Cormode-Jowhari-Monemizadeh-Muthukrishnan’16,Peng-Sohler’18,
K.-Mitrovic-Norouzi-Fard-Tardos’20, Kallaugher-K.-Price’22,...

Streaming complexity of constraint satisfaction problems:
Kogan-Krauthgamer’14, K-Khanna-Sudan’14, K-Khanna-Sudan-Velingker’17,
Guruswami-Velingker-Velusamy’17, K.-Krachun’19, Guruswami-Tao, ’19,
Chou-Golovnev-Velusamy’20, Singer-Sudan-Velusamy’21,
Chou-Golovnev-Sudan-Velingker-Velusamy’22, Arunachalam-Doriguello’21,. . .



Ω(n) space is often needed:
Ï output size often Ω(n) (e.g., matching, sparsifier, spanner)
Ï even if output is a number (e.g. testing connectivity)

But not always:

K.-Khanna-Sudan’14 – can approximate matching size to
poly(logn) factor using poly(logn) space in random streams.

Matching, connected components, random walks:
Efsaniari-Hajiaghayi-Liaghat-Monemizadeh-Onak’15, Bury-Schwiegelsohn’15,
McGregor-Vorotnikova’16,
Cormode-Jowhari-Monemizadeh-Muthukrishnan’16,Peng-Sohler’18,
K.-Mitrovic-Norouzi-Fard-Tardos’20, Kallaugher-K.-Price’22,...

Streaming complexity of constraint satisfaction problems:
Kogan-Krauthgamer’14, K-Khanna-Sudan’14, K-Khanna-Sudan-Velingker’17,
Guruswami-Velingker-Velusamy’17, K.-Krachun’19, Guruswami-Tao, ’19,
Chou-Golovnev-Velusamy’20, Singer-Sudan-Velusamy’21,
Chou-Golovnev-Sudan-Velingker-Velusamy’22, Arunachalam-Doriguello’21,. . .



Ω(n) space is often needed:
Ï output size often Ω(n) (e.g., matching, sparsifier, spanner)
Ï even if output is a number (e.g. testing connectivity)

But not always:

K.-Khanna-Sudan’14 – can approximate matching size to
poly(logn) factor using poly(logn) space in random streams.

Matching, connected components, random walks:
Efsaniari-Hajiaghayi-Liaghat-Monemizadeh-Onak’15, Bury-Schwiegelsohn’15,
McGregor-Vorotnikova’16,
Cormode-Jowhari-Monemizadeh-Muthukrishnan’16,Peng-Sohler’18,
K.-Mitrovic-Norouzi-Fard-Tardos’20, Kallaugher-K.-Price’22,...

Streaming complexity of constraint satisfaction problems:
Kogan-Krauthgamer’14, K-Khanna-Sudan’14, K-Khanna-Sudan-Velingker’17,
Guruswami-Velingker-Velusamy’17, K.-Krachun’19, Guruswami-Tao, ’19,
Chou-Golovnev-Velusamy’20, Singer-Sudan-Velusamy’21,
Chou-Golovnev-Sudan-Velingker-Velusamy’22, Arunachalam-Doriguello’21,. . .



Ω(n) space is often needed:
Ï output size often Ω(n) (e.g., matching, sparsifier, spanner)
Ï even if output is a number (e.g. testing connectivity)

But not always:

K.-Khanna-Sudan’14 – can approximate matching size to
poly(logn) factor using poly(logn) space in random streams.

Matching, connected components, random walks:
Efsaniari-Hajiaghayi-Liaghat-Monemizadeh-Onak’15, Bury-Schwiegelsohn’15,
McGregor-Vorotnikova’16,
Cormode-Jowhari-Monemizadeh-Muthukrishnan’16,Peng-Sohler’18,
K.-Mitrovic-Norouzi-Fard-Tardos’20, Kallaugher-K.-Price’22,...

Streaming complexity of constraint satisfaction problems:
Kogan-Krauthgamer’14, K-Khanna-Sudan’14, K-Khanna-Sudan-Velingker’17,
Guruswami-Velingker-Velusamy’17, K.-Krachun’19, Guruswami-Tao, ’19,
Chou-Golovnev-Velusamy’20, Singer-Sudan-Velusamy’21,
Chou-Golovnev-Sudan-Velingker-Velusamy’22, Arunachalam-Doriguello’21,. . .



Algorithmic techniques

Often a subgraph exploration processes: maintain a (carefully
and adaptively) chosen subgraph

In random order streams: use randomness to perform
statistical estimation of various quantities

Rule of thumb : if ‘storing a subgraph’ is ‘optimal’, then can get
tight lower bound using boolean Fourier analysis
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Testing bipartiteness: Goldreich-Ron’00 can tell if graph is
bipartite or ε-far from bipartite in ≈ poly(1/ε, logn)n1/2 queries.

Streaming?
(check if ≈ n1/2 random walks of even and odd ≈ poly(logn) length collide)

In a (bounded degree, say) graph, approximate # of triangles
(Kallaugher-K.-Price’18: color coding+careful sampling of a vertex-induced subgraph)

Count # of connected components in a graph
(Peng-Sohler’18: approx # of connected components to εn error in ≈ (1/ε)1/ε

3
space)

Random walk generation, PAGERANK estimation
(Kallaugher-K.-Price’22: (careful) rejection sampling; space exponential in walk length)

(Nearly) tight lower bounds using Fourier analytic
techniques
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Boolean hidden matching problem (BHM)

Alice
binary string x ∈ {0,1}n

message m
Bob

matching M, |M | =Ω(n)

0 0 0

1
1

1

1

0

0

Bob’s task: output (e,
∑

u∈e xe) for some e ∈M

Tight analysis (of decision version) by Gavinsky-Kempe-Kerenidis-Raz-de
Wolf’07
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conditioned on m

f (x) :=indicator of A
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Chance of guessing xi +xj is

≈ 1
2
+

∣∣∣̃f ({i , j})
∣∣∣ ,

where for z ∈ {0,1}n

f̃ (z)= Ex∼UNIF (A)[(−1)x ·z ]

is a normalized Fourier transform of f .

Show that

E

[ ∑
e={i ,j}∈M

f̃ ({i , j})2

]
= o(1)?
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Lemma (Gavinsky et al’07; from hypercontractivity)
If f : {0,1}n → {0,1} is the indicator function of a set A⊂ {0,1}n,
|A| ≥ 2n−s, then ∑

i ,j
f̃ ({i , j})2 ≤O(s2).

For the trivial protocol A is a coordinate subspace, so∣∣∣̃f ({i , j})
∣∣∣= {

1 if both i and j are known
0 o.w.

and
∑

i<j |̃f ({i , j})| = (s
2
)
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For every i , j ∈ [n], i 6= j , one has

Pr[{i , j} ∈M]≈ 1/n

So

E

[ ∑
e={i ,j}∈M

f̃ ({i , j})2

]
=O(c2/n),

since s =O(c) with constant probability

Bob cannot guess parity of any edge in M unless c =Ω(pn).
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Testing bipartiteness: Goldreich-Ron’00: can tell if graph is
bipartite or ε-far from bipartite in ≈ poly(1/ε, logn)n1/2 queries.

Streaming?
(check if ≈ n1/2 random walks of even and odd ≈ poly(logn) length collide)

An Optimal Space Lower Bound for
Approximating MAX-CUT

(STOC 2019; joint work with Dmitry Krachun)



Implicit Hidden Partition Problem

Alice (player 0)
binary string

x ∈ {0,1}n

message m

wuv = xu +xv

Player 1
matching M1, labels

w1 on edges

m10 0

1 1

1

0

0

...
...

Player T
matching MT , labels

wT on edges

mT

0 0

1 1

1

0

0
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1 1

1 1

0

YES case: ∃ partition x ∈ {0,1}n such that w t =M tx for 1≤ t ≤T
NO case: no such partition exists
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Complexity of Implicit Hidden Partition

Player 1
Player 2

Player 3

Theorem (K.-Khanna-Sudan’14; Informal)
Any T -player protocol that obtains constant advantage over
random guessing for the Implicit Hidden Partition problem
requires

p
n/poly(T ) communication.



Add a zero-th player Alice, who holds the bipartition X

Roughly speaking, Alice should get advantage at least 1/T with
at least one of Bobs.

So
p

n/poly(T ) communication is needed
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Complexity of Implicit Hidden Partition

Player 1
Player 2

Player 3

Theorem (K.-Krachun’19; Informal)
Any T -player protocol that obtains constant advantage over
random guessing for the Implicit Hidden Partition problem
requires n/T O(T ) communication.
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Conditioned on messages of player 1, player 2 and player 3, is
distribution of M4X close to uniform?

|A1| ≈ 2n−s, |A2| ≈ 2n−sX ∼UNIF (A1 ∩A2 ∩A3)

conditioned on (m1,m2,m3)

f1(x) :=indicator of A1

f2(x) :=indicator of A2

f3(x) :=indicator of A3

The indicator of A1 ∩A2 ∩A3 is f1 · f2 · f3, and

players’ knowledge≈ ∑
v∈{0,1}n

|v |=2k

ãf1 · f2 · f3(v)2 for k = 1, . . . ,n

Two observations:
Ï by the convolution theorem ãf1 · f2 · f3 = f̃1 ∗ f̃2
Ï f̃1 and f̃2 are easier to understand!
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Conditioned on messages of player 1, player 2 and player 3, is
distribution of M4X close to uniform?

|Ai |/2n ≥ 2−s

|A1| ≈ 2n−s, |A2| ≈ 2n−s

X ∼UNIF (A1 ∩A2 ∩A3)

conditioned on (m1,m2,m3)

f1(x) :=indicator of A1

f2(x) :=indicator of A2

f3(x) :=indicator of A3

The indicator of A1 ∩A2 ∩A3 is h := f1 · f2 · f3.

Bound distance of M4X to uniform?

Bound
∑

v∈{0,1}n

|v |=2k
ĥ(v)2 for k = 1, . . . ,n/2?



Proving stronger bounds on f̃i is easy (since f̃i are supported on
matchings), use convolution theorem?

Convolution theorem:

h̃t = ãf1 · . . . · ft ≈ f̃1 ∗ . . .∗ f̃t



Hidden partition
X ∈ {0,1}n

Hidden partition
X ∈ {0,1}n

Player 1

Player 2

a

b

c
d

Intuition: f̃1(a,b,c,d)2 ≈ how much information player 1
transmits about parity Xa +Xb +Xc +Xd

Intuition:

f̃2(b,c)2 ≈ how much information player 2 transmits
about parity Xb +Xc

Intuition:

�f1 · f2(a,d)2 = f̃1(a,b,c,d)2 · f̃2(b,c)2 ≈ how much
information players 1 and 2 transmit about parity Xa +Xd



Main technical contribution:

Analysis of f̃1 ∗ f̃2 ∗·· ·∗ f̃T for arbitrarily large T

Main challenge: giant component in players’ input:

Player 1
Player 2

Player 3

`2 bounds are not sufficient for inductive hypothesis



Our approach: bound `1 norm of the Fourier transform!

Player 1
Player 2

Player 3

`1 upper bounds on spectrum seamlessly translate to quantum
setting: Kallaugher-Parekh’22



Subgraph counting through sketching

Theorem
In a bounded degree graph, can approximate triangle count in
O∗(m/T 2/3) space in the sketching model

Set T =Θ(n), i.e. roughly maximal number of triangles.

Theorem
The sketching complexity of triangle counting is Ω(m/T 2/3)

Set T =Θ(n), i.e. roughly maximal number of triangles.

Generalizes beyond triangles, and to hypergraphs
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Communication game

Alice Bob

Charlie

MA MB

MC

MA,MB ,MC random

subject to MAMBMC = I

Referee

mA mB

mC

Bit strings xA,xB ,xC ∈ {0,1}n

uniformly random subject to:
YES case: xA +xB +xC = 0n

NO case: xA +xB +xC = 1n

Sum to zero across all triangles or sum to one
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Alice Bob

Charlie

MA MB

MC

MA,MB ,MC random

subject to MAMBMC = I

Referee

mA mB

mC

Theorem
Ω(n1/3) communication is required to get Ω(1) advantage over
random guessing
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Count # of connected components in a graph
(Peng-Sohler’18: approx # of connected components to εn error in ≈ (1/ε)1/ε

3
space)

Random walk generation, PAGERANK estimation
(Kallaugher-K.-Price’22: generate s walks of length ` using space ≈ 2O(`2)s)

Factorial Lower Bounds for (Almost)
Random Order Streams

(FOCS 2022; joint work with Ashish Chiplunkar, John

Kallaugher and Eric Price)
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Find a component of size ≤ ` (assuming there are many)
(Peng-Sohler’18: component finding in ≈ ``3 space)

Random walk generation, PAGERANK estimation
(Kallaugher-K.-Price’22: generate s walks of length ` using space ≈ 2O(`2)s)

Factorial Lower Bounds for (Almost)
Random Order Streams

(FOCS 2022; joint work with Ashish Chiplunkar, John

Kallaugher and Eric Price)



The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order

, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream
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Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden
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The STREAMINGCYCLES problem
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e2 = (584,745), x584 = 1
e2 = (123,574), x123 = 1
. . .
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The STREAMINGCYCLES problem
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Maintain connected component of `O(`) random ‘seed’ vertices.
Space=`O(`), success probability= 1−o(1).

Theorem (Main result (informal))
The communication complexity of STREAMINGCYCLES is `Ω(`).



Space complexity of component finding

For every i ∈ [n] create two vertices i0 and i1.

For
{
i , j

}
insert

{ {
i0, j0

}
,
{
i1, j1

}
if xij = 0{

i0, j1
}

,
{
i1, j0

}
o.w.

1

2

3

4

5

6

7

8

0

00

0

0

0 0

0



Space complexity of component finding

For every i ∈ [n] create two vertices i0 and i1.

For
{
i , j

}
insert

{ {
i0, j0

}
,
{
i1, j1

}
if xij = 0{

i0, j1
}

,
{
i1, j0

}
o.w.

1

2

3

4

5

6

7

8

1

00

0

0

0 0

0



Space complexity of component finding

For every i ∈ [n] create two vertices i0 and i1.

For
{
i , j

}
insert

{ {
i0, j0

}
,
{
i1, j1

}
if xij = 0{

i0, j1
}

,
{
i1, j0

}
o.w.

1

2

3

4

5

6

7

8

1

00

0

0

0 0

0



Space complexity of component finding

For every i ∈ [n] create two vertices i0 and i1.

For
{
i , j

}
insert

{ {
i0, j0

}
,
{
i1, j1

}
if xij = 0{

i0, j1
}

,
{
i1, j0

}
o.w.

1

2

3

4

5

6

7

8

1

01

0

0

0 0

0



Space complexity of component finding

For every i ∈ [n] create two vertices i0 and i1.

For
{
i , j

}
insert

{ {
i0, j0

}
,
{
i1, j1

}
if xij = 0{

i0, j1
}

,
{
i1, j0

}
o.w.

1

2

3

4

5

6

7

8

1

01

1

0

0 0

0



Space complexity of component finding

For every i ∈ [n] create two vertices i0 and i1.

For
{
i , j

}
insert

{ {
i0, j0

}
,
{
i1, j1

}
if xij = 0{

i0, j1
}

,
{
i1, j0

}
o.w.

1

2

3

4

5

6

7

8

1

01

1

0

0 0

0



Space complexity of component finding

For every i ∈ [n] create two vertices i0 and i1.

For
{
i , j

}
insert

{ {
i0, j0

}
,
{
i1, j1

}
if xij = 0{

i0, j1
}

,
{
i1, j0

}
o.w.

1

2

3

4

5

6

7

8

1

01

1

0

0 0

0



Space complexity of component finding

For every i ∈ [n] create two vertices i0 and i1.

For
{
i , j

}
insert

{ {
i0, j0

}
,
{
i1, j1

}
if xij = 0{

i0, j1
}

,
{
i1, j0

}
o.w.

1

2

3

4

5

6

7

8

1

01

1

0

0 1

0



Space complexity of component finding

For every i ∈ [n] create two vertices i0 and i1 (inner and outer).

For
{
i , j

}
insert

{ {
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}
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Space complexity of component finding

If parity of cycle C is odd, get
two components of size `

If parity of cycle C is odd, get a
single component of size 2`



Corollary
Component finding requires `Ω(`) space
Peng-Sohler’18: component finding in `O(`3) space; we show `O(`) space suffices, so

factorial dependence is tight

Corollary
For a constant C generating C4` random walks requires `Ω(`)

space.
Kallaugher-K.-Price’22: can generate s walks to precision ε using (1/ε)`2O(`2)s space

While arrival order in STREAMINGCYCLES is random, our
reduction creates some amount of correlation...
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Hidden batch random order streams

Definition (b-hidden batch random order streams)
Edges of G are partitioned into batches of size bounded by b.
Batches are ordered randomly, and edges appear in
batch-induced order (adversarial within a batch).
(Order of arrival is correlated through external events, unknown to the algorithm)

Theorem
Component finding admits a (1/ε)O(1/ε) ·b · logn space
algorithm in b-hidden batch random order streams.

From streaming hardness of STREAMINGCYCLES:
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requires `Ω(`) space
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Challenges

Many recent works applying Fourier analysis to multi-party
problems with a constant number of parties

Cannot partition into fewer than nΩ(1/`) players, otherwise
reveal answer

Cannot lose even polynomially in the number of players
(n1/`À `` when `= poly(log logn), say)

Analyse algorithm’s knowledge on a ‘per edge’ basis
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Open problems

Approximate MAX-CUT value in n0.99 queries to the graph? Or
in n0.99 space in a poly(logn) number of passes?

Does matching size estimation require Ω(log2 n) space?

Fourier analytic lower bounds where sketching is/should be
optimal (e.g., lower bounds for spanners in sketching)?

Thank you!

Factorial Lower Bounds for (Almost) Random Order Streams

(joint work with Ashish Chiplunkar, John Kallaugher and Eric
Price)
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