

European Research Council Established by the European Commission

Streaming lower bounds through boolean Fourier analysis

Michael Kapralov

EPFL

Based on joint works with Ashish Chiplunkar, John Kallaugher, Dmitry Krachun and Eric Price

August 4, 2022

- edges of G = (V, E) arrive in an arbitrary order in a stream; denote |V| = n, |E| = m
- several passes over the stream

- edges of G = (V, E) arrive in an arbitrary order in a stream; denote |V| = n, |E| = m
- several passes over the stream

- edges of G = (V, E) arrive in an arbitrary order in a stream; denote |V| = n, |E| = m
- several passes over the stream

- edges of G = (V, E) arrive in an arbitrary order in a stream; denote |V| = n, |E| = m
- several passes over the stream

- edges of G = (V, E) arrive in an arbitrary order in a stream; denote |V| = n, |E| = m
- several passes over the stream

- edges of G = (V, E) arrive in an arbitrary order in a stream; denote |V| = n, |E| = m
- several passes over the stream

- edges of G = (V, E) arrive in an arbitrary order in a stream; denote |V| = n, |E| = m
- several passes over the stream

- edges of G = (V, E) arrive in an arbitrary order in a stream; denote |V| = n, |E| = m
- several passes over the stream

- edges of G = (V, E) arrive in an arbitrary order in a stream; denote |V| = n, |E| = m
- several passes over the stream

- edges of G = (V, E) arrive in an arbitrary order in a stream; denote |V| = n, |E| = m
- several passes over the stream

- edges of G = (V, E) arrive in an arbitrary order in a stream; denote |V| = n, |E| = m
- several passes over the stream

- edges of G = (V, E) arrive in an arbitrary order in a stream; denote |V| = n, |E| = m
- several passes over the stream

- edges of G = (V, E) arrive in an arbitrary order in a stream; denote |V| = n, |E| = m
- several passes over the stream

- edges of G = (V, E) arrive in an arbitrary order in a stream; denote |V| = n, |E| = m
- several passes over the stream

- edges of G = (V, E) arrive in an arbitrary order in a stream; denote |V| = n, |E| = m
- several passes over the stream

- edges of G = (V, E) arrive in an arbitrary order in a stream; denote |V| = n, |E| = m
- several passes over the stream

- edges of G = (V, E) arrive in an arbitrary order in a stream; denote |V| = n, |E| = m
- several passes over the stream (ideally one pass)

- output size often $\Omega(n)$ (e.g., matching, sparsifier, spanner)
- even if output is a number (e.g. testing connectivity)

- output size often $\Omega(n)$ (e.g., matching, sparsifier, spanner)
- even if output is a number (e.g. testing connectivity)

But not always:

K.-Khanna-Sudan'14 – can approximate matching size to $poly(\log n)$ factor using $poly(\log n)$ space in random streams.

- output size often $\Omega(n)$ (e.g., matching, sparsifier, spanner)
- even if output is a number (e.g. testing connectivity)

But not always:

K.-Khanna-Sudan'14 – can approximate matching size to $poly(\log n)$ factor using $poly(\log n)$ space in random streams.

Matching, connected components, random walks: Efsaniari-Hajiaghayi-Liaghat-Monemizadeh-Onak'15, Bury-Schwiegelsohn'15, McGregor-Vorotnikova'16, Cormode-Jowhari-Monemizadeh-Muthukrishnan'16,Peng-Sohler'18, K.-Mitrovic-Norouzi-Fard-Tardos'20, Kallaugher-K.-Price'22,...

- output size often $\Omega(n)$ (e.g., matching, sparsifier, spanner)
- even if output is a number (e.g. testing connectivity)

But not always:

K.-Khanna-Sudan'14 – can approximate matching size to $poly(\log n)$ factor using $poly(\log n)$ space in random streams.

Matching, connected components, random walks: Efsaniari-Hajiaghayi-Liaghat-Monemizadeh-Onak'15, Bury-Schwiegelsohn'15, McGregor-Vorotnikova'16, Cormode-Jowhari-Monemizadeh-Muthukrishnan'16,Peng-Sohler'18, K.-Mitrovic-Norouzi-Fard-Tardos'20, Kallaugher-K.-Price'22,...

Streaming complexity of constraint satisfaction problems: Kogan-Krauthgamer'14, K-Khanna-Sudan'14, K-Khanna-Sudan-Velingker'17, Guruswami-Velingker-Velusamy'17, K.-Krachun'19, Guruswami-Tao, '19, Chou-Golovnev-Velusamy'20, Singer-Sudan-Velusamy'21, Chou-Golovnev-Sudan-Velingker-Velusamy'22, Arunachalam-Doriguello'21,... Algorithmic techniques

Often a subgraph exploration processes: maintain a (carefully and adaptively) chosen subgraph

Algorithmic techniques

Often a subgraph exploration processes: maintain a (carefully and adaptively) chosen subgraph

In random order streams: use randomness to perform statistical estimation of various quantities

Algorithmic techniques

Often a subgraph exploration processes: maintain a (carefully and adaptively) chosen subgraph

In random order streams: use randomness to perform statistical estimation of various quantities

Rule of thumb : if 'storing a subgraph' is 'optimal', then can get tight lower bound using boolean Fourier analysis

Testing bipartiteness: Goldreich-Ron'00 can tell if graph is bipartite or ε -far from bipartite in $\approx \text{poly}(1/\epsilon, \log n)n^{1/2}$ queries. Streaming?

(check if $\approx n^{1/2}$ random walks of even and odd $\approx \text{poly}(\log n)$ length collide)

Testing bipartiteness: Goldreich-Ron'00 can tell if graph is bipartite or ε -far from bipartite in $\approx \text{poly}(1/\epsilon, \log n)n^{1/2}$ queries. Streaming?

(check if $\approx n^{1/2}$ random walks of even and odd $\approx \text{poly}(\log n)$ length collide)

In a (bounded degree, say) graph, approximate # of triangles

(Kallaugher-K.-Price'18: color coding+careful sampling of a vertex-induced subgraph)

Testing bipartiteness: Goldreich-Ron'00 can tell if graph is bipartite or ε -far from bipartite in \approx poly $(1/\varepsilon, \log n)n^{1/2}$ queries. Streaming?

(check if $\approx n^{1/2}$ random walks of even and odd $\approx \text{poly}(\log n)$ length collide)

In a (bounded degree, say) graph, approximate # of triangles (Kallaugher-K.-Price'18: color coding+careful sampling of a vertex-induced subgraph)

Count # of connected components in a graph

(Peng-Sohler'18: approx # of connected components to εn error in $\approx (1/\varepsilon)^{1/\varepsilon^3}$ space)

Testing bipartiteness: Goldreich-Ron'00 can tell if graph is bipartite or ε -far from bipartite in \approx poly $(1/\varepsilon, \log n)n^{1/2}$ queries. Streaming?

(check if $\approx n^{1/2}$ random walks of even and odd $\approx \text{poly}(\log n)$ length collide)

In a (bounded degree, say) graph, approximate # of triangles (Kallaugher-K.-Price'18: color coding+careful sampling of a vertex-induced subgraph)

Count # of connected components in a graph (Peng-Sohler'18: approx # of connected components to ϵn error in $\approx (1/\epsilon)^{1/\epsilon^3}$ space)

Random walk generation, PAGERANK estimation

(Kallaugher-K.-Price'22: (careful) rejection sampling; space exponential in walk length)

Testing bipartiteness: Goldreich-Ron'00 can tell if graph is bipartite or ε -far from bipartite in \approx poly $(1/\epsilon, \log n)n^{1/2}$ queries. Streaming?

(check if $\approx n^{1/2}$ random walks of even and odd $\approx \text{poly}(\log n)$ length collide)

In a (bounded degree, say) graph, approximate # of triangles (Kallaugher-K.-Price'18: color coding+careful sampling of a vertex-induced subgraph)

Count # of connected components in a graph (Peng-Sohler'18: approx # of connected components to ϵn error in $\approx (1/\epsilon)^{1/\epsilon^3}$ space)

Random walk generation, PAGERANK estimation

(Kallaugher-K.-Price'22: (careful) rejection sampling; space exponential in walk length)

(Nearly) tight lower bounds using Fourier analytic techniques

- 1. The Boolean Hidden Matching problem
- 2. Multiplayer games via the convolution theorem
- 3. A game with a 'infinite' number of players

1. The Boolean Hidden Matching problem

- 2. Multiplayer games via the convolution theorem
- 3. A game with a 'infinite' number of players

Boolean hidden matching problem (BHM)

Alice binary string $x \in \{0, 1\}^n$

Boolean hidden matching problem (BHM)

Alice binary string $x \in \{0, 1\}^n$

Boolean hidden matching problem (BHM)

In the YES case $w_e = x_u + x_v$ for every $e = (u, v) \in M$ In the NO case $w_e \sim UNIF(\{0, 1\})$ for every $e = (u, v) \in M$

In the YES case $w_e = x_u + x_v$ for every $e = (u, v) \in M$ In the NO case $w_e \sim UNIF(\{0, 1\})$ for every $e = (u, v) \in M$

Bob's task: distinguish between YES and NO cases

Sample $\approx \sqrt{n}$ coordinates of *x*, send values to Bob. Bob will know x_u and x_v for some $e = (u, v) \in M$, can check if $w_e = x_u + x_v$

Gavinsky et al.'07 showed $\Omega(\sqrt{n})$ space is needed

Conditioned on Alice's message, what is the distribution of MX?

Conditioned on Alice's message, what is the distribution of MX?

$$|\mathbf{A}| \approx 2^{n-s}$$

Chance of guessing $x_i + x_j$ is

$$\approx \frac{1}{2} + \left| \widetilde{f}(\{i,j\}) \right|,$$

where for $z \in \{0, 1\}^n$

$$\widetilde{f}(z) = \mathbb{E}_{x \sim UNIF(\mathbf{A})}[(-1)^{x \cdot z}]$$

is a normalized Fourier transform of *f*.

Chance of guessing $x_i + x_j$ is

$$\approx \frac{1}{2} + \left| \widetilde{f}(\{i,j\}) \right|,$$

where for $z \in \{0, 1\}^n$

$$\widetilde{f}(z) = \mathbb{E}_{x \sim UNIF(\mathbf{A})}[(-1)^{x \cdot z}]$$

is a normalized Fourier transform of *f*.

Show that

$$\mathbb{E}\left[\sum_{e=\{i,j\}\in M}\widetilde{f}(\{i,j\})^2\right]=o(1)?$$

Lemma (Gavinsky et al'07; from hypercontractivity) If $f: \{0,1\}^n \rightarrow \{0,1\}$ is the indicator function of a set $A \subset \{0,1\}^n$, $|A| \ge 2^{n-s}$, then

$$\sum_{i,j} \widetilde{f}(\{i,j\})^2 \leq O(s^2).$$

Lemma (Gavinsky et al'07; from hypercontractivity) If $f: \{0,1\}^n \rightarrow \{0,1\}$ is the indicator function of a set $A \subset \{0,1\}^n$, $|A| \ge 2^{n-s}$, then

$$\sum_{i,j} \widetilde{f}(\{i,j\})^2 \leq O(s^2).$$

For the trivial protocol A is a coordinate subspace, so

$$\left|\widetilde{f}(\{i,j\})\right| = \begin{cases} 1 & \text{if both } i \text{ and } j \text{ are known} \\ 0 & \text{o.w.} \end{cases}$$

and $\sum_{i < j} |\tilde{f}(\{i, j\})| = {s \choose 2}$

For every $i, j \in [n], i \neq j$, one has

 $\Pr[\{i, j\} \in M] \approx 1/n$

For every $i, j \in [n], i \neq j$, one has

 $\Pr[\{i,j\} \in M] \approx 1/n$

So

$$\mathbb{E}\left[\sum_{e=\{i,j\}\in M}\tilde{f}(\{i,j\})^2\right]=O(c^2/n),$$

since s = O(c) with constant probability

For every $i, j \in [n], i \neq j$, one has

 $\Pr[\{i, j\} \in M] \approx 1/n$

So

$$\mathbb{E}\left[\sum_{e=\{i,j\}\in M}\widetilde{f}(\{i,j\})^2\right]=O(c^2/n),$$

since s = O(c) with constant probability

Bob cannot guess parity of any edge in *M* unless $c = \Omega(\sqrt{n})$.

- 1. The Boolean Hidden Matching problem
- 2. Multiplayer games via the convolution theorem
- 3. A game with a 'infinite' number of players

- 1. The Boolean Hidden Matching problem
- 2. Multiplayer games via the convolution theorem
- 3. A game with a 'infinite' number of players

Testing bipartiteness: Goldreich-Ron'00: can tell if graph is bipartite or ε -far from bipartite in $\approx \text{poly}(1/\epsilon, \log n)n^{1/2}$ queries. Streaming?

(check if $\approx n^{1/2}$ random walks of even and odd $\approx \text{poly}(\log n)$ length collide)

An Optimal Space Lower Bound for Approximating MAX-CUT

(STOC 2019; joint work with Dmitry Krachun)

Player 1 matching M_1 , labels w^1 on edges

Player 1 $\longrightarrow m_1$ matching M_1 , labels w^1 on edges

YES case: \exists partition $x \in \{0, 1\}^n$ such that $w^t = M^t x$ for $1 \le t \le T$

YES case: \exists partition $x \in \{0, 1\}^n$ such that $w^t = M^t x$ for $1 \le t \le T$

YES case: \exists partition $x \in \{0, 1\}^n$ such that $w^t = M^t x$ for $1 \le t \le T$

YES case: \exists partition $x \in \{0, 1\}^n$ such that $w^t = M^t x$ for $1 \le t \le T$ **NO** case: no such partition exists

Distributional communication problem

Choose a hidden partition $X \in UNIF(\{0,1\}^n)$

Distributional communication problem

Choose a hidden partition $X \in UNIF(\{0,1\}^n)$

Distributional communication problem

Choose a hidden partition $X \in UNIF(\{0,1\}^n)$

YES case: labels satisfy $w^t = M^t X$ for $1 \le t \le T$ **NO** case: labels are random: $w^t \sim UNIF$

Reduction from MAX-CUT ($T \approx 1/\epsilon^2$ for $2 - \epsilon$ approx)

YES: random bipartite (multi)graph with expected degree $\approx \frac{1}{\epsilon^2}$

NO: non-bipartite (multi)graph with expected degree $\approx \frac{1}{r^2}$

Reduction from MAX-CUT ($T \approx 1/\epsilon^2$ for $2-\epsilon$ approx) YES: random bipartite (multi)graph with expected degree $\approx \frac{1}{\epsilon^2}$

NO: non-bipartite (multi)graph with expected degree $\approx \frac{1}{r^2}$

t-th player generates graph G'_t by including edges $e \in G_t$ with $w_e^t = 1$

Reduction from MAX-CUT ($T \approx 1/\epsilon^2$ for $2-\epsilon$ approx) YES: random bipartite (multi)graph with expected degree $\approx \frac{1}{\epsilon^2}$

NO: non-bipartite (multi)graph with expected degree $\approx \frac{1}{r^2}$

t-th player generates graph G'_t by including edges $e \in G_t$ with $w'_e = 1$

YES case: labels satisfy $w^t = M^t X$ for $1 \le t \le T$ $\bigcup_t G'_t$ is bipartite
Reduction from MAX-CUT ($T \approx 1/\epsilon^2$ for $2-\epsilon$ approx) YES: random bipartite (multi)graph with expected degree $\approx \frac{1}{\epsilon^2}$

NO: non-bipartite (multi)graph with expected degree $\approx \frac{1}{r^2}$

t-th player generates graph G'_t by including edges $e \in G_t$ with $w'_e = 1$

YES case: labels satisfy $w^t = M^t X$ for $1 \le t \le T$ $\bigcup_t G'_t$ is bipartite

NO case: labels are random: $w^t \sim UNIF$ $\bigcup_t G'_t$ is a sample of $\bigcup_t G_t$ at rate 1/2

Complexity of Implicit Hidden Partition

Theorem (K.-Khanna-Sudan'14; Informal)

Any T-player protocol that obtains constant advantage over random guessing for the Implicit Hidden Partition problem requires $\sqrt{n}/\text{poly}(T)$ communication.

Add a zero-th player Alice, who holds the bipartition X

Add a zero-th player Alice, who holds the bipartition X

Roughly speaking, Alice should get advantage at least 1/T with at least one of Bobs.

Add a zero-th player Alice, who holds the bipartition X

Roughly speaking, Alice should get advantage at least 1/T with at least one of Bobs.

So \sqrt{n} /poly(*T*) communication is needed

Complexity of Implicit Hidden Partition

Theorem (K.-Krachun'19; Informal)

Any T-player protocol that obtains constant advantage over random guessing for the Implicit Hidden Partition problem requires $n/T^{O(T)}$ communication.

Distributional communication problem

Choose a hidden partition $X \in UNIF(\{0,1\}^n)$

Distributional communication problem

Choose a hidden partition $X \in UNIF(\{0,1\}^n)$

Distributional communication problem

Choose a hidden partition $X \in UNIF(\{0,1\}^n)$

YES case: labels satisfy $w^t = M^t X$ for $1 \le t \le T$ **NO** case: labels are random: $w^t \sim UNIF$

 $X \sim UNIF(A_1 \cap A_2 \cap A_3)$ conditioned on (m_1, m_2, m_3)

 $|A_{i}|/2^{n} \ge 2^{-s}$

 $f_1(x) :=$ indicator of A_1 $f_2(x) :=$ indicator of A_2 $f_3(x) :=$ indicator of A_3

The indicator of $A_1 \cap A_2 \cap A_3$ is $h := f_1 \cdot f_2 \cdot f_3$.

Bound distance of M_4X to uniform?

Bound
$$\sum_{\substack{v \in \{0,1\}^n \\ |v|=2k}} \widehat{h}(v)^2$$
 for $k = 1, \dots, n/2$?

Proving stronger bounds on \tilde{f}_i is easy (since \tilde{f}_i are supported on matchings), use convolution theorem?

Convolution theorem:

$$\widetilde{h}_t = \widetilde{f_1 \cdot \ldots \cdot f_t} \approx \widetilde{f}_1 \ast \ldots \ast \widetilde{f}_t$$

Intuition: $\tilde{f}_1(a, b, c, d)^2 \approx$ how much information player 1 transmits about parity $X_a + X_b + X_c + X_d$

 $\tilde{f}_2(b,c)^2 \approx$ how much information player 2 transmits about parity $X_b + X_c$

 $\widetilde{f_1 \cdot f_2}(a, d)^2 = \widetilde{f_1}(a, b, c, d)^2 \cdot \widetilde{f_2}(b, c)^2 \approx \text{how much}$ information players 1 and 2 transmit about parity $X_a + X_d$ Main technical contribution:

Analysis of
$$\tilde{f}_1 * \tilde{f}_2 * \cdots * \tilde{f}_T$$
 for arbitrarily large T

Main challenge: giant component in players' input:

 ℓ_2 bounds are not sufficient for inductive hypothesis

Our approach: bound ℓ_1 norm of the Fourier transform!

ℓ1 upper bounds on spectrum seamlessly translate to quantum setting: Kallaugher-Parekh'22

Theorem In a bounded degree graph, can approximate triangle count in $O^*(m/T^{2/3})$ space in the sketching model

Theorem In a bounded degree graph, can approximate triangle count in $O^*(m/T^{2/3})$ space in the sketching model

Theorem

The sketching complexity of triangle counting is $\Omega(m/T^{2/3})$

Theorem

In a bounded degree graph, can approximate triangle count in $O^*(n^{1/3})$ space in the sketching model

Set $T = \Theta(n)$, i.e. roughly maximal number of triangles.

Theorem

The sketching complexity of triangle counting is $\Omega(n^{1/3})$

Set $T = \Theta(n)$, i.e. roughly maximal number of triangles.

Theorem

In a bounded degree graph, can approximate triangle count in $O^*(n^{1/3})$ space in the sketching model

Set $T = \Theta(n)$, i.e. roughly maximal number of triangles.

Theorem The sketching complexity of triangle counting is $\Omega(n^{1/3})$

Set $T = \Theta(n)$, i.e. roughly maximal number of triangles.

Generalizes beyond triangles, and to hypergraphs

Alice

Bob

 M_A, M_B, M_C random subject to $M_A M_B M_C = I$

Bob

Charlie

 M_A, M_B, M_C random subject to $M_A M_B M_C = I$

Alice

Bob

 M_A, M_B, M_C random subject to $M_A M_B M_C = I$

Bob

 M_A, M_B, M_C random subject to $M_A M_B M_C = I$

Alice

Bob

 M_A, M_B, M_C random subject to $M_A M_B M_C = I$

Alice

Bob

 M_A, M_B, M_C random subject to $M_A M_B M_C = I$

Alice

Bob

 M_A, M_B, M_C random subject to $M_A M_B M_C = I$

Alice

Bob

 M_A, M_B, M_C random subject to $M_A M_B M_C = I$

Alice

Bob

 $M_{A}, M_{B}, M_{C} \text{ random}$ subject to $M_{A}M_{B}M_{C} = I$ Referee Bit strings $x^{A}, x^{B}, x^{C} \in \{0, 1\}^{n}$ YES case: $x^{A} + x^{B} + x^{C} = 0^{n}$ uniformly random subject to: NO case: $x^{A} + x^{B} + x^{C} = 1^{n}$ Sum to zero across all triangles or sum to one

Charlie

 M_A, M_B, M_C random subject to $M_A M_B M_C = I$

Theorem $\Omega(n^{1/3})$ communication is required to get $\Omega(1)$ advantage over random guessing

- 1. The Boolean Hidden Matching problem
- 2. Multiplayer games via the convolution theorem
- 3. A game with a 'infinite' number of players
- 1. The Boolean Hidden Matching problem
- 2. Multiplayer games via the convolution theorem
- 3. A game with an 'infinite' number of players

Count # of connected components in a graph

(Peng-Sohler'18: approx # of connected components to εn error in $\approx (1/\varepsilon)^{1/\varepsilon^3}$ space)

Random walk generation, PAGERANK estimation (Kallaugher-K.-Price'22: generate *s* walks of length ℓ using space $\approx 2^{O(\ell^2)}s$)

Factorial Lower Bounds for (Almost) Random Order Streams

(FOCS 2022; joint work with Ashish Chiplunkar, John Kallaugher and Eric Price)

Count # of connected components in a graph

(Peng-Sohler'18: approx # of connected components to εn error in $\approx (1/\varepsilon)^{1/\varepsilon^3}$ space)

Random walk generation, PAGERANK estimation

(Kallaugher-K.-Price'22: generate s walks of length k using space $\approx 2^{O(k^2)}s$)

Factorial Lower Bounds for (Almost) Random Order Streams

(FOCS 2022; joint work with Ashish Chiplunkar, John Kallaugher and Eric Price)

Find a component of size $\leq \ell$ (assuming there are many) (Peng-Sohler'18: component finding in $\approx \ell^{\ell^3}$ space)

Random walk generation, PAGERANK estimation (Kallaugher-K.-Price'22: generate *s* walks of length ℓ using space $\approx 2^{O(\ell^2)} s$)

Factorial Lower Bounds for (Almost) Random Order Streams

(FOCS 2022; joint work with Ashish Chiplunkar, John Kallaugher and Eric Price)

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Example stream:

 $e_1 = (234, 345), x_{234} = 0$

 $e_1 = (234, 345), \quad x_{234} = 0$ $e_2 = (584, 745), \quad x_{584} = 1$

• • •

Space complexity of STREAMINGCYCLES?

A simple protocol: maintain parity of connected component of vertex 1. Space=1 bit.

A simple protocol: maintain parity of connected component of vertex 1. Space=1 bit.

A simple protocol: maintain parity of connected component of vertex 1. Space=1 bit.

Success probability=

A simple protocol: maintain parity of connected component of vertex 1. Space=1 bit.

Success probability= $\ell^{-\Theta(\ell)}$.

Maintain connected component of $\ell^{O(\ell)}$ random 'seed' vertices. Space= $\ell^{O(\ell)}$, success probability= 1 - o(1).
Maintain connected component of $\ell^{O(\ell)}$ random 'seed' vertices. Space= $\ell^{O(\ell)}$, success probability= 1 - o(1).

Theorem (Main result; informal)

This is tight up to constant factors in the exponent.

The STREAMINGCYCLES problem

Maintain connected component of $\ell^{O(\ell)}$ random 'seed' vertices. Space= $\ell^{O(\ell)}$, success probability= 1 – o(1).

Theorem (Main result (informal))

The communication complexity of STREAMINGCYCLES is $\ell^{\Omega(\ell)}$.

For
$$\{i, j\}$$
 insert $\begin{cases} \{i_0, j_0\}, \{i_1, j_1\} & \text{if } x_{ij} = 0\\ \{i_0, j_1\}, \{i_1, j_0\} & \text{o.w.} \end{cases}$

For every $i \in [n]$ create two vertices i_0 and i_1 .

8

6

For
$$\{i, j\}$$
 insert $\begin{cases} \{i_0, j_0\}, \{i_1, j_1\} & \text{if } x_{ij} = 0\\ \{i_0, j_1\}, \{i_1, j_0\} & \text{o.w.} \end{cases}$

For
$$\{i, j\}$$
 insert $\begin{cases} \{i_0, j_0\}, \{i_1, j_1\} & \text{if } x_{ij} = 0\\ \{i_0, j_1\}, \{i_1, j_0\} & \text{o.w.} \end{cases}$

For every $i \in [n]$ create two vertices i_0 and i_1 (inner and outer).

If parity of cycle C is odd, get two components of size ℓ If parity of cycle C is odd, get a single component of size 2ℓ

Component finding requires $\ell^{\Omega(\ell)}$ space

Peng-Sohler'18: component finding in $\ell^{O(\ell^3)}$ space; we show $\ell^{O(\ell)}$ space suffices, so factorial dependence is tight

Component finding requires $\ell^{\Omega(\ell)}$ space

Peng-Sohler'18: component finding in $\ell^{O(\ell^3)}$ space; we show $\ell^{O(\ell)}$ space suffices, so factorial dependence is tight

Corollary

For a constant C generating $C4^{\ell}$ random walks requires $\ell^{\Omega(\ell)}$ space.

Kallaugher-K.-Price'22: can generate *s* walks to precision ε using $(1/\varepsilon)^{\ell} 2^{O(\ell^2)} s$ space

Component finding in random order streams (??) requires $\ell^{\Omega(\ell)}$ space

Peng-Sohler'18: component finding in $\ell^{O(\ell^3)}$ space; we show $\ell^{O(\ell)}$ space suffices, so factorial dependence is tight

Corollary For a constant C generating $C4^{\ell}$ random walks in random order streams (??) requires $\ell^{\Omega(\ell)}$ space.

Kallaugher-K.-Price'22: can generate *s* walks to precision ε using $(1/\varepsilon)^k 2^{O(k^2)} s$ space

Component finding in random order streams (??) requires $\ell^{\Omega(\ell)}$ space

Peng-Sohler'18: component finding in $\ell^{O(\ell^3)}$ space; we show $\ell^{O(\ell)}$ space suffices, so factorial dependence is tight

Corollary For a constant C generating $C4^{\ell}$ random walks in random order streams (??) requires $\ell^{\Omega(\ell)}$ space.

Kallaugher-K.-Price'22: can generate *s* walks to precision ε using $(1/\varepsilon)^k 2^{O(k^2)} s$ space

While arrival order in STREAMINGCYCLES is random, our reduction creates some amount of correlation...

Definition (b-hidden batch random order streams)

Edges of *G* are partitioned into *batches* of size bounded by *b*. Batches are ordered randomly, and edges appear in batch-induced order (adversarial within a batch).

(Order of arrival is correlated through external events, unknown to the algorithm)

Definition (*b*-hidden batch random order streams)

Edges of *G* are partitioned into *batches* of size bounded by *b*. Batches are ordered randomly, and edges appear in batch-induced order (adversarial within a batch).

(Order of arrival is correlated through external events, unknown to the algorithm)

Theorem

Component finding admits a $(1/\epsilon)^{O(1/\epsilon)} \cdot b \cdot \log n$ space algorithm in b-hidden batch random order streams.

Definition (*b*-hidden batch random order streams)

Edges of *G* are partitioned into *batches* of size bounded by *b*. Batches are ordered randomly, and edges appear in batch-induced order (adversarial within a batch).

(Order of arrival is correlated through external events, unknown to the algorithm)

Theorem

Component finding admits a $(1/\epsilon)^{O(1/\epsilon)} \cdot b \cdot \log n$ space algorithm in *b*-hidden batch random order streams.

From streaming hardness of STREAMINGCYCLES:

Corollary

Component finding in random order streams (??) requires $\ell^{\Omega(\ell)}$ space

Definition (*b*-hidden batch random order streams)

Edges of *G* are partitioned into *batches* of size bounded by *b*. Batches are ordered randomly, and edges appear in batch-induced order (adversarial within a batch).

(Order of arrival is correlated through external events, unknown to the algorithm)

Theorem

Component finding admits a $(1/\epsilon)^{O(1/\epsilon)} \cdot b \cdot \log n$ space algorithm in *b*-hidden batch random order streams.

From streaming hardness of STREAMINGCYCLES:

Corollary

Component finding in 2-hidden batch random order streams requires $\ell^{\Omega(\ell)}$ space

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Space complexity of STREAMINGCYCLES

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Space complexity of STREAMINGCYCLES

Edges of n/ℓ disjoint cycles of length ℓ presented in a stream in a random order, annotated with random bits

Goal: output $(C, \sum_{e \in C} x_e)$ for some cycle C at the end of stream

Many recent works applying Fourier analysis to multi-party problems with a constant number of parties

Many recent works applying Fourier analysis to multi-party problems with a constant number of parties

Cannot partition into fewer than $n^{\Omega(1/\ell)}$ players, otherwise reveal answer

Many recent works applying Fourier analysis to multi-party problems with a constant number of parties

Cannot partition into fewer than $n^{\Omega(1/\ell)}$ players, otherwise reveal answer

Cannot lose even polynomially in the number of players $(n^{1/\ell} \gg \ell^{\ell} \text{ when } \ell = \text{poly}(\log \log n), \text{ say})$

Many recent works applying Fourier analysis to multi-party problems with a constant number of parties

Cannot partition into fewer than $n^{\Omega(1/\ell)}$ players, otherwise reveal answer

Cannot lose even polynomially in the number of players $(n^{1/\ell} \gg \ell^{\ell} \text{ when } \ell = \text{poly}(\log \log n), \text{ say})$

Analyse algorithm's knowledge on a 'per edge' basis

Approximate MAX-CUT value in $n^{0.99}$ queries to the graph? Or in $n^{0.99}$ space in a poly(log *n*) number of passes?

Approximate MAX-CUT value in $n^{0.99}$ queries to the graph? Or in $n^{0.99}$ space in a poly(log *n*) number of passes?

Does matching size estimation require $\Omega(\log^2 n)$ space?

Approximate MAX-CUT value in $n^{0.99}$ queries to the graph? Or in $n^{0.99}$ space in a poly(log *n*) number of passes?

Does matching size estimation require $\Omega(\log^2 n)$ space?

Fourier analytic lower bounds where sketching is/should be optimal (e.g., lower bounds for spanners in sketching)?

Approximate MAX-CUT value in $n^{0.99}$ queries to the graph? Or in $n^{0.99}$ space in a poly(log *n*) number of passes?

Does matching size estimation require $\Omega(\log^2 n)$ space?

Fourier analytic lower bounds where sketching is/should be optimal (e.g., lower bounds for spanners in sketching)?

Thank you!

Factorial Lower Bounds for (Almost) Random Order Streams

(joint work with Ashish Chiplunkar, John Kallaugher and Eric Price)

