
Streaming lower bounds through boolean
Fourier analysis

Michael Kapralov

EPFL

Based on joint works with Ashish Chiplunkar, John Kallaugher, Dmitry Krachun

and Eric Price

August 4, 2022

Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

Streaming model
Ï edges of G = (V ,E) arrive in an arbitrary order in a stream;

denote |V | = n, |E | =m
Ï several passes over the stream (ideally one pass)

Ï need to maintain a sparsifier at all times

weights on edges

Insertion-only stream

Ω(n) space is often needed:
Ï output size often Ω(n) (e.g., matching, sparsifier, spanner)
Ï even if output is a number (e.g. testing connectivity)

But not always:

K.-Khanna-Sudan’14 – can approximate matching size to
poly(logn) factor using poly(logn) space in random streams.

Matching, connected components, random walks:
Efsaniari-Hajiaghayi-Liaghat-Monemizadeh-Onak’15, Bury-Schwiegelsohn’15,
McGregor-Vorotnikova’16,
Cormode-Jowhari-Monemizadeh-Muthukrishnan’16,Peng-Sohler’18,
K.-Mitrovic-Norouzi-Fard-Tardos’20, Kallaugher-K.-Price’22,...

Streaming complexity of constraint satisfaction problems:
Kogan-Krauthgamer’14, K-Khanna-Sudan’14, K-Khanna-Sudan-Velingker’17,
Guruswami-Velingker-Velusamy’17, K.-Krachun’19, Guruswami-Tao, ’19,
Chou-Golovnev-Velusamy’20, Singer-Sudan-Velusamy’21,
Chou-Golovnev-Sudan-Velingker-Velusamy’22, Arunachalam-Doriguello’21,. . .

Ω(n) space is often needed:
Ï output size often Ω(n) (e.g., matching, sparsifier, spanner)
Ï even if output is a number (e.g. testing connectivity)

But not always:

K.-Khanna-Sudan’14 – can approximate matching size to
poly(logn) factor using poly(logn) space in random streams.

Matching, connected components, random walks:
Efsaniari-Hajiaghayi-Liaghat-Monemizadeh-Onak’15, Bury-Schwiegelsohn’15,
McGregor-Vorotnikova’16,
Cormode-Jowhari-Monemizadeh-Muthukrishnan’16,Peng-Sohler’18,
K.-Mitrovic-Norouzi-Fard-Tardos’20, Kallaugher-K.-Price’22,...

Streaming complexity of constraint satisfaction problems:
Kogan-Krauthgamer’14, K-Khanna-Sudan’14, K-Khanna-Sudan-Velingker’17,
Guruswami-Velingker-Velusamy’17, K.-Krachun’19, Guruswami-Tao, ’19,
Chou-Golovnev-Velusamy’20, Singer-Sudan-Velusamy’21,
Chou-Golovnev-Sudan-Velingker-Velusamy’22, Arunachalam-Doriguello’21,. . .

Ω(n) space is often needed:
Ï output size often Ω(n) (e.g., matching, sparsifier, spanner)
Ï even if output is a number (e.g. testing connectivity)

But not always:

K.-Khanna-Sudan’14 – can approximate matching size to
poly(logn) factor using poly(logn) space in random streams.

Matching, connected components, random walks:
Efsaniari-Hajiaghayi-Liaghat-Monemizadeh-Onak’15, Bury-Schwiegelsohn’15,
McGregor-Vorotnikova’16,
Cormode-Jowhari-Monemizadeh-Muthukrishnan’16,Peng-Sohler’18,
K.-Mitrovic-Norouzi-Fard-Tardos’20, Kallaugher-K.-Price’22,...

Streaming complexity of constraint satisfaction problems:
Kogan-Krauthgamer’14, K-Khanna-Sudan’14, K-Khanna-Sudan-Velingker’17,
Guruswami-Velingker-Velusamy’17, K.-Krachun’19, Guruswami-Tao, ’19,
Chou-Golovnev-Velusamy’20, Singer-Sudan-Velusamy’21,
Chou-Golovnev-Sudan-Velingker-Velusamy’22, Arunachalam-Doriguello’21,. . .

Ω(n) space is often needed:
Ï output size often Ω(n) (e.g., matching, sparsifier, spanner)
Ï even if output is a number (e.g. testing connectivity)

But not always:

K.-Khanna-Sudan’14 – can approximate matching size to
poly(logn) factor using poly(logn) space in random streams.

Matching, connected components, random walks:
Efsaniari-Hajiaghayi-Liaghat-Monemizadeh-Onak’15, Bury-Schwiegelsohn’15,
McGregor-Vorotnikova’16,
Cormode-Jowhari-Monemizadeh-Muthukrishnan’16,Peng-Sohler’18,
K.-Mitrovic-Norouzi-Fard-Tardos’20, Kallaugher-K.-Price’22,...

Streaming complexity of constraint satisfaction problems:
Kogan-Krauthgamer’14, K-Khanna-Sudan’14, K-Khanna-Sudan-Velingker’17,
Guruswami-Velingker-Velusamy’17, K.-Krachun’19, Guruswami-Tao, ’19,
Chou-Golovnev-Velusamy’20, Singer-Sudan-Velusamy’21,
Chou-Golovnev-Sudan-Velingker-Velusamy’22, Arunachalam-Doriguello’21,. . .

Algorithmic techniques

Often a subgraph exploration processes: maintain a (carefully
and adaptively) chosen subgraph

In random order streams: use randomness to perform
statistical estimation of various quantities

Rule of thumb : if ‘storing a subgraph’ is ‘optimal’, then can get
tight lower bound using boolean Fourier analysis

Algorithmic techniques

Often a subgraph exploration processes: maintain a (carefully
and adaptively) chosen subgraph

In random order streams: use randomness to perform
statistical estimation of various quantities

Rule of thumb : if ‘storing a subgraph’ is ‘optimal’, then can get
tight lower bound using boolean Fourier analysis

Algorithmic techniques

Often a subgraph exploration processes: maintain a (carefully
and adaptively) chosen subgraph

In random order streams: use randomness to perform
statistical estimation of various quantities

Rule of thumb : if ‘storing a subgraph’ is ‘optimal’, then can get
tight lower bound using boolean Fourier analysis

Testing bipartiteness: Goldreich-Ron’00 can tell if graph is
bipartite or ε-far from bipartite in ≈ poly(1/ε, logn)n1/2 queries.

Streaming?
(check if ≈ n1/2 random walks of even and odd ≈ poly(logn) length collide)

In a (bounded degree, say) graph, approximate # of triangles
(Kallaugher-K.-Price’18: color coding+careful sampling of a vertex-induced subgraph)

Count # of connected components in a graph
(Peng-Sohler’18: approx # of connected components to εn error in ≈ (1/ε)1/ε

3
space)

Random walk generation, PAGERANK estimation
(Kallaugher-K.-Price’22: (careful) rejection sampling; space exponential in walk length)

(Nearly) tight lower bounds using Fourier analytic
techniques

Testing bipartiteness: Goldreich-Ron’00 can tell if graph is
bipartite or ε-far from bipartite in ≈ poly(1/ε, logn)n1/2 queries.

Streaming?
(check if ≈ n1/2 random walks of even and odd ≈ poly(logn) length collide)

In a (bounded degree, say) graph, approximate # of triangles
(Kallaugher-K.-Price’18: color coding+careful sampling of a vertex-induced subgraph)

Count # of connected components in a graph
(Peng-Sohler’18: approx # of connected components to εn error in ≈ (1/ε)1/ε

3
space)

Random walk generation, PAGERANK estimation
(Kallaugher-K.-Price’22: (careful) rejection sampling; space exponential in walk length)

(Nearly) tight lower bounds using Fourier analytic
techniques

Testing bipartiteness: Goldreich-Ron’00 can tell if graph is
bipartite or ε-far from bipartite in ≈ poly(1/ε, logn)n1/2 queries.

Streaming?
(check if ≈ n1/2 random walks of even and odd ≈ poly(logn) length collide)

In a (bounded degree, say) graph, approximate # of triangles
(Kallaugher-K.-Price’18: color coding+careful sampling of a vertex-induced subgraph)

Count # of connected components in a graph
(Peng-Sohler’18: approx # of connected components to εn error in ≈ (1/ε)1/ε

3
space)

Random walk generation, PAGERANK estimation
(Kallaugher-K.-Price’22: (careful) rejection sampling; space exponential in walk length)

(Nearly) tight lower bounds using Fourier analytic
techniques

Testing bipartiteness: Goldreich-Ron’00 can tell if graph is
bipartite or ε-far from bipartite in ≈ poly(1/ε, logn)n1/2 queries.

Streaming?
(check if ≈ n1/2 random walks of even and odd ≈ poly(logn) length collide)

In a (bounded degree, say) graph, approximate # of triangles
(Kallaugher-K.-Price’18: color coding+careful sampling of a vertex-induced subgraph)

Count # of connected components in a graph
(Peng-Sohler’18: approx # of connected components to εn error in ≈ (1/ε)1/ε

3
space)

Random walk generation, PAGERANK estimation
(Kallaugher-K.-Price’22: (careful) rejection sampling; space exponential in walk length)

(Nearly) tight lower bounds using Fourier analytic
techniques

Testing bipartiteness: Goldreich-Ron’00 can tell if graph is
bipartite or ε-far from bipartite in ≈ poly(1/ε, logn)n1/2 queries.

Streaming?
(check if ≈ n1/2 random walks of even and odd ≈ poly(logn) length collide)

In a (bounded degree, say) graph, approximate # of triangles
(Kallaugher-K.-Price’18: color coding+careful sampling of a vertex-induced subgraph)

Count # of connected components in a graph
(Peng-Sohler’18: approx # of connected components to εn error in ≈ (1/ε)1/ε

3
space)

Random walk generation, PAGERANK estimation
(Kallaugher-K.-Price’22: (careful) rejection sampling; space exponential in walk length)

(Nearly) tight lower bounds using Fourier analytic
techniques

Testing bipartiteness: Goldreich-Ron’00 can tell if graph is
bipartite or ε-far from bipartite in ≈ poly(1/ε, logn)n1/2 queries.

Streaming?
(check if ≈ n1/2 random walks of even and odd ≈ poly(logn) length collide)

In a (bounded degree, say) graph, approximate # of triangles
(Kallaugher-K.-Price’18: color coding+careful sampling of a vertex-induced subgraph)

Count # of connected components in a graph
(Peng-Sohler’18: approx # of connected components to εn error in ≈ (1/ε)1/ε

3
space)

Random walk generation, PAGERANK estimation
(Kallaugher-K.-Price’22: (careful) rejection sampling; space exponential in walk length)

(Nearly) tight lower bounds using Fourier analytic
techniques

1. The Boolean Hidden Matching problem

2. Multiplayer games via the convolution theorem

3. A game with a ‘infinite’ number of players

1. The Boolean Hidden Matching problem

2. Multiplayer games via the convolution theorem

3. A game with a ‘infinite’ number of players

Boolean hidden matching problem (BHM)

Alice
binary string x ∈ {0,1}n

message m
Bob

matching M, |M | =Ω(n)

0 0 0

1
1

1

1

0

0

Bob’s task: output (e,
∑

u∈e xe) for some e ∈M

Tight analysis (of decision version) by Gavinsky-Kempe-Kerenidis-Raz-de
Wolf’07

Boolean hidden matching problem (BHM)

Alice

message m

binary string x ∈ {0,1}n

Bob
matching M, |M | =Ω(n)

0 0 0

1
1

1

1

0

0

Bob’s task: output (e,
∑

u∈e xe) for some e ∈M

Tight analysis (of decision version) by Gavinsky-Kempe-Kerenidis-Raz-de
Wolf’07

Boolean hidden matching problem (BHM)

Alice
message m

binary string x ∈ {0,1}n
Bob

matching M, |M | =Ω(n)

0 0 0

1
1

1 1

0

0

Bob’s task: output (e,
∑

u∈e xe) for some e ∈M

Tight analysis (of decision version) by Gavinsky-Kempe-Kerenidis-Raz-de
Wolf’07

Boolean hidden matching problem (BHM)

Alice
message m

binary string x ∈ {0,1}n
Bob

matching M, |M | =Ω(n)

labels we,e ∈M

0 0 0

1
1

0

0

In the YES case we = xu +xv for every e = (u,v) ∈M

In the NO case we ∼UNIF ({0,1}) for every e = (u,v) ∈M

Bob’s task: distinguish between YES and NO cases

Boolean hidden matching problem (BHM)

Alice
message m

binary string x ∈ {0,1}n
Bob

matching M, |M | =Ω(n)
labels we,e ∈M

0 0 0

1
1

0

0

In the YES case we = xu +xv for every e = (u,v) ∈M

In the NO case we ∼UNIF ({0,1}) for every e = (u,v) ∈M

Bob’s task: distinguish between YES and NO cases

Boolean hidden matching problem (BHM)

Alice
message m

binary string x ∈ {0,1}n
Bob

matching M, |M | =Ω(n)
labels we,e ∈M

0 0 0

1
1

0

0

In the YES case we = xu +xv for every e = (u,v) ∈M

In the NO case we ∼UNIF ({0,1}) for every e = (u,v) ∈M

Bob’s task: distinguish between YES and NO cases

Boolean hidden matching problem (BHM)

Alice
message m

binary string x ∈ {0,1}n
Bob

matching M, |M | =Ω(n)
labels we,e ∈M

0 0 0

1
1

0

0

In the YES case we = xu +xv for every e = (u,v) ∈M

In the NO case we ∼UNIF ({0,1}) for every e = (u,v) ∈M

Bob’s task: distinguish between YES and NO cases

Boolean hidden matching problem (BHM)

Alice
message m

binary string x ∈ {0,1}n
Bob

matching M, |M | =Ω(n)
labels we,e ∈M

0 0 0

1
1

0

0

Bob’s task: distinguish between YES and NO cases

Sample ≈p
n coordinates of x , send values to Bob. Bob will

know xu and xv for some e = (u,v) ∈M, can check if we = xu +xv

Gavinsky et al.’07 showed Ω(
p

n) space is needed

Boolean hidden matching problem (BHM)

Alice
message m

binary string x ∈ {0,1}n
Bob

matching M, |M | =Ω(n)
labels we,e ∈M

0 0 0

1
1

0

0

Bob’s task: distinguish between YES and NO cases

Sample ≈p
n coordinates of x , send values to Bob. Bob will

know xu and xv for some e = (u,v) ∈M, can check if we = xu +xv

Gavinsky et al.’07 showed Ω(
p

n) space is needed

Conditioned on Alice’s message, what is the distribution of MX?

|A| ≈ 2n−sX ∼UNIF (A)
conditioned on m

f (x) :=indicator of A

Conditioned on Alice’s message, what is the distribution of MX?

|A| ≈ 2n−sX ∼UNIF (A)
conditioned on m

f (x) :=indicator of A

Chance of guessing xi +xj is

≈ 1
2
+

∣∣∣̃f ({i , j})
∣∣∣ ,

where for z ∈ {0,1}n

f̃ (z)= Ex∼UNIF (A)[(−1)x ·z]

is a normalized Fourier transform of f .

Show that

E

[∑
e={i ,j}∈M

f̃ ({i , j})2

]
= o(1)?

Chance of guessing xi +xj is

≈ 1
2
+

∣∣∣̃f ({i , j})
∣∣∣ ,

where for z ∈ {0,1}n

f̃ (z)= Ex∼UNIF (A)[(−1)x ·z]

is a normalized Fourier transform of f .

Show that

E

[∑
e={i ,j}∈M

f̃ ({i , j})2

]
= o(1)?

Lemma (Gavinsky et al’07; from hypercontractivity)
If f : {0,1}n → {0,1} is the indicator function of a set A⊂ {0,1}n,
|A| ≥ 2n−s, then ∑

i ,j
f̃ ({i , j})2 ≤O(s2).

For the trivial protocol A is a coordinate subspace, so∣∣∣̃f ({i , j})
∣∣∣= {

1 if both i and j are known
0 o.w.

and
∑

i<j |̃f ({i , j})| = (s
2
)

Lemma (Gavinsky et al’07; from hypercontractivity)
If f : {0,1}n → {0,1} is the indicator function of a set A⊂ {0,1}n,
|A| ≥ 2n−s, then ∑

i ,j
f̃ ({i , j})2 ≤O(s2).

For the trivial protocol A is a coordinate subspace, so∣∣∣̃f ({i , j})
∣∣∣= {

1 if both i and j are known
0 o.w.

and
∑

i<j |̃f ({i , j})| = (s
2
)

For every i , j ∈ [n], i 6= j , one has

Pr[{i , j} ∈M]≈ 1/n

So

E

[∑
e={i ,j}∈M

f̃ ({i , j})2

]
=O(c2/n),

since s =O(c) with constant probability

Bob cannot guess parity of any edge in M unless c =Ω(pn).

For every i , j ∈ [n], i 6= j , one has

Pr[{i , j} ∈M]≈ 1/n

So

E

[∑
e={i ,j}∈M

f̃ ({i , j})2

]
=O(c2/n),

since s =O(c) with constant probability

Bob cannot guess parity of any edge in M unless c =Ω(pn).

For every i , j ∈ [n], i 6= j , one has

Pr[{i , j} ∈M]≈ 1/n

So

E

[∑
e={i ,j}∈M

f̃ ({i , j})2

]
=O(c2/n),

since s =O(c) with constant probability

Bob cannot guess parity of any edge in M unless c =Ω(pn).

1. The Boolean Hidden Matching problem

2. Multiplayer games via the convolution theorem

3. A game with a ‘infinite’ number of players

1. The Boolean Hidden Matching problem

2. Multiplayer games via the convolution theorem

3. A game with a ‘infinite’ number of players

Testing bipartiteness: Goldreich-Ron’00: can tell if graph is
bipartite or ε-far from bipartite in ≈ poly(1/ε, logn)n1/2 queries.

Streaming?
(check if ≈ n1/2 random walks of even and odd ≈ poly(logn) length collide)

An Optimal Space Lower Bound for
Approximating MAX-CUT

(STOC 2019; joint work with Dmitry Krachun)

Implicit Hidden Partition Problem

Alice (player 0)
binary string

x ∈ {0,1}n

message m

wuv = xu +xv

Player 1
matching M1, labels

w1 on edges

m10 0

1 1

1

0

0

...
...

Player T
matching MT , labels

wT on edges

mT

0 0

1 1

1

0

0

0 0

1 1

1 1

0

YES case: ∃ partition x ∈ {0,1}n such that w t =M tx for 1≤ t ≤T
NO case: no such partition exists

Implicit Hidden Partition Problem

Alice (player 0)
binary string

x ∈ {0,1}n

message m

wuv = xu +xv

Player 1
matching M1, labels

w1 on edges

m1

0 0

1 1

1

0

0

...
...

Player T
matching MT , labels

wT on edges

mT

0 0

1 1

1

0

0

0 0

1 1

1 1

0

YES case: ∃ partition x ∈ {0,1}n such that w t =M tx for 1≤ t ≤T
NO case: no such partition exists

Implicit Hidden Partition Problem

Alice (player 0)
binary string

x ∈ {0,1}n

message m

wuv = xu +xv

Player 1
matching M1, labels

w1 on edges

m1

...
...

Player T
matching MT , labels

wT on edges

mT

0 0

1 1

1

0

0

0 0

1 1

1 1

0

YES case: ∃ partition x ∈ {0,1}n such that w t =M tx for 1≤ t ≤T
NO case: no such partition exists

Implicit Hidden Partition Problem

Alice (player 0)
binary string

x ∈ {0,1}n

message m

wuv = xu +xv

Player 1
matching M1, labels

w1 on edges

m1

...
...

Player T
matching MT , labels

wT on edges

mT

0 0

1 1

1

0

0

0 0

1 1

1 1

0

YES case: ∃ partition x ∈ {0,1}n such that w t =M tx for 1≤ t ≤T
NO case: no such partition exists

Implicit Hidden Partition Problem

Alice (player 0)
binary string

x ∈ {0,1}n

message m

wuv = xu +xv

Player 1
matching M1, labels

w1 on edges

m1

...
...

Player T
matching MT , labels

wT on edges

mT

0 0

1 1

1

0

0

0 0

1 1

1 1

0

YES case: ∃ partition x ∈ {0,1}n such that w t =M tx for 1≤ t ≤T

NO case: no such partition exists

Implicit Hidden Partition Problem

Alice (player 0)
binary string

x ∈ {0,1}n

message m

wuv = xu +xv

Player 1
matching M1, labels

w1 on edges

m1

...
...

Player T
matching MT , labels

wT on edges

mT

0 0

1 1

1

0

0

0 0

1 1

1 1

0

YES case: ∃ partition x ∈ {0,1}n such that w t =M tx for 1≤ t ≤T

NO case: no such partition exists

Implicit Hidden Partition Problem

Alice (player 0)
binary string

x ∈ {0,1}n

message m

wuv = xu +xv

Player 1
matching M1, labels

w1 on edges

m1

...
...

Player T
matching MT , labels

wT on edges

mT

0 0

1 1

1

0

0

0 0

1 1

1 1

0

YES case: ∃ partition x ∈ {0,1}n such that w t =M tx for 1≤ t ≤T

NO case: no such partition exists

Implicit Hidden Partition Problem

Alice (player 0)
binary string

x ∈ {0,1}n

message m

wuv = xu +xv

Player 1
matching M1, labels

w1 on edges

m1

...
...

Player T
matching MT , labels

wT on edges

mT

0 0

1 1

1

0

0

0 0

1 1

1 1

0

YES case: ∃ partition x ∈ {0,1}n such that w t =M tx for 1≤ t ≤T
NO case: no such partition exists

Distributional communication problem
Choose a hidden partition X ∈UNIF ({0,1}n)

Alice (player 0)
binary string

x ∈ {0,1}n

message m

wuv = xu +xv

Player 1
matching M1, labels

w1 on edges

m1

...
...

Player T
matching MT , labels

wT on edges

mT

0 0

1 1

1

0

0

0 0

1 1

1 1

0

YES case: labels satisfy w t =M tX for 1≤ t ≤T
NO case: labels are random: w t ∼UNIF

Distributional communication problem
Choose a hidden partition X ∈UNIF ({0,1}n)

Alice (player 0)
binary string

x ∈ {0,1}n

message m

wuv = xu +xv

Player 1
matching M1, labels

w1 on edges

m1

...
...

Player T
matching MT , labels

wT on edges

mT

0 0

1 1

1

0

0

0 0

1 1

1 1

0

YES case: labels satisfy w t =M tX for 1≤ t ≤T
NO case: labels are random: w t ∼UNIF

Distributional communication problem
Choose a hidden partition X ∈UNIF ({0,1}n)

Alice (player 0)
binary string

x ∈ {0,1}n

message m

wuv = xu +xv

Player 1
matching M1, labels

w1 on edges

m1

...
...

Player T
matching MT , labels

wT on edges

mT

0 0

1 1

1

0

0

0 0

1 1

1 1

0

YES case: labels satisfy w t =M tX for 1≤ t ≤T
NO case: labels are random: w t ∼UNIF

Random matchings

Player 1
Player 2

Player 3

Random matchings of size ≈ n/100

Random matchings

Player 1
Player 2

Player 3

Random matchings of size ≈ n/100

Random matchings

Player 1
Player 2

Player 3

Random matchings of size ≈ n/100

Random matchings

Player 1
Player 2

Player 3

Random matchings of size ≈ n/100

Reduction from MAX-CUT (T ≈ 1/ε2 for 2−ε approx)
YES: random bipartite (multi)graph with expected degree ≈ 1

ε2

NO: non-bipartite (multi)graph with expected degree ≈ 1
ε2

Alice (player 0)
binary string

x ∈ {0,1}n
wuv = xu +xv

Player t
matching Mt , labels

w t on edges

mt0 0

1 1

1

0

0

t-th player generates graph G′
t by including edges e ∈Gt with

w t
e = 1

YES case: labels satisfy w t =M tX for 1≤ t ≤T

YES case:

⋃
t G′

t is bipartite

NO case: labels are random: w t ∼UNIF

NO case:

⋃
t G′

t is a sample of
⋃

t Gt at rate 1/2

Reduction from MAX-CUT (T ≈ 1/ε2 for 2−ε approx)
YES: random bipartite (multi)graph with expected degree ≈ 1

ε2

NO: non-bipartite (multi)graph with expected degree ≈ 1
ε2

Alice (player 0)
binary string

x ∈ {0,1}n
wuv = xu +xv

Player t
matching Mt , labels

w t on edges

mt0 0

1 1

1

0

0

t-th player generates graph G′
t by including edges e ∈Gt with

w t
e = 1

YES case: labels satisfy w t =M tX for 1≤ t ≤T

YES case:

⋃
t G′

t is bipartite

NO case: labels are random: w t ∼UNIF

NO case:

⋃
t G′

t is a sample of
⋃

t Gt at rate 1/2

Reduction from MAX-CUT (T ≈ 1/ε2 for 2−ε approx)
YES: random bipartite (multi)graph with expected degree ≈ 1

ε2

NO: non-bipartite (multi)graph with expected degree ≈ 1
ε2

Alice (player 0)
binary string

x ∈ {0,1}n
wuv = xu +xv

Player t
matching Mt , labels

w t on edges

mt0 0

1 1

1

0

0

t-th player generates graph G′
t by including edges e ∈Gt with

w t
e = 1

YES case: labels satisfy w t =M tX for 1≤ t ≤T

YES case:

⋃
t G′

t is bipartite

NO case: labels are random: w t ∼UNIF

NO case:

⋃
t G′

t is a sample of
⋃

t Gt at rate 1/2

Reduction from MAX-CUT (T ≈ 1/ε2 for 2−ε approx)
YES: random bipartite (multi)graph with expected degree ≈ 1

ε2

NO: non-bipartite (multi)graph with expected degree ≈ 1
ε2

Alice (player 0)
binary string

x ∈ {0,1}n
wuv = xu +xv

Player t
matching Mt , labels

w t on edges

mt0 0

1 1

1

0

0

t-th player generates graph G′
t by including edges e ∈Gt with

w t
e = 1

YES case: labels satisfy w t =M tX for 1≤ t ≤T

YES case:

⋃
t G′

t is bipartite

NO case: labels are random: w t ∼UNIF

NO case:

⋃
t G′

t is a sample of
⋃

t Gt at rate 1/2

Complexity of Implicit Hidden Partition

Player 1
Player 2

Player 3

Theorem (K.-Khanna-Sudan’14; Informal)
Any T -player protocol that obtains constant advantage over
random guessing for the Implicit Hidden Partition problem
requires

p
n/poly(T) communication.

Add a zero-th player Alice, who holds the bipartition X

Roughly speaking, Alice should get advantage at least 1/T with
at least one of Bobs.

So
p

n/poly(T) communication is needed

Add a zero-th player Alice, who holds the bipartition X

Roughly speaking, Alice should get advantage at least 1/T with
at least one of Bobs.

So
p

n/poly(T) communication is needed

Add a zero-th player Alice, who holds the bipartition X

Roughly speaking, Alice should get advantage at least 1/T with
at least one of Bobs.

So
p

n/poly(T) communication is needed

Complexity of Implicit Hidden Partition

Player 1
Player 2

Player 3

Theorem (K.-Krachun’19; Informal)
Any T -player protocol that obtains constant advantage over
random guessing for the Implicit Hidden Partition problem
requires n/T O(T) communication.

Distributional communication problem
Choose a hidden partition X ∈UNIF ({0,1}n)

Alice (player 0)
binary string

x ∈ {0,1}n

message m

wuv = xu +xv

Player 1
matching M1, labels

w1 on edges

m1

...
...

Player T
matching MT , labels

wT on edges

mT

0 0

1 1

1

0

0

0 0

1 1

1 1

0

YES case: labels satisfy w t =M tX for 1≤ t ≤T
NO case: labels are random: w t ∼UNIF

Distributional communication problem
Choose a hidden partition X ∈UNIF ({0,1}n)

Alice (player 0)
binary string

x ∈ {0,1}n

message m

wuv = xu +xv

Player 1
matching M1, labels

w1 on edges

m1

...
...

Player T
matching MT , labels

wT on edges

mT

0 0

1 1

1

0

0

0 0

1 1

1 1

0

YES case: labels satisfy w t =M tX for 1≤ t ≤T
NO case: labels are random: w t ∼UNIF

Distributional communication problem
Choose a hidden partition X ∈UNIF ({0,1}n)

Alice (player 0)
binary string

x ∈ {0,1}n

message m

wuv = xu +xv

Player 1
matching M1, labels

w1 on edges

m1

...
...

Player T
matching MT , labels

wT on edges

mT

0 0

1 1

1

0

0

0 0

1 1

1 1

0

YES case: labels satisfy w t =M tX for 1≤ t ≤T
NO case: labels are random: w t ∼UNIF

Conditioned on messages of player 1, player 2 and player 3, is
distribution of M4X close to uniform?

|A1| ≈ 2n−s, |A2| ≈ 2n−sX ∼UNIF (A1 ∩A2 ∩A3)

conditioned on (m1,m2,m3)

f1(x) :=indicator of A1

f2(x) :=indicator of A2

f3(x) :=indicator of A3

The indicator of A1 ∩A2 ∩A3 is f1 · f2 · f3, and

players’ knowledge≈ ∑
v∈{0,1}n

|v |=2k

ãf1 · f2 · f3(v)2 for k = 1, . . . ,n

Two observations:
Ï by the convolution theorem ãf1 · f2 · f3 = f̃1 ∗ f̃2
Ï f̃1 and f̃2 are easier to understand!

Conditioned on messages of player 1, player 2 and player 3, is
distribution of M4X close to uniform?

|A1| ≈ 2n−s, |A2| ≈ 2n−sX ∼UNIF (A1 ∩A2 ∩A3)

conditioned on (m1,m2,m3)

f1(x) :=indicator of A1

f2(x) :=indicator of A2

f3(x) :=indicator of A3

The indicator of A1 ∩A2 ∩A3 is f1 · f2 · f3, and

players’ knowledge≈ ∑
v∈{0,1}n

|v |=2k

ãf1 · f2 · f3(v)2 for k = 1, . . . ,n

Two observations:
Ï by the convolution theorem ãf1 · f2 · f3 = f̃1 ∗ f̃2
Ï f̃1 and f̃2 are easier to understand!

Conditioned on messages of player 1, player 2 and player 3, is
distribution of M4X close to uniform?

|A1| ≈ 2n−s, |A2| ≈ 2n−sX ∼UNIF (A1 ∩A2 ∩A3)

conditioned on (m1,m2,m3)

f1(x) :=indicator of A1

f2(x) :=indicator of A2

f3(x) :=indicator of A3

The indicator of A1 ∩A2 ∩A3 is f1 · f2 · f3. express distribution of
M4X in terms of

players’ knowledge≈ ∑
v∈{0,1}n

|v |=2k

ãf1 · f2 · f3(v)2 for k = 1, . . . ,n

Two observations:
Ï by the convolution theorem ãf1 · f2 · f3 = f̃1 ∗ f̃2
Ï f̃1 and f̃2 are easier to understand!

Conditioned on messages of player 1, player 2 and player 3, is
distribution of M4X close to uniform?

|A1| ≈ 2n−s, |A2| ≈ 2n−sX ∼UNIF (A1 ∩A2 ∩A3)

conditioned on (m1,m2,m3)

f1(x) :=indicator of A1

f2(x) :=indicator of A2

f3(x) :=indicator of A3

The indicator of A1 ∩A2 ∩A3 is f1 · f2 · f3, and

players’ knowledge≈ ∑
v∈{0,1}n

|v |=2k

ãf1 · f2 · f3(v)2 for k = 1, . . . ,n

Two observations:
Ï by the convolution theorem ãf1 · f2 · f3 = f̃1 ∗ f̃2
Ï f̃1 and f̃2 are easier to understand!

Conditioned on messages of player 1, player 2 and player 3, is
distribution of M4X close to uniform?

|A1| ≈ 2n−s, |A2| ≈ 2n−sX ∼UNIF (A1 ∩A2 ∩A3)

conditioned on (m1,m2,m3)

f1(x) :=indicator of A1

f2(x) :=indicator of A2

f3(x) :=indicator of A3

The indicator of A1 ∩A2 ∩A3 is f1 · f2 · f3, and

players’ knowledge≈ ∑
v∈{0,1}n

|v |=2k

ãf1 · f2 · f3(v)2 for k = 1, . . . ,n

Two observations:
Ï by the convolution theorem ãf1 · f2 · f3 = f̃1 ∗ f̃2
Ï f̃1 and f̃2 are easier to understand!

Conditioned on messages of player 1, player 2 and player 3, is
distribution of M4X close to uniform?

|Ai |/2n ≥ 2−s

|A1| ≈ 2n−s, |A2| ≈ 2n−s

X ∼UNIF (A1 ∩A2 ∩A3)

conditioned on (m1,m2,m3)

f1(x) :=indicator of A1

f2(x) :=indicator of A2

f3(x) :=indicator of A3

The indicator of A1 ∩A2 ∩A3 is h := f1 · f2 · f3.

Bound distance of M4X to uniform?

Bound
∑

v∈{0,1}n

|v |=2k
ĥ(v)2 for k = 1, . . . ,n/2?

Proving stronger bounds on f̃i is easy (since f̃i are supported on
matchings), use convolution theorem?

Convolution theorem:

h̃t = ãf1 · . . . · ft ≈ f̃1 ∗ . . .∗ f̃t

Hidden partition
X ∈ {0,1}n

Hidden partition
X ∈ {0,1}n

Player 1

Player 2

a

b

c
d

Intuition: f̃1(a,b,c,d)2 ≈ how much information player 1
transmits about parity Xa +Xb +Xc +Xd

Intuition:

f̃2(b,c)2 ≈ how much information player 2 transmits
about parity Xb +Xc

Intuition:

�f1 · f2(a,d)2 = f̃1(a,b,c,d)2 · f̃2(b,c)2 ≈ how much
information players 1 and 2 transmit about parity Xa +Xd

Main technical contribution:

Analysis of f̃1 ∗ f̃2 ∗·· ·∗ f̃T for arbitrarily large T

Main challenge: giant component in players’ input:

Player 1
Player 2

Player 3

`2 bounds are not sufficient for inductive hypothesis

Our approach: bound `1 norm of the Fourier transform!

Player 1
Player 2

Player 3

`1 upper bounds on spectrum seamlessly translate to quantum
setting: Kallaugher-Parekh’22

Subgraph counting through sketching

Theorem
In a bounded degree graph, can approximate triangle count in
O∗(m/T 2/3) space in the sketching model

Set T =Θ(n), i.e. roughly maximal number of triangles.

Theorem
The sketching complexity of triangle counting is Ω(m/T 2/3)

Set T =Θ(n), i.e. roughly maximal number of triangles.

Generalizes beyond triangles, and to hypergraphs

Subgraph counting through sketching

Theorem
In a bounded degree graph, can approximate triangle count in
O∗(m/T 2/3) space in the sketching model

Set T =Θ(n), i.e. roughly maximal number of triangles.

Theorem
The sketching complexity of triangle counting is Ω(m/T 2/3)

Set T =Θ(n), i.e. roughly maximal number of triangles.

Generalizes beyond triangles, and to hypergraphs

Subgraph counting through sketching

Theorem
In a bounded degree graph, can approximate triangle count in
O∗(n1/3) space in the sketching model
Set T =Θ(n), i.e. roughly maximal number of triangles.

Theorem
The sketching complexity of triangle counting is Ω(n1/3)

Set T =Θ(n), i.e. roughly maximal number of triangles.

Generalizes beyond triangles, and to hypergraphs

Subgraph counting through sketching

Theorem
In a bounded degree graph, can approximate triangle count in
O∗(n1/3) space in the sketching model
Set T =Θ(n), i.e. roughly maximal number of triangles.

Theorem
The sketching complexity of triangle counting is Ω(n1/3)

Set T =Θ(n), i.e. roughly maximal number of triangles.

Generalizes beyond triangles, and to hypergraphs

Communication game

Alice Bob

Charlie

MA MB

MC

MA,MB ,MC random

subject to MAMBMC = I

Referee

mA mB

mC

Bit strings xA,xB ,xC ∈ {0,1}n

uniformly random subject to:
YES case: xA +xB +xC = 0n

NO case: xA +xB +xC = 1n

Sum to zero across all triangles or sum to one

Communication game

1 1 1 0 0

0
1

1
0

11
0

0
0

1

Alice Bob

Charlie

MA MB

MC

MA,MB ,MC random

subject to MAMBMC = I

Referee

mA mB

mC

Bit strings xA,xB ,xC ∈ {0,1}n

uniformly random subject to:
YES case: xA +xB +xC = 0n

NO case: xA +xB +xC = 1n

Sum to zero across all triangles or sum to one

Communication game

1 1 1 0 0

0
1

1
0

11
0

0
0

1

Alice Bob

Charlie

MA MB

MC

MA,MB ,MC random

subject to MAMBMC = I

Referee

mA mB

mC

Bit strings xA,xB ,xC ∈ {0,1}n

uniformly random subject to:
YES case: xA +xB +xC = 0n

NO case: xA +xB +xC = 1n

Sum to zero across all triangles or sum to one

Communication game

1 1 1 0 0

0
1

1
0

11
0

0
0

1

Alice Bob

Charlie

MA MB

MC

MA,MB ,MC random

subject to MAMBMC = I

Referee

mA mB

mC

Bit strings xA,xB ,xC ∈ {0,1}n

uniformly random subject to:
YES case: xA +xB +xC = 0n

NO case: xA +xB +xC = 1n

Sum to zero across all triangles or sum to one

Communication game

1 1 1 0 0

0
1

1
0

11
0

0
0

1

Alice Bob

Charlie

MA MB

MC

MA,MB ,MC random

subject to MAMBMC = I

Referee

mA mB

mC

Bit strings xA,xB ,xC ∈ {0,1}n

uniformly random subject to:
YES case: xA +xB +xC = 0n

NO case: xA +xB +xC = 1n

Sum to zero across all triangles or sum to one

Communication game

1 1 1 0 0

0
1

1
0

11
0

0
0

1

Alice Bob

Charlie

MA MB

MC

MA,MB ,MC random

subject to MAMBMC = I

Referee

mA mB

mC

Bit strings xA,xB ,xC ∈ {0,1}n

uniformly random subject to:
YES case: xA +xB +xC = 0n

NO case: xA +xB +xC = 1n

Sum to zero across all triangles or sum to one

Communication game

1 1 1 0 0

0
1

1
0

11
0

0
0

1

Alice Bob

Charlie

MA MB

MC

MA,MB ,MC random

subject to MAMBMC = I

Referee

mA mB

mC

Bit strings xA,xB ,xC ∈ {0,1}n

uniformly random subject to:
YES case: xA +xB +xC = 0n

NO case: xA +xB +xC = 1n

Sum to zero across all triangles or sum to one

Communication game

1 1 1 0 0

0
1

1
0

11
0

0
0

1

Alice Bob

Charlie

MA MB

MC

MA,MB ,MC random

subject to MAMBMC = I

Referee

mA mB

mC

Bit strings xA,xB ,xC ∈ {0,1}n

uniformly random subject to:
YES case: xA +xB +xC = 0n

NO case: xA +xB +xC = 1n

Sum to zero across all triangles or sum to one

Communication game

1 1 1 0 0

0
1

1
0

11
0

0
0

1

Alice Bob

Charlie

MA MB

MC

MA,MB ,MC random

subject to MAMBMC = I Referee

mA mB

mC

Bit strings xA,xB ,xC ∈ {0,1}n

uniformly random subject to:
YES case: xA +xB +xC = 0n

NO case: xA +xB +xC = 1n

Sum to zero across all triangles or sum to one

Communication game

1 1 1 0 0

0
1

1
0

11
0

0
0

1

Alice Bob

Charlie

MA MB

MC

MA,MB ,MC random

subject to MAMBMC = I Referee

mA mB

mC

Bit strings xA,xB ,xC ∈ {0,1}n

uniformly random subject to:
YES case: xA +xB +xC = 0n

NO case: xA +xB +xC = 1n

Sum to zero across all triangles or sum to one

Communication game

1

1

1 0
0

0
1

1
0

1

1
0

1
0

0

Alice Bob

Charlie

MA MB

MC

MA,MB ,MC random

subject to MAMBMC = I Referee

mA mB

mC

Bit strings xA,xB ,xC ∈ {0,1}n

uniformly random subject to:
YES case: xA +xB +xC = 0n

NO case: xA +xB +xC = 1n

Sum to zero across all triangles or sum to one

Alice Bob

Charlie

MA MB

MC

MA,MB ,MC random

subject to MAMBMC = I

Referee

mA mB

mC

Theorem
Ω(n1/3) communication is required to get Ω(1) advantage over
random guessing

1. The Boolean Hidden Matching problem

2. Multiplayer games via the convolution theorem

3. A game with a ‘infinite’ number of players

1. The Boolean Hidden Matching problem

2. Multiplayer games via the convolution theorem

3. A game with an ‘infinite’ number of players

Count # of connected components in a graph
(Peng-Sohler’18: approx # of connected components to εn error in ≈ (1/ε)1/ε

3
space)

Random walk generation, PAGERANK estimation
(Kallaugher-K.-Price’22: generate s walks of length ` using space ≈ 2O(`2)s)

Factorial Lower Bounds for (Almost)
Random Order Streams

(FOCS 2022; joint work with Ashish Chiplunkar, John

Kallaugher and Eric Price)

Count # of connected components in a graph
(Peng-Sohler’18: approx # of connected components to εn error in ≈ (1/ε)1/ε

3
space)

Random walk generation, PAGERANK estimation
(Kallaugher-K.-Price’22: generate s walks of length k using space ≈ 2O(k2)s)

Factorial Lower Bounds for (Almost)
Random Order Streams

(FOCS 2022; joint work with Ashish Chiplunkar, John

Kallaugher and Eric Price)

Find a component of size ≤ ` (assuming there are many)
(Peng-Sohler’18: component finding in ≈ ``3 space)

Random walk generation, PAGERANK estimation
(Kallaugher-K.-Price’22: generate s walks of length ` using space ≈ 2O(`2)s)

Factorial Lower Bounds for (Almost)
Random Order Streams

(FOCS 2022; joint work with Ashish Chiplunkar, John

Kallaugher and Eric Price)

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order

, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1

2

3

4

5

6

7

8

1

01
1

0
0 1

0

9

10

11

12

13

14

15

16

1
10

0

0

1 0
1

. . . n−7

n−6

n−5

n−4

n−3

n−2

n−1

n

0
00

1

1
1 0

1

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1

2

3

4

5

6

7

8

1

01
1

0
0 1

0

9

10

11

12

13

14

15

16

1
10

0

0

1 0
1

. . . n−7

n−6

n−5

n−4

n−3

n−2

n−1

n

0
00

1

1
1 0

1

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1

2

3

4

5

6

7

8

1

01
1

0
0 1

0
9

10

11

12

13

14

15

16

1
10

0

0

1 0
1

. . . n−7

n−6

n−5

n−4

n−3

n−2

n−1

n

0
00

1

1
1 0

1

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1

2

3

4

5

6

7

8

1

01
1

0
0 1

0
9

10

11

12

13

14

15

16

1
10

0

0

1 0
1

. . . n−7

n−6

n−5

n−4

n−3

n−2

n−1

n

0
00

1

1
1 0

1

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1

2

3

4

5

6

7

8

1

01
1

0
0 1

0
9

10

11

12

13

14

15

16

1
10

0

0

1 0
1

. . . n−7

n−6

n−5

n−4

n−3

n−2

n−1

n

0
00

1

1
1 0

1

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1

2

3

4

5

6

7

8

1

01
1

0
0 1

0
9

10

11

12

13

14

15

16

1
10

0

0

1 0
1

. . . n−7

n−6

n−5

n−4

n−3

n−2

n−1

n

0
00

1

1
1 0

1

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

. . .

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1

. . .

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1
. . .

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

0
. . .

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

0
. . .

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

0

. . .

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

0
. . .

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

0
. . .

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1

. . .

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1
. . .

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

0

. . .

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1
. . .

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

0
. . .

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

0

. . .

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1
. . .

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

0

. . .

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1

. . .

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1

. . .

Simplification: edges arrived so far posted on a board

Of course, the structure of cycles is hidden

The STREAMINGCYCLES problem
random vertex ids

906

127

914

633

98

279

547

958

1

01

1

0

0 1

0
965

158

971

958

486

801

142

422

1

10

0

0

1 0

1

. . .

Example stream:

e2 = (584,745), x584 = 1
e2 = (123,574), x123 = 1
. . .

e1 = (234,345), x234 = 0
e2 = (584,745), x584 = 1
e2 = (123,574), x123 = 1
. . .

Space complexity of STREAMINGCYCLES?

The STREAMINGCYCLES problem
random vertex ids

906

127

914

633

98

279

547

958

1

01

1

0

0 1

0
965

158

971

958

486

801

142

422

1

10

0

0

1 0

1

. . .

Example stream:

e2 = (584,745), x584 = 1
e2 = (123,574), x123 = 1
. . .

e1 = (234,345), x234 = 0

e2 = (584,745), x584 = 1
e2 = (123,574), x123 = 1
. . .

Space complexity of STREAMINGCYCLES?

The STREAMINGCYCLES problem
random vertex ids

906

127

914

633

98

279

547

958

1

01

1

0

0 1

0
965

158

971

958

486

801

142

422

1

10

0

0

1 0

1

. . .

Example stream:

e2 = (584,745), x584 = 1
e2 = (123,574), x123 = 1
. . .

e1 = (234,345), x234 = 0
e2 = (584,745), x584 = 1

e2 = (123,574), x123 = 1
. . .

Space complexity of STREAMINGCYCLES?

The STREAMINGCYCLES problem
random vertex ids

906

127

914

633

98

279

547

958

1

01

1

0

0 1

0
965

158

971

958

486

801

142

422

1

10

0

0

1 0

1

. . .

Example stream:

e2 = (584,745), x584 = 1
e2 = (123,574), x123 = 1
. . .

e1 = (234,345), x234 = 0
e2 = (584,745), x584 = 1
e2 = (123,574), x123 = 1

. . .

Space complexity of STREAMINGCYCLES?

The STREAMINGCYCLES problem
random vertex ids

906

127

914

633

98

279

547

958

1

01

1

0

0 1

0
965

158

971

958

486

801

142

422

1

10

0

0

1 0

1

. . .

Example stream:

e2 = (584,745), x584 = 1
e2 = (123,574), x123 = 1
. . .

e1 = (234,345), x234 = 0
e2 = (584,745), x584 = 1
e2 = (123,574), x123 = 1
. . .

Space complexity of STREAMINGCYCLES?

The STREAMINGCYCLES problem
random vertex ids

906

127

914

633

98

279

547

958

1

01

1

0

0 1

0
965

158

971

958

486

801

142

422

1

10

0

0

1 0

1

. . .

Example stream:

e2 = (584,745), x584 = 1
e2 = (123,574), x123 = 1
. . .

e1 = (234,345), x234 = 0
e2 = (584,745), x584 = 1
e2 = (123,574), x123 = 1
. . .

Space complexity of STREAMINGCYCLES?

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

1

. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

1
. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

0
. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

0

. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

0
. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

0
. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

1

. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

1
. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

0

. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

1
. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

0
. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

0

. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

1
. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

0

. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

1

. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

1

. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

1

. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

1
. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

0
. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

0

. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

0
. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

0
. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

1

. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

1

. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

1
. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

0

. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

1
. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

0
. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

0

. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

1
. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

0

. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

1

. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

1

. . .

Success probability= `−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

1

. . .

Success probability=

`−Θ(`).

The STREAMINGCYCLES problem

A simple protocol: maintain parity of connected component of
vertex 1. Space=1 bit.

1

. . .

Success probability= `−Θ(`).

Maintain connected component of `O(`) random ‘seed’ vertices.
Space=`O(`), success probability= 1−o(1).

Theorem (Main result; informal)
This is tight up to constant factors in the exponent.

Maintain connected component of `O(`) random ‘seed’ vertices.
Space=`O(`), success probability= 1−o(1).

Theorem (Main result; informal)
This is tight up to constant factors in the exponent.

The STREAMINGCYCLES problem

1

2

3

4

5

6

7

8

1

01
1

0
0 1

0
9

10

11

12

13

14

15

16

1
10

0

0

1 0
1

. . . n−7

n−6

n−5

n−4

n−3

n−2

n−1

n

0
00

1

1
1 0

1

Maintain connected component of `O(`) random ‘seed’ vertices.
Space=`O(`), success probability= 1−o(1).

Theorem (Main result (informal))
The communication complexity of STREAMINGCYCLES is `Ω(`).

Space complexity of component finding

For every i ∈ [n] create two vertices i0 and i1.

For
{
i , j

}
insert

{ {
i0, j0

}
,
{
i1, j1

}
if xij = 0{

i0, j1
}

,
{
i1, j0

}
o.w.

1

2

3

4

5

6

7

8

0

00

0

0

0 0

0

Space complexity of component finding

For every i ∈ [n] create two vertices i0 and i1.

For
{
i , j

}
insert

{ {
i0, j0

}
,
{
i1, j1

}
if xij = 0{

i0, j1
}

,
{
i1, j0

}
o.w.

1

2

3

4

5

6

7

8

1

00

0

0

0 0

0

Space complexity of component finding

For every i ∈ [n] create two vertices i0 and i1.

For
{
i , j

}
insert

{ {
i0, j0

}
,
{
i1, j1

}
if xij = 0{

i0, j1
}

,
{
i1, j0

}
o.w.

1

2

3

4

5

6

7

8

1

00

0

0

0 0

0

Space complexity of component finding

For every i ∈ [n] create two vertices i0 and i1.

For
{
i , j

}
insert

{ {
i0, j0

}
,
{
i1, j1

}
if xij = 0{

i0, j1
}

,
{
i1, j0

}
o.w.

1

2

3

4

5

6

7

8

1

01

0

0

0 0

0

Space complexity of component finding

For every i ∈ [n] create two vertices i0 and i1.

For
{
i , j

}
insert

{ {
i0, j0

}
,
{
i1, j1

}
if xij = 0{

i0, j1
}

,
{
i1, j0

}
o.w.

1

2

3

4

5

6

7

8

1

01

1

0

0 0

0

Space complexity of component finding

For every i ∈ [n] create two vertices i0 and i1.

For
{
i , j

}
insert

{ {
i0, j0

}
,
{
i1, j1

}
if xij = 0{

i0, j1
}

,
{
i1, j0

}
o.w.

1

2

3

4

5

6

7

8

1

01

1

0

0 0

0

Space complexity of component finding

For every i ∈ [n] create two vertices i0 and i1.

For
{
i , j

}
insert

{ {
i0, j0

}
,
{
i1, j1

}
if xij = 0{

i0, j1
}

,
{
i1, j0

}
o.w.

1

2

3

4

5

6

7

8

1

01

1

0

0 0

0

Space complexity of component finding

For every i ∈ [n] create two vertices i0 and i1.

For
{
i , j

}
insert

{ {
i0, j0

}
,
{
i1, j1

}
if xij = 0{

i0, j1
}

,
{
i1, j0

}
o.w.

1

2

3

4

5

6

7

8

1

01

1

0

0 1

0

Space complexity of component finding

For every i ∈ [n] create two vertices i0 and i1 (inner and outer).

For
{
i , j

}
insert

{ {
i0, j0

}
,
{
i1, j1

}
if xij = 0{

i0, j1
}

,
{
i1, j0

}
o.w.

1

2

3

4

5

6

7

8

1

01

1

0

0 1

0

Space complexity of component finding

If parity of cycle C is odd, get
two components of size `

If parity of cycle C is odd, get a
single component of size 2`

Corollary
Component finding requires `Ω(`) space
Peng-Sohler’18: component finding in `O(`3) space; we show `O(`) space suffices, so

factorial dependence is tight

Corollary
For a constant C generating C4` random walks requires `Ω(`)

space.
Kallaugher-K.-Price’22: can generate s walks to precision ε using (1/ε)`2O(`2)s space

While arrival order in STREAMINGCYCLES is random, our
reduction creates some amount of correlation...

Corollary
Component finding requires `Ω(`) space
Peng-Sohler’18: component finding in `O(`3) space; we show `O(`) space suffices, so

factorial dependence is tight

Corollary
For a constant C generating C4` random walks requires `Ω(`)

space.
Kallaugher-K.-Price’22: can generate s walks to precision ε using (1/ε)`2O(`2)s space

While arrival order in STREAMINGCYCLES is random, our
reduction creates some amount of correlation...

Corollary
Component finding in random order streams (??) requires `Ω(`)

space
Peng-Sohler’18: component finding in `O(`3) space; we show `O(`) space suffices, so

factorial dependence is tight

Corollary
For a constant C generating C4` random walks in random order
streams (??) requires `Ω(`) space.
Kallaugher-K.-Price’22: can generate s walks to precision ε using (1/ε)k 2O(k2)s space

While arrival order in STREAMINGCYCLES is random, our
reduction creates some amount of correlation...

Corollary
Component finding in random order streams (??) requires `Ω(`)

space
Peng-Sohler’18: component finding in `O(`3) space; we show `O(`) space suffices, so

factorial dependence is tight

Corollary
For a constant C generating C4` random walks in random order
streams (??) requires `Ω(`) space.
Kallaugher-K.-Price’22: can generate s walks to precision ε using (1/ε)k 2O(k2)s space

While arrival order in STREAMINGCYCLES is random, our
reduction creates some amount of correlation...

Hidden batch random order streams

Definition (b-hidden batch random order streams)
Edges of G are partitioned into batches of size bounded by b.
Batches are ordered randomly, and edges appear in
batch-induced order (adversarial within a batch).
(Order of arrival is correlated through external events, unknown to the algorithm)

Theorem
Component finding admits a (1/ε)O(1/ε) ·b · logn space
algorithm in b-hidden batch random order streams.

From streaming hardness of STREAMINGCYCLES:

Corollary
Component finding in random order streams (??) requires `Ω(`)

space

Hidden batch random order streams

Definition (b-hidden batch random order streams)
Edges of G are partitioned into batches of size bounded by b.
Batches are ordered randomly, and edges appear in
batch-induced order (adversarial within a batch).
(Order of arrival is correlated through external events, unknown to the algorithm)

Theorem
Component finding admits a (1/ε)O(1/ε) ·b · logn space
algorithm in b-hidden batch random order streams.

From streaming hardness of STREAMINGCYCLES:

Corollary
Component finding in random order streams (??) requires `Ω(`)

space

Hidden batch random order streams

Definition (b-hidden batch random order streams)
Edges of G are partitioned into batches of size bounded by b.
Batches are ordered randomly, and edges appear in
batch-induced order (adversarial within a batch).
(Order of arrival is correlated through external events, unknown to the algorithm)

Theorem
Component finding admits a (1/ε)O(1/ε) ·b · logn space
algorithm in b-hidden batch random order streams.

From streaming hardness of STREAMINGCYCLES:

Corollary
Component finding in random order streams (??) requires `Ω(`)

space

Hidden batch random order streams

Definition (b-hidden batch random order streams)
Edges of G are partitioned into batches of size bounded by b.
Batches are ordered randomly, and edges appear in
batch-induced order (adversarial within a batch).
(Order of arrival is correlated through external events, unknown to the algorithm)

Theorem
Component finding admits a (1/ε)O(1/ε) ·b · logn space
algorithm in b-hidden batch random order streams.

From streaming hardness of STREAMINGCYCLES:

Corollary
Component finding in 2-hidden batch random order streams
requires `Ω(`) space

Space complexity of STREAMINGCYCLES

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

. . .

Space complexity of STREAMINGCYCLES

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1

. . .

Space complexity of STREAMINGCYCLES

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1
. . .

Space complexity of STREAMINGCYCLES

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

0
. . .

Space complexity of STREAMINGCYCLES

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

0
. . .

Space complexity of STREAMINGCYCLES

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

0

. . .

Space complexity of STREAMINGCYCLES

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

0
. . .

Space complexity of STREAMINGCYCLES

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

0
. . .

Space complexity of STREAMINGCYCLES

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1

. . .

Space complexity of STREAMINGCYCLES

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1
. . .

Space complexity of STREAMINGCYCLES

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

0

. . .

Space complexity of STREAMINGCYCLES

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1
. . .

Space complexity of STREAMINGCYCLES

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

0
. . .

Space complexity of STREAMINGCYCLES

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

0

. . .

Space complexity of STREAMINGCYCLES

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1
. . .

Space complexity of STREAMINGCYCLES

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

0

. . .

Space complexity of STREAMINGCYCLES

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1

. . .

Space complexity of STREAMINGCYCLES

Edges of n/` disjoint cycles of length ` presented in a stream in
a random order, annotated with random bits

Goal: output (C,
∑

e∈C xe) for some cycle C at the end of stream

1

. . .

Challenges

Many recent works applying Fourier analysis to multi-party
problems with a constant number of parties

Cannot partition into fewer than nΩ(1/`) players, otherwise
reveal answer

Cannot lose even polynomially in the number of players
(n1/`À `` when `= poly(log logn), say)

Analyse algorithm’s knowledge on a ‘per edge’ basis

Challenges

Many recent works applying Fourier analysis to multi-party
problems with a constant number of parties

Cannot partition into fewer than nΩ(1/`) players, otherwise
reveal answer

Cannot lose even polynomially in the number of players
(n1/`À `` when `= poly(log logn), say)

Analyse algorithm’s knowledge on a ‘per edge’ basis

Challenges

Many recent works applying Fourier analysis to multi-party
problems with a constant number of parties

Cannot partition into fewer than nΩ(1/`) players, otherwise
reveal answer

Cannot lose even polynomially in the number of players
(n1/`À `` when `= poly(log logn), say)

Analyse algorithm’s knowledge on a ‘per edge’ basis

Challenges

Many recent works applying Fourier analysis to multi-party
problems with a constant number of parties

Cannot partition into fewer than nΩ(1/`) players, otherwise
reveal answer

Cannot lose even polynomially in the number of players
(n1/`À `` when `= poly(log logn), say)

Analyse algorithm’s knowledge on a ‘per edge’ basis

Open problems

Approximate MAX-CUT value in n0.99 queries to the graph? Or
in n0.99 space in a poly(logn) number of passes?

Does matching size estimation require Ω(log2 n) space?

Fourier analytic lower bounds where sketching is/should be
optimal (e.g., lower bounds for spanners in sketching)?

Thank you!

Factorial Lower Bounds for (Almost) Random Order Streams

(joint work with Ashish Chiplunkar, John Kallaugher and Eric
Price)

Open problems

Approximate MAX-CUT value in n0.99 queries to the graph? Or
in n0.99 space in a poly(logn) number of passes?

Does matching size estimation require Ω(log2 n) space?

Fourier analytic lower bounds where sketching is/should be
optimal (e.g., lower bounds for spanners in sketching)?

Thank you!

Factorial Lower Bounds for (Almost) Random Order Streams

(joint work with Ashish Chiplunkar, John Kallaugher and Eric
Price)

Open problems

Approximate MAX-CUT value in n0.99 queries to the graph? Or
in n0.99 space in a poly(logn) number of passes?

Does matching size estimation require Ω(log2 n) space?

Fourier analytic lower bounds where sketching is/should be
optimal (e.g., lower bounds for spanners in sketching)?

Thank you!

Factorial Lower Bounds for (Almost) Random Order Streams

(joint work with Ashish Chiplunkar, John Kallaugher and Eric
Price)

Open problems

Approximate MAX-CUT value in n0.99 queries to the graph? Or
in n0.99 space in a poly(logn) number of passes?

Does matching size estimation require Ω(log2 n) space?

Fourier analytic lower bounds where sketching is/should be
optimal (e.g., lower bounds for spanners in sketching)?

Thank you!

Factorial Lower Bounds for (Almost) Random Order Streams

(joint work with Ashish Chiplunkar, John Kallaugher and Eric
Price)

