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General inference model

Algorithm
Test / Estimate / learn

Samples from
Data distribution

Result

Image from: https://tilics.dmi.unibas.ch/the-turing-machine

Typical question: How many samples to achieve 
certain error?

- Unlimited memory and time



General inference model

Algorithm
Test / Estimate / learn

Samples from
Data distribution

Result

Image from: https://tilics.dmi.unibas.ch/the-turing-machine

In application: How many samples if we have 
limited computational resources?

- Unlimited memory and time

Memory 
Constraint



Example
Memory << size of data



Estimation with memory constraints
Unknown distribution ! over [#]
Goal: Estimate %(!) with error ( with probability 1 − + via samples 

- (e.g., mean, variance, etc.)

Pr .% − % ! > ( ≤ +

Algorithm
Limited memory12, 14, … , 16 .%Distribution 

! over #



A closely related model

Algorithm
Limited memory!", !$, … , !& '(Distribution 

) over *

Algorithm
Limited memory!", !$, … , !& '(

This talk: Properties of the distribution

Properties of the data stream



Prior work: 
Problems: parity learning, learning PDFs, learning concept classes, 
robust estimation of statistics, distribution testing, estimating 
moments, 

[Raz. FOCS16][Crouch, McGregor, Valiant, Woodruff, ESA 2016] [Guha, McGregor. AISTATS 
2007], [Chien, Ligett, McGregor. ITS 2010] [Steinhardt, Valiant, Wagner. COLT 2016] 
[Esfandiari, Hajiaghayi, Liaghat, Monemizadeh. SODA 2015] [Moshkovitz, Moshkovitz. COLT 
2017] [Kol, Raz, Tal. STOC 2017] [Raz. FOCS 2017] [Garg, Kothari, Raz. STOC 2018] [Sharam, 
Sidford, Valiant. STOC 2019] [Diakonikolas, Gouleakis, Kane, Rao. COLT 2019] [Garg, Raz, 
Tal. Complexity 2019] [Acharya, Bhadane, Indyk, Sun, NeurIPS 2019] [Garg, Kothari, Raz. 
RANDOM 2020] [Garg et al. RANDOM 2021] [Brown, Bun, Smith. COLT 2022]…



This work: estimating entropy
Shannon’s Entropy of ! = #$, #&, … , #( :

) ! ≔+
,-$

(
#, log& 1/#,



This work: estimating entropy
Shannon’s Entropy of ! = #$, #&, … , #( :

) ! ≔+
,-$

(
#, log& 1/#,

Goal:
Pr 5) − ) ! > 8 ≤ 0.1

Memory constrains: < 1 words

AlgorithmSamples from !
=$, =&,… , =>

5)



Previous results
No memory constraint: 

Θ "
# log " +

log("
#(

[Batu, Dasgupta, Kumar, Rubinfeld. STOC 2002][Valiant, Valiant. FOCS 2011] [Valiant, Valiant. JACM 
2017] [Wu, Yang. IEEE Trans. IT 2016] [Jiao et al. IEEE Trans. IT 2015] …. (and many more)
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[Acharya, Bhadane, Indyk, Sun, NeurIPS 2019]



Our results
This work !(1) words of memory: 

O & log 1/+ ,

+-
2015] 
!(1) words of memory:

O & log 1/+ .

+.

[Acharya, Bhadane, Indyk, Sun, NeurIPS 2019]



A closely related problem
Estimating empirical entropy in the data streaming 

Ω "
#$ ⋅ (log log * + log 1/.) bits

[Chakrabarti, Cormode, McGregor’10]
[Jayaram Woodruff’19]

Algorithm
Sample	set
8", 8:,… , 8<

=> Algorithm =>

VS.

Distribution 
? over *

Possible @(1) words of memory
= ABCDCBE(F, 1/.) bits



Entropy estimation with 
no memory constraint



No memory constraint
Algorithm [Valiant and Valiant’11]:
1. Compute the fingerprint of the samples

Count numbers of elements appeared ! times

3 3 81 137 5List

three elements appeared once.

One element appeared twice.

One element appeared three times.

Fingerprints



No memory constraint
Algorithm [Valiant, Valiant’11]:
1. Compute the fingerprint of the samples
2. Come up with a histogram of a distribution that is likely to generate 

Plots from [Valiant, Valiant’11]



No memory constraint
Algorithm [Valiant, Valiant’11]:

1. Compute the fingerprint of the samples

2. Come up with a histogram of a distribution that is likely to generate 

3. Output a distribution that is compatible with the histogram

Works well ignoring the labels!

Entropy 

Support size



Adding memory constraints
Computing fingerprint is hard when we cannot memorize

3 3 81 137 5List

three elements appeared once.

One element appeared twice.

One element appeared three times.

Fingerprints



Entropy estimation with 
no memory constraint

A simple approach



Simple algorithm

! " ≔$
%&'

(
)% ⋅ log 1/)% = E%~3 log 1/)%

1. Repeat 4 times 
1. Draw 5 ∼ ".
2. )̂% ← Estimate )%

2. Output average of log 1/)̂%’s.
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(

)% ⋅ log 1/)% = E%~3 log 1/)%

1. Repeat 4 times 
1. Draw 5 ∼ ".
2. )̂% ← Estimate )%
Via negative binomial distribution
Draw samples until 9 copies of 5 are observed.
:% ←

'
;
⋅ # Observed samples

E[:%] is precisely 1/)%.

2. Output average of log 1/)̂%’s.
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Simple algorithm: Analysis of error

! " − $! = ! " − E $! + E $! − $!

= E(~* log 1/0( − E(∼* log 2( + E $! − $!

3 #samples = Θ(< ⋅ > ⋅ ?) = Θ ? logA ?/BC

Bias Error of 
estimation

t = Θ(1/B) implies bias < B/2
VarI∼*[log X_i] = O(logA ?)

< = Θ logA ? /BA implies that error < B/2

output



Simple algorithm: Analysis of error

! " − $! = ! " − E $! + E $! − $!

= E(~* log 1/0( − E(∼* log 2( + E $! − $!

3 #samples = Θ(< ⋅ > ⋅ ?) = Θ ? logA ?/BC

Bias Error of 
estimation

t = Θ(1/B) implies bias < B/2
VarI∼*[log X_i] = O(logA ?)

< = Θ logA ? /BA implies that error < B/2

output

Next:

Making > = P(polylog(1/B))

Removing extra log ? factors



Entropy estimation with 
no memory constraint

A simple better approach



Remove bias

Idea: Estimate bias and decrease it from !".

Bias = E&~( log 1/.& − E&∼( log 1& = |E&∼( log 3& | 

E&∼( 3& = 1. Taylor expansion around Y = 1:

Bias = E&∼( log 3& = E 3& − 1 − 4567 8

9 + 4567 ;

< − ⋯

Let 3& ← .&1&



Remove bias

Idea: Truncated Taylor expansion. Keep the first ! = log 1/( terms.

Bias < E +, − 1 −
./01 2

3
+ ./01 5

6
+ ⋯+ 01 8 ./01 8

9
+ E : +, − 1 9;1

Nicely concentrated
Polynomial of degree ! of <,

Pr k samples are equal = <,
G

Making H = :(polylog(1/()).      



Remove log $ factors

Idea: Bucketing 
Partition the range of %& into ' intervals

E&∼* log %& = ∑ℓ./0 Pr[%& ∈ 5ℓ] ⋅ E[log X&|%& ∈ 5ℓ]
Estimate :;0 and  <=0

Error  ≤ ∑ℓ./0?/ :;ℓ − ;ℓ ⋅ =ℓ − =0 + ∑ℓ./0 ;ℓ ⋅ =ℓ − <=ℓ

Buckets of large %& can be computed with less accuracy.

=ℓ

Removing B(log $).      

;ℓ
Largest bucket :;0 = 1 − ∑&./0?/ :;ℓ



Conclusion

This work !(1) words of memory: 

O & log 1/+ ,

+-
2015] 

Open question: can we improve the lower bound to Ω /
01 ?

Thank you.


