Joint with:

Practical Sublinear Algorithms
for Node Sampling in Large Networks

Omri Ben-Eliezer

MIT
Talya Eden Joel Oren Dimitris Fotakis

BU/MIT -> Bar llan U General Motors Natl Tech U Athens

The problem: Sampling multiple nodes

Start at single random node

The problem: Sampling multiple nodes

Explore graph through query access:
guerying node reveals its neighbors

The problem: Sampling multiple nodes

Explore graph through query access:

guerying node reveals its neighbors

The problem: Sampling multiple nodes

Explore graph through query access:
guerying node reveals its neighbors

The problem: Sampling multiple nodes

Goal: generate many random nodes

with as few queries as possible:

where Pr(S) < #
N (k)

forall S € (Z)

/For € > 0and k < n, return random S € (Z)\

)

Vl=n

Motivation

* Many algorithms (sublinear-time / property testing, data mining, ...)
assume access to random nodes.

* Exploring many different “parts” of a large network with few queries.

* Queries supported in modern social network APIs.

i y Developer Platform Products v Docs v Use Cases v Community v
Twitter API v2 For the complete API reference, select an endpoint from the list:

Fundamentals Follows lookup

Tweets . ;
Lookup following of a GET /2/users/:id/following '

Users user by ID i . .

y i Retrieved from Twitter API
Users lookup Lookup followers of a GET /2/users/:id/followers ! (httos://developer.twitter.com/en/docs/

user by ID ' twitter—api/users/folIows/api—reference),

Follows i July 2022

https://developer.twitter.com/en/docs/twitter-api/users/follows/api-reference

Solution |: BFS

* This talk: real world graphs (social networks). But let us start with
some theoretical observations.

Trivial solution: Query all nodes, O(n) query complexity. Tight (in worst
case) even for sampling a single node!

Solution Il: Random walks

1/3 1/3

1/3

Solution Il: Random walks

e Uniform random walk (+ rejection step) generates
one node (k = 1) in O(dgy4tmix - log1/€) queries

[Chierichetti, Dasgu?}V,Kumar,\Ja\tt‘anzi, Sarlos '16]

average degree mixing time of
uniform random walk

1/3

1/3
1/3

Solution Il: Random walks

e Uniform random walk (+ rejection step) generates
one node (k = 1) in O(dgy4tmiy - log1/€) queries
[Chierichetti, Dasgupta, Kumar, Lattanzi, Sarlos "16]

* Essentially optimal: Q0(d 4ty) lower bound (for
some graphs) [Chierichetti, Haddadan ‘18]

1/3

1/3
1/3

Solution Il: Random walks

e Uniform random walk (+ rejection step) generates
one node (k = 1) in O(dgy4tmix - log1/€) queries
[Chierichetti, Dasgupta, Kumar, Lattanzi, Sarlos "16]

* Essentially optimal: Q0(d 4ty) lower bound (for
some graphs) [Chierichetti, Haddadan ‘18]

* Not hard to show Q. (k - t,,,;,) lower bounds for
sampling k nodes, for wide classes of realistic graphs.

1/3

1/3
1/3

Solution Il: Random walks

e Uniform random walk (+ rejection step) generates
one node (k = 1) in O(dgy4tmix - log1/€) queries
[Chierichetti, Dasgupta, Kumar, Lattanzi, Sarlos "16]

* Essentially optimal: Q0(d 4ty) lower bound (for
some graphs) [Chierichetti, Haddadan ‘18]

* Not hard to show Q(k - t,,,;,) lower bounds for
sampling k nodes, for wide classes of realistic graphs.

1/3

Can we do better than O(k - t,;,;,) for large k?

1/3
1/3

Real-worlds social networks

* £,,i» Can be pretty large: several 100’s or more
[DR’09,MYK’10,QXZZ’20],

* Some small-world models have O(log? 1) mixing time,
e.g., Newman-Watts

[Dur’10, AL'12, KRS’15].

= Issue: High amortized query complexity for random
walk based algorithms!

Total variation distance

0.50 = ! —

VT, acebook A —— |
0 »\ Yoo i Facebook A -------
040 fo-vpivsgi DBLP -+ .
035 FEoNeneti, Youtube' === .
0.30 - Nodoo w LiveJournal B ==-== n
0'25 B LiveJournal B --------
0.20 .‘:;A,‘\, .. —
L R s e =
0.10 ,\‘. \\,\\]
005 \ s, T e
0.00 R ERRLL Y SR]

500 1000 1500 2000

Mixing time (walk length)
[Mohaisen-Yun-Kim, ‘10]

Real-worlds social networks

PROFILE FOLLOWERS
'« Power law degree distribution i
i . . “« ” i & Barack Obama @ 152,582,271
- Highly expanding “core”, i
. isolated “periphery” components [BE'99, G
|)))) ! ¥ Justin Bieber @ 114,149,758
. LLDM '09, RPFM’14, ZMN'15, BK'19, ...] |
ﬁ KATY PERRY @ 108,919,460
@ Rihanna @ 107,003,013
: a Cristiano Ronaldo @ 102,284,851
[Krebs-HoIIey '06] a Elon Musk @ 102,170,738

[socialtracker.io]

Let’s use core-periphery structure!

periphery

Can you reach a random
node in less than |
tmix = 0(d) queries? |

HEURISTICS
AHEAD

Samplayer [BEFO’22]: New node sampling algorithm

* Preprocessing: Greedily search for
“most influential” nodes in network, L.

* Layering & Calibrating: implicitly
partition network into three layers:
Ly, L1, and the periphery L.

* Sampling by length 2 walks from L, to
Ls, +local BFSin L., + rejection.

Phase 1: Greedy core construction {“]

Starting from single node, construct L, by repeatedly adding node v
with highest “perceived degree” and querying v.

Phase 2: Structural layering

L, :all neighbors of L,
L, : all other nodes in network.

&ey observation: sublinear-sized L czh
decompose L, into tiny components!

Forest Fire Real World Networks

— DBLP
-~ YTBE
- 3.0% —TWIT
8 — SINA
5 2.5%
o 2.0%
0k 25k 50k 75k 100k

b s 0 20k 40k 60k
\ grapn size L, size /

< 3.5%

—_
(@)}
ot

—_
O
w

Wghtd avg comp

—_
=)
—

Phase 2: Structural layering

“Preparations” for sampling:
* Estimate L., size (|Lg]|, |L1| known).

* Find a “reachability baseline” for L.,

e Generated distribution will be uniform except
for “low reachability” nodes.

Phase 3: Sampling

* Sampling from L, U L straightforward.

* Sampling from L, by length-2 walk between L, and L,, then BFS in
reached L., component.
Finally, rejection step to ensure uniform probabilities.

0
— (¢ 1
— w W
‘ T\ = 11/24
v : /'/<
\
Ly

L>o

\

Lo

Empirical results: SampLlayer vs random walks

e Sina Weibo [ZYLX'14], social network with =~ 60M nodes, 260M edges

45 7
145 - :
o T Sl rej mh 2013 SL+ mm= mh+
= 125+ \
E 35_ \
CTJ 85‘ 25‘ \\\
——

> 65- 20- T
2 s 15—
8- 25: g_

0 50k 150k 300k 450k 600k 0 50k 150k 300k 450k 600&

node samples node samples

Empirical results: SampLlayer vs random walks

e Other social & information networks

le

o

queries per s

ple
—
(O8]
o

queries per s

130
£ 110
901
701
501
301
101

Epinions

~~
—y
K‘——-____‘-
~

]
-_-——————_

200

400 600

Youtube

'S

E 110
901
701
501
301
101

N
~

-~

S ‘\\\\\~“-..~_

—

~~~
~~
~~.

—y
_——————————

2000

4000 6000 8000 10000

node samples

130+
110+
90 1
701
501
301
101

Slashdot
\ T — e ——
N =
200 400 600 800

Twitter-Higgs

2551
2251
1951
1651
1351
1051
751
451
151

2000 3000 4000

node samples

1000

1301
110+
90 1
707
901
301
101

3401
300 1
2601
2201
1801
1401
100 1
60 1
201

DBLP

1000 2000 3000
Pokec
— Q] o SL
== MO - SL+

= Mmh+

b

10000 15000
node samples

5000




Empirical results: SampLlayer vs random walks

Dataset n m davg Ly size
SL SL+
Epinions [47] 76K 509K 134 3K 1K
Slashdot [38] 82K 948K 231 3K 2K
DBLP [56] 317K 1.05M 6.62 30K 20K

Twitter-Higgs [12] 457K 149M 651 25K 10K
Forest Fire [36,37] 1M 675M 135 10K 10K

Youtube [56] 1.IM  299M 527 30K 10K
Pokec [54] 1.6M  30.6M 37.5 200K 100K
SinaWeibo [58] 58.7M 261M 891 500K 100K

Table 1: The list of networks we considered with numbers
of nodes (n), edges (m), their average degrees (davg), and L
sizes we selected for SAMPLAYER and SAMPLAYER+.



Empirical results: SampLlayer vs random walks

* Forest Fire network model [LKF'O5] with ps = 0.37,p,, = 0.3

135 : — Q] - SL

2000 4000 6000 8000 10000
node samples



Why does it work?

* Algorithm provably converges to uniformity:

THEOREM 3.1. If our size estimation for L>2 is in (1 +0(1))|L>2|,
nd if the baseline reachability rso used in our algorithm is the o(1)-
ercentile in the reachability distribution, then the output node distri-

ution of SAMPLE is o(1)-close to uniform in total variation distance.
+o(1)

e

Furthermore, the sampling probability of any node is at most

L______________________________________________________________________________4



Why does it work?

/Key observation: sublinear-sized L can\
decompose L, into tiny components!

Forest Fire Real World Networks
= a - — DBLP
S 3.5% £10° YTBE
- 3.0% © — TWIT
0 ‘;"103, — SINA
5 2.5% {.5
g 2.0% §°101,

0k 25k 50k 75k 100k 0 20k 40k 60k

K graph size L, size j




Why does it work?

* Sublinear “almost domination”: Most
nodes with, say, (out-)degree = 10 have a
neighbor in top 0.1%-1% highest degrees.

1.0 1

Tumblr A

_—

Fraction covered
o (@]
=~ o

Epinions Pokec
—— Slashdot —— Wiki-topcats
0.2 —— Youtube DBLP
—— Orkut —— Twitter-MPI-SWS
— Twitter-Higgs = Tumblr

LiveJournal

0.0

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009
Number of nodes in the high graph as fraction of n

Dataset No. Nodes No. Edges
Epinions [39] 76K 509K
Slashdot [28] 82K 948K
DBLP [48] 317K 1.05M
Twitter-Higgs [18] 457K 14.9M
Youtube [48] 1.1IM 2.99M
Pokec [45] 1.6M 30.6M
Wiki-topcats [49] 1.8M 28.5M
Orkut [48] 3.1M 117M
LiveJournal [48] 4.8M 69M
Twitter-MPI-SWS [9] 53M 2.0B
Tumblr 247M 14.5B




Why does it work?

* (Weak) theoretical bounds on query complexity:



Open Questions

* More explanations and applications for “sublinear almost domination”?
[BLMPP’15, MSSK’13, NA’12]

 Efficient node sampling in the random walk query model? (e.g., [PS'21])

* Other practical algorithms based on core-periphery? [ASK'12, AlY'13, BK'19]
* Also, better theoretical guarantees for our algorithm?

e Learning-augmented models for algorithms on large networks? (e.g.,
[CEILNRSWZ’22])



