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The problem: Sampling multiple nodes

Start at single random node

Explore graph through query access:
querying node reveals its neighbors

Goal: generate many random nodes
with as few queries as possible:

For 𝜖 > 0 and 𝑘 ≪ 𝑛, return random S ∈ !
"

where Pr 𝑆 ≤ #$%
!
"

for all 𝑆 ∈ !
" 𝑉 = 𝑛



Motivation

• Many algorithms (sublinear-time / property testing, data mining, …)
assume access to random nodes.
• Exploring many different “parts” of a large network with few queries.
• Queries supported in modern social network APIs.

Retrieved from Twitter API 
(https://developer.twitter.com/en/docs/

twitter-api/users/follows/api-reference), 
July 2022

https://developer.twitter.com/en/docs/twitter-api/users/follows/api-reference


Solution I: BFS

• This talk: real world graphs (social networks). But let us start with 
some theoretical observations.

Trivial solution: Query all nodes, 𝑂(𝑛) query complexity. Tight (in worst 
case) even for sampling a single node!
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• Uniform random walk (+ rejection step) generates 
one node (𝑘 = 1) in O(𝑑!"#𝑡$%& ⋅ log 1/𝜖) queries 
[Chierichetti, Dasgupta, Kumar, Lattanzi, Sarlos ’16] 

𝑚𝑖𝑥𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 𝑜𝑓
u𝑛𝑖𝑓𝑜𝑟𝑚 𝑟𝑎𝑛𝑑𝑜𝑚 𝑤𝑎𝑙𝑘

a𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑔𝑟𝑒𝑒



Solution II: Random walks

• Uniform random walk (+ rejection step) generates 
one node (𝑘 = 1) in O(𝑑!"#𝑡$%& ⋅ log 1/𝜖) queries 
[Chierichetti, Dasgupta, Kumar, Lattanzi, Sarlos ’16] 
• Essentially optimal: Ω(𝑑!"#𝑡$%&) lower bound (for 

some graphs) [Chierichetti, Haddadan ‘18]

1/3

1/3

1/3



Solution II: Random walks

• Uniform random walk (+ rejection step) generates 
one node (𝑘 = 1) in O(𝑑!"#𝑡$%& ⋅ log 1/𝜖) queries 
[Chierichetti, Dasgupta, Kumar, Lattanzi, Sarlos ’16] 
• Essentially optimal: Ω(𝑑!"#𝑡$%&) lower bound (for 

some graphs) [Chierichetti, Haddadan ‘18]
• Not hard to show Ω(𝑘 ⋅ 𝑡$%&) lower bounds for 

sampling 𝑘 nodes, for wide classes of realistic graphs.

1/3

1/3

1/3



Solution II: Random walks

• Uniform random walk (+ rejection step) generates 
one node (𝑘 = 1) in O(𝑑!"#𝑡$%& ⋅ log 1/𝜖) queries 
[Chierichetti, Dasgupta, Kumar, Lattanzi, Sarlos ’16] 
• Essentially optimal: Ω(𝑑!"#𝑡$%&) lower bound (for 

some graphs) [Chierichetti, Haddadan ‘18]
• Not hard to show Ω(𝑘 ⋅ 𝑡$%&) lower bounds for 

sampling 𝑘 nodes, for wide classes of realistic graphs.

Can we do better than 𝑂(𝑘 ⋅ 𝑡&'() for large 𝑘?
1/3
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Real-worlds social networks

• 𝒕𝒎𝒊𝒙 can be pretty large: several 100’s or more 
[DR’09,MYK’10,QXZZ’20], 
• Some small-world models have Θ(log* 𝑛) mixing time, 

e.g., Newman-Watts 
[Dur’10, AL’12, KRS’15].

⇒ Issue: High amortized query complexity for random 
walk based algorithms!

[Mohaisen-Yun-Kim, ‘10]



Real-worlds social networks

• Power law degree distribution 
• Highly expanding “core”, 

isolated “periphery” components [BE’99, 
LLDM ’09, RPFM’14, ZMN’15, BK’19, …]

[Krebs-Holley, ‘06]

[socialtracker.io]



𝑲𝒅

Let’s use core-periphery structure!

periphery

Can you reach a random 
node in less than 
𝑡567 = 𝑂(𝑑) queries?





SampLayer [BEFO’22]: New node sampling algorithm

• Preprocessing: Greedily search for 
“most influential” nodes in network, 𝐿).

• Layering & Calibrating: implicitly 
partition network into three layers: 
𝐿), 𝐿#, and the periphery 𝐿*+.

• Sampling by length 2 walks from 𝐿) to 
𝐿*+ + local BFS in 𝐿*+ + rejection.

Conference’17, July 2017, Washington, DC, USA Ben-Eliezer, Eden, Oren and Fotakis

Figure 3: Very small !0 su�ces to shatter !�2-components
in a Forest Fire graph (left); convergence of !�2 component
sizes as |!0 | grows, in four real-world networks (right).

Our experiments indicate that the answer is positive, even if one
instead generates !0 greedily with our query access, starting from
an arbitrary seed vertex. The details are given in the experimental
section, but brie�y, Figure 3 demonstrates that for both the Forest
Fire model with standard parameters and for various real-world
social networks with diverse characteristics, a very small !0 size
(ranging between 0.1% and 10% of the graph size, and in most cases
about 1 � 2%) su�ces for !�2 to decompose very e�ectively.

These results suggest a new approach to quickly reach nodes
in the network: In a preprocessing phase, greedily capture !0 as
above, which decomposes the rest of the network into !1 and !�2.
!1-nodes are easy to reach; !�2-nodes are reachable by attempting
to visit a component from !�2 through a walk of length 2 from !0,
and then fully exploring the component via a BFS. Our algorithm,
S���L����, is based on this idea, also running size and reachability
estimations to ensure the generated samples are close to uniform.

3.1 Algorithm Description
We next describe our algorithm, S���L����, in detail. The algo-
rithm runs in two phases: a structural learning phase and a sampling
phase. In the �rst phase, the algorithm constructs a data structure
providing fast access to nodes that are either very highly-connected
(we call these nodes the !0-layer) or neighbors thereof (the !1-layer).
This exploits the well-known fact that in large social and informa-
tion networks, typically a large fraction of the nodes are connected
to a highly in�uential core [? ]. The node sampling itself takes place
in the second phase, which uses the data structure to either sample
from the core layers !0 [ !1, or to explicitly cross bridges that lead
to the small, less connected parts. These are edges from !1 to nodes
outside !0 [ !1. We refer to these nodes as the !�2 layer. Once it
reaches such a small component, the algorithm fully explores the
component and uniformly samples a node from within it. Finally,
our algorithm uses rejection sampling to ensure that (almost) all
nodes are returned with equal probability.

Structural decompositionphase. Starting from an arbitrary node,
we aim to capture the highest-degree nodes in the network. This is
done by our procedure G��������!0 below. We add these nodes
greedily, one by one, where intuitively, in every step the newly
added node is the one we perceive (according to the information
currently available) as the highest-degree one. We refer to this
initial collection of high-degree nodes as the base layer, !0.2

2We note that one can modify G��������!0 by �rst conducting a random walk using
part of the !0-construction budget, and only then continuing with the above process.
While the added randomness could theoretically help escaping situations where the
initial node is problematic in some way or there are multiple cores in the graph, in all

L�2

L0

L1

Figure 4: An illustration of a typical network and its layering
by our algorithm, S���L����. The!�2-layer components in-
tuitively correspond to small communities that are weakly
connected to the rest of the network.

G��������R0
I����: arbitrary vertex E0, number ✓0.
O�����: !0 of size ✓0, !1, D.
(1) Query E0 and let !0 = {E0}, !1 = # (E0).
(2) Repeat ✓0 � 1 times:

(a) Pick D 2 !1 with maximum number of !0 neigh-
bors (break ties randomly).

(b) Query D and remove it from !1.
(c) Add D to !0 and add # (D) \ !0 to !1.

(3) Create a data structure D to sample edges between !0
and !1 uniformly at random.

(4) Return !0, !1 and D.

The next layer, !1, is the set of neighbors of !0 that are not
already in !0, i.e. !1 =

–
E2!0 # (E) \ !0, where # (E) denotes the

set of neighbors of node E . Intuitively, the union of these two layers
captures the well-connected or “expanding” part of the network.
The neighbors of !1 are denoted !2 and the multi-layer consisting
of all other nodes in the network is denoted by !>2, where we also
set !�2 = !2[!>2. See Figure 4 for a visualization of the layers and
Figure 5 for a visualization of the structural decomposition phase
of S���L���� and its variant S���L����+.

Denote by ⌧�2 the subgraph whose node set is !�2, and whose
edge set includes all edges between !2 and !>2 and all edges be-
tween nodes in !>2. Crucially, the size ✓0 of the generated !0 should
be su�ciently large so that the subgraph⌧�2 will “break” intomany
small connected components. (Note that we intentionally “ignore”
edges between vertices that lie strictly in !2, to make these compo-
nents as small as possible.) In Section 4.2, we explore the typical
size of ⌧�2-components as a function of ✓0, and discuss how to
determine the “correct” ✓0 value for the network at hand.

To complete this phase, we learn various parameters of the lay-
ering that are crucial for the sampling phase, including accurate
approximations of the size of !�2 and the typical reachability of
nodes in it. This is done using the procedures E��������P���������
S��� and E��������B��������R�����������, given in Section A.1.
Speci�cally, estimating the size of !�2 is done by considering the

networks that we tested adding such a random walk did not improve the quality of !0;
in fact, the existing algorithm captured essentially all nodes with very high degrees.
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Figure 5: The structural decomposition phase, of generating
(from left to right) the base layer !0 in S���L���� (top, pur-
ple) and S���L����+ (bottom, blue) from an arbitrary start-
ing node. At any given step, the next layer !1 consists of all
neighbors of the !0 nodes. The value next to each !1-node
indicates its number of neighbors in !0 (in S���L����) or
its total degree (in S���L����+).

bipartite graph with !1 on one side and !�2 on the other. By sam-
pling B1 nodes from !1 and B�2 nodes from !�2 (using the procedure
R�����!�2), we estimate the average degrees of the nodes of each
side of the bipartite graph, fromwhich we estimate |!�2 |. The reach-
ability distribution is approximated by calculating the reachabilities
of the B�2 samples from !�2. This procedure receives as an input a
parameter Y, and returns a “baseline reachability” which is approx-
imately the Y-percentile of !�2-nodes in terms of reachability. In
Section 4.1 we discuss how to practically choose B1, B�2, and Y.

Sampling phase. Sampling from the core layers !0 and !1 is trivial;
the challenge is to sample e�ciently from !�2. Taking advantage of
the layering, we sample random nodes in !�2 by combining walks
of length 2 that start in !0 and reach !�2, with a local BFS step
that explores and returns a uniformly selected node in the reached
!�2 component. The above process generates biased samples, as
the vertices in di�erent components have di�erent probabilities to
be reached in the initial 2-step walk. Hence, the �nal step in the
sampling procedure is a rejection step, whose role is to unbias the
distribution. Here, we compute a suitable reachability score, AB (E) for
every reached vertex. We then perform a rejection step, where the
acceptance probability is inversely proportional to the reachability
score of the chosen node. See Figure 6 for the pseudo-code and
Figure 7 for an illustration of the sampling process.

Non-uniform distributions. For simplicity, our algorithm is pre-
sented for node generation according to the uniform distribution.
We note that it can be adapted to generate other desirable distri-
butions. For example, to conduct ✓? -sampling, the size estimation
procedure should be replaced by a procedure that estimates the
sum

Õ
E2!�2 (3 (E))? (and the corresponding sum for !1), and the

reachability distribution estimation should be adjusted accordingly.

3.2 Convergence to Uniformity
Our main theorem states that samples generated by our algorithm
converge to (near-)uniformity. The proof builds in part on the fact

S�����
I����: ✓̄�2 - size estimate for !�2. AB0 - baseline reachability.
(Both computed in the preprocessing step)
O�����: An almost uniform node in the network.
(1) Choose a layer !0, !1 or !�2 with probability propor-

tional to their sizes |!0 |, |!1 |, ✓̄�2.
(2) If !0 or !1 are chosen then sample a uniform node in

!0 or !1, respectively.
(3) If !�2 is chosen, then repeatedly do:

(a) Invoke R�����!�2 and let D and AB (D) be the re-
turned node and its reachability.

(b) With probability min( AB0
AB (D) , 1) return D. If not re-

turned, repeat loop.

R�����R�2
I����: The data structure D.
O�����: vertex E 2 !�2, its component and reach. score.

(1) While no vertexF chosen:
(a) Use D to sample a uniform edge between !0 and

!1. Let D denote its !1 endpoint.
(b) Query D, and if it has neighbors in !�2, choose

one of them,F , uniformly at random.
(2) Perform a local BFS of the component ⇠ ofF in ⌧�2.
(3) Choose a vertex E in ⇠ uniformly at random.
(4) Invoke C����R����������� to compute the reachabil-

ity of ⇠ , AB (⇠).
(5) Return E , and its reachability score, AB (E) = AB (⇠).
C����R�����������
I����: An (already queried) component ⇠ of ⌧�2.
O�����: The reachability score of ⇠ .

(1) 8E 2 ⇠ \ !2:
(a) Query all D 2 # (E) \ !1. For each such D:

(i) Let 3� (D) = |# (D) \ !0 |, and 3+(D) = |# (D) \
!2 |.

(ii) 8D 2 # (E) \ !1 set AB (D) = 3� (D)
3+ (D) .

(iii) Set AB (E) = Õ
D AB (D).

(2) Return AB (⇠) = 1
|⇠ |

Õ
E2⇠ AB (E).

Figure 6: The sampling procedures.

that our algorithm can estimate the size of !�2 given su�cient e�ort
in the preprocessing phase. Proofs are given in the full version [3].
For experiments on the size estimation procedures, see Section A.4.

T������ 3.1. If our size estimation for !�2 is in (1 ± > (1)) |!�2 |,
and if the baseline reachability AB0 used in our algorithm is the > (1)-
percentile in the reachability distribution, then the output node distri-
bution of S����� is > (1)-close to uniform in total variation distance.

We stress that even in the case that the !0 generation process
is unsuccessful (in a sense that it does not break the !�2 vertices
into small components), it always holds that our algorithm returns
a close to uniform vertex, provided that the size and reachability
estimates are correct. That is, the correctness of our algorithm
holds for any given !0 (with high probability), and only the query
complexity of subsequent sampling might be negatively a�ected,
e.g., due to a high expected component size value.

Starting from single node, construct 𝐿) by repeatedly adding node 𝑣
with highest “perceived degree” and querying 𝑣.



Phase 2: Structural layering

𝐿# : all neighbors of 𝐿), 
𝐿*+ : all other nodes in network.

Key observation: sublinear-sized 𝐿) can
decompose 𝐿*+ into tiny components!
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Figure 3: Very small !0 su�ces to shatter !�2-components
in a Forest Fire graph (left); convergence of !�2 component
sizes as |!0 | grows, in four real-world networks (right).

Our experiments indicate that the answer is positive, even if one
instead generates !0 greedily with our query access, starting from
an arbitrary seed vertex. The details are given in the experimental
section, but brie�y, Figure 3 demonstrates that for both the Forest
Fire model with standard parameters and for various real-world
social networks with diverse characteristics, a very small !0 size
(ranging between 0.1% and 10% of the graph size, and in most cases
about 1 � 2%) su�ces for !�2 to decompose very e�ectively.

These results suggest a new approach to quickly reach nodes
in the network: In a preprocessing phase, greedily capture !0 as
above, which decomposes the rest of the network into !1 and !�2.
!1-nodes are easy to reach; !�2-nodes are reachable by attempting
to visit a component from !�2 through a walk of length 2 from !0,
and then fully exploring the component via a BFS. Our algorithm,
S���L����, is based on this idea, also running size and reachability
estimations to ensure the generated samples are close to uniform.

3.1 Algorithm Description
We next describe our algorithm, S���L����, in detail. The algo-
rithm runs in two phases: a structural learning phase and a sampling
phase. In the �rst phase, the algorithm constructs a data structure
providing fast access to nodes that are either very highly-connected
(we call these nodes the !0-layer) or neighbors thereof (the !1-layer).
This exploits the well-known fact that in large social and informa-
tion networks, typically a large fraction of the nodes are connected
to a highly in�uential core [? ]. The node sampling itself takes place
in the second phase, which uses the data structure to either sample
from the core layers !0 [ !1, or to explicitly cross bridges that lead
to the small, less connected parts. These are edges from !1 to nodes
outside !0 [ !1. We refer to these nodes as the !�2 layer. Once it
reaches such a small component, the algorithm fully explores the
component and uniformly samples a node from within it. Finally,
our algorithm uses rejection sampling to ensure that (almost) all
nodes are returned with equal probability.

Structural decompositionphase. Starting from an arbitrary node,
we aim to capture the highest-degree nodes in the network. This is
done by our procedure G��������!0 below. We add these nodes
greedily, one by one, where intuitively, in every step the newly
added node is the one we perceive (according to the information
currently available) as the highest-degree one. We refer to this
initial collection of high-degree nodes as the base layer, !0.2

2We note that one can modify G��������!0 by �rst conducting a random walk using
part of the !0-construction budget, and only then continuing with the above process.
While the added randomness could theoretically help escaping situations where the
initial node is problematic in some way or there are multiple cores in the graph, in all
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Figure 4: An illustration of a typical network and its layering
by our algorithm, S���L����. The!�2-layer components in-
tuitively correspond to small communities that are weakly
connected to the rest of the network.

G��������R0
I����: arbitrary vertex E0, number ✓0.
O�����: !0 of size ✓0, !1, D.
(1) Query E0 and let !0 = {E0}, !1 = # (E0).
(2) Repeat ✓0 � 1 times:

(a) Pick D 2 !1 with maximum number of !0 neigh-
bors (break ties randomly).

(b) Query D and remove it from !1.
(c) Add D to !0 and add # (D) \ !0 to !1.

(3) Create a data structure D to sample edges between !0
and !1 uniformly at random.

(4) Return !0, !1 and D.

The next layer, !1, is the set of neighbors of !0 that are not
already in !0, i.e. !1 =

–
E2!0 # (E) \ !0, where # (E) denotes the

set of neighbors of node E . Intuitively, the union of these two layers
captures the well-connected or “expanding” part of the network.
The neighbors of !1 are denoted !2 and the multi-layer consisting
of all other nodes in the network is denoted by !>2, where we also
set !�2 = !2[!>2. See Figure 4 for a visualization of the layers and
Figure 5 for a visualization of the structural decomposition phase
of S���L���� and its variant S���L����+.

Denote by ⌧�2 the subgraph whose node set is !�2, and whose
edge set includes all edges between !2 and !>2 and all edges be-
tween nodes in !>2. Crucially, the size ✓0 of the generated !0 should
be su�ciently large so that the subgraph⌧�2 will “break” intomany
small connected components. (Note that we intentionally “ignore”
edges between vertices that lie strictly in !2, to make these compo-
nents as small as possible.) In Section 4.2, we explore the typical
size of ⌧�2-components as a function of ✓0, and discuss how to
determine the “correct” ✓0 value for the network at hand.

To complete this phase, we learn various parameters of the lay-
ering that are crucial for the sampling phase, including accurate
approximations of the size of !�2 and the typical reachability of
nodes in it. This is done using the procedures E��������P���������
S��� and E��������B��������R�����������, given in Section A.1.
Speci�cally, estimating the size of !�2 is done by considering the

networks that we tested adding such a random walk did not improve the quality of !0;
in fact, the existing algorithm captured essentially all nodes with very high degrees.
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Phase 2: Structural layering

“Preparations” for sampling:
• Estimate 𝐿*+ size ( 𝐿) , |𝐿#| known).
• Find a “reachability baseline” for 𝐿*+
• Generated distribution will be uniform except

for “low reachability” nodes.
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Figure 3: Very small !0 su�ces to shatter !�2-components
in a Forest Fire graph (left); convergence of !�2 component
sizes as |!0 | grows, in four real-world networks (right).

Our experiments indicate that the answer is positive, even if one
instead generates !0 greedily with our query access, starting from
an arbitrary seed vertex. The details are given in the experimental
section, but brie�y, Figure 3 demonstrates that for both the Forest
Fire model with standard parameters and for various real-world
social networks with diverse characteristics, a very small !0 size
(ranging between 0.1% and 10% of the graph size, and in most cases
about 1 � 2%) su�ces for !�2 to decompose very e�ectively.

These results suggest a new approach to quickly reach nodes
in the network: In a preprocessing phase, greedily capture !0 as
above, which decomposes the rest of the network into !1 and !�2.
!1-nodes are easy to reach; !�2-nodes are reachable by attempting
to visit a component from !�2 through a walk of length 2 from !0,
and then fully exploring the component via a BFS. Our algorithm,
S���L����, is based on this idea, also running size and reachability
estimations to ensure the generated samples are close to uniform.

3.1 Algorithm Description
We next describe our algorithm, S���L����, in detail. The algo-
rithm runs in two phases: a structural learning phase and a sampling
phase. In the �rst phase, the algorithm constructs a data structure
providing fast access to nodes that are either very highly-connected
(we call these nodes the !0-layer) or neighbors thereof (the !1-layer).
This exploits the well-known fact that in large social and informa-
tion networks, typically a large fraction of the nodes are connected
to a highly in�uential core [? ]. The node sampling itself takes place
in the second phase, which uses the data structure to either sample
from the core layers !0 [ !1, or to explicitly cross bridges that lead
to the small, less connected parts. These are edges from !1 to nodes
outside !0 [ !1. We refer to these nodes as the !�2 layer. Once it
reaches such a small component, the algorithm fully explores the
component and uniformly samples a node from within it. Finally,
our algorithm uses rejection sampling to ensure that (almost) all
nodes are returned with equal probability.

Structural decompositionphase. Starting from an arbitrary node,
we aim to capture the highest-degree nodes in the network. This is
done by our procedure G��������!0 below. We add these nodes
greedily, one by one, where intuitively, in every step the newly
added node is the one we perceive (according to the information
currently available) as the highest-degree one. We refer to this
initial collection of high-degree nodes as the base layer, !0.2

2We note that one can modify G��������!0 by �rst conducting a random walk using
part of the !0-construction budget, and only then continuing with the above process.
While the added randomness could theoretically help escaping situations where the
initial node is problematic in some way or there are multiple cores in the graph, in all
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Figure 4: An illustration of a typical network and its layering
by our algorithm, S���L����. The!�2-layer components in-
tuitively correspond to small communities that are weakly
connected to the rest of the network.

G��������R0
I����: arbitrary vertex E0, number ✓0.
O�����: !0 of size ✓0, !1, D.
(1) Query E0 and let !0 = {E0}, !1 = # (E0).
(2) Repeat ✓0 � 1 times:

(a) Pick D 2 !1 with maximum number of !0 neigh-
bors (break ties randomly).

(b) Query D and remove it from !1.
(c) Add D to !0 and add # (D) \ !0 to !1.

(3) Create a data structure D to sample edges between !0
and !1 uniformly at random.

(4) Return !0, !1 and D.

The next layer, !1, is the set of neighbors of !0 that are not
already in !0, i.e. !1 =

–
E2!0 # (E) \ !0, where # (E) denotes the

set of neighbors of node E . Intuitively, the union of these two layers
captures the well-connected or “expanding” part of the network.
The neighbors of !1 are denoted !2 and the multi-layer consisting
of all other nodes in the network is denoted by !>2, where we also
set !�2 = !2[!>2. See Figure 4 for a visualization of the layers and
Figure 5 for a visualization of the structural decomposition phase
of S���L���� and its variant S���L����+.

Denote by ⌧�2 the subgraph whose node set is !�2, and whose
edge set includes all edges between !2 and !>2 and all edges be-
tween nodes in !>2. Crucially, the size ✓0 of the generated !0 should
be su�ciently large so that the subgraph⌧�2 will “break” intomany
small connected components. (Note that we intentionally “ignore”
edges between vertices that lie strictly in !2, to make these compo-
nents as small as possible.) In Section 4.2, we explore the typical
size of ⌧�2-components as a function of ✓0, and discuss how to
determine the “correct” ✓0 value for the network at hand.

To complete this phase, we learn various parameters of the lay-
ering that are crucial for the sampling phase, including accurate
approximations of the size of !�2 and the typical reachability of
nodes in it. This is done using the procedures E��������P���������
S��� and E��������B��������R�����������, given in Section A.1.
Speci�cally, estimating the size of !�2 is done by considering the

networks that we tested adding such a random walk did not improve the quality of !0;
in fact, the existing algorithm captured essentially all nodes with very high degrees.



Phase 3: Sampling
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Figure 7: Sampling a node from !�2 in S���L����. We start by picking a uniform edge !0 and !1, let D denote its !1-endpoint.
We next traverse a random edge from D to E 2 !2, if one exists. We then fully explore the !�2-component ⇠ containing E ,
choosing a uniformly random nodeF 2 ⇠. A �nal rejection step estimates how likely it is for the process to end atF .

3.3 Query Complexity
In this section, we analyze the query complexity of the sampling
phase of our approach. We show here that the query complexity
of sampling nodes using S���L���� is bounded as a function of
several parameters related to the layered structure wemaintain. The
starting point of our analysis is immediately after the preprocessing
phase is completed. In particular, !0 and !1 are already known, as
well as a good estimate of the size of !�2. In addition, we have
the ability to sample uniformly random edges between !0 and !1
without making any queries. We make the following assumptions.

• Reachability distribution.Weassume that the reachabilities
of nodes in !2 are relatively balanced: the reachability score
AB (E) of every E 2 !2 satis�es AB0  AB (E)  2 · AB0, where AB0
is viewed as the “base reachability”, and 2 > 1 is not large. We
empirically verify this in Section 4.2.

• Entry points. Let U denote the fraction of edges 4 between
!0 and !1, for which the !1-endpoint of 4 has neighbors in
!2. Then U is precisely the probability that a single attempt at
reaching !�2 succeeds (without taking the rejection step into
account). In practice, U is known to be well-behaved [48], as
most bridges to !�2 occur at higher-degree nodes of !1.

• Component sizes. Set F = E[ |⇠⇠ (E) | ], where E 2 !�2 is
(distributed as) the result of a single run of our procedure
R�����!�2, and ⇠⇠ (E) is the !�2-component in which E re-
sides. Intuitively,F measures the sizes of components that we
reach, and we empirically validate that it is typically small on
both synthetic and real-world networks, see Section 4.2.

• Degrees of component nodes.We assume that for all com-
ponents ⇠ of !�2, the number of bridges from ⇠ to the rest
of the network is at most 3 · |⇠ |, for a small integer 3 . This
is in line with the well-observed fact [38, 48] that peripheral
components are weakly connected to the network.

Our experiments verify that the parameters discussed here are
indeed well-behaved when the size ✓0 of !0 is chosen correctly
– see Section 4.2 for more details. We bound the expected query
complexity of our sampling algorithm as a function of the above
parameters. Crucially, this implies that, once the preprocessing
phase is complete, the query complexity does not directly depend
on the network size or on the mixing time of long random walks.
Due to space constraints, the proof appears in the full version [3].

T������ 3.2. The expected query complexity of sampling a single
node using S���L���� is $

⇣
2 ·

⇣
1
U +F3

⌘⌘
.

4 EMPIRICAL RESULTS
In this section, we describe several experiments we conducted,
comparing our algorithms to previous approaches which are all
based on random walks (Section 4.1), and explaining the query-
e�ciency of our methods (Section 4.2).

4.1 Evaluation of Query Complexity
The main experiment computes the amortized number of queries
per sample of our algorithm, and compares it with the correspond-
ing query complexity of existing RW-based approaches. In the
standard query model, we compare our algorithm S���L���� with
two random walk-based algorithms, Rejection sampling (REJ) and
Metropolis-Hastings (MH). In the stronger query model, we com-
pare S���L����+ to Metropolis-Hastings “plus” (MH+). The meth-
ods REJ, MH, and MH+ were all described in detail by Chierichetti
et al. [8]. In REJ, the algorithm performs a standard (unbiased) ran-
dom walk, where nodes are subject to rejection sampling according
to their degree; in MH the neighbor transition probabilities are
controlled by the neighbors’ degrees. MH+ is the same as MH, but
assumes the stronger query model, where a node query also reveals
the degrees of its neighbors. RW-based algorithms are most com-
monly used to sample multiple nodes by performing a long random
walk, and sampling a new node once every �xed interval to allow
for re-mixing. Indeed, as discussed in Section 2, to ensure that the

Dataset = < 3avg !0 size
SL SL+

Epinions [47] 76K 509K 13.4 3K 1K

Slashdot [38] 82K 948K 23.1 3K 2K

DBLP [56] 317K 1.05M 6.62 30K 20K

Twitter-Higgs [12] 457K 14.9M 65.1 25K 10K

Forest Fire [36, 37] 1M 6.75M 13.5 10K 10K

Youtube [56] 1.1M 2.99M 5.27 30K 10K

Pokec [54] 1.6M 30.6M 37.5 200K 100K

SinaWeibo [58] 58.7M 261M 8.91 500K 100K
Table 1: The list of networks we considered with numbers
of nodes (=), edges (<), their average degrees (3avg), and !0
sizes we selected for S���L���� and S���L����+.

• Sampling from 𝐿) ∪ 𝐿# straightforward.
• Sampling from 𝐿*+ by length-𝟐 walk between 𝐿) and 𝐿*+, then BFS in 

reached 𝐿*+ component. 
Finally, rejection step to ensure uniform probabilities.



Empirical results: SampLayer vs random walks
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• Sina Weibo [ZYLX’14], social network with ≈ 𝟔𝟎M nodes, 𝟐𝟔𝟎M edges



Empirical results: SampLayer vs random walks

• Other social & information networks
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Empirical results: SampLayer vs random walks



Empirical results: SampLayer vs random walks

• Forest Fire network model [LKF’05] with 𝑝, = 0.37, 𝑝- = 0.3



Why does it work?

• Algorithm provably converges to uniformity:



Why does it work?

Key observation: sublinear-sized 𝐿) can
decompose 𝐿*+ into tiny components!
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Why does it work?
• Sublinear “almost domination”: Most 

nodes with, say, (out-)degree ≥ 10 have a 
neighbor in top 0.1%-1% highest degrees.
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Why does it work?

• (Weak) theoretical bounds on query complexity:



Open Questions

• More explanations and applications for “sublinear almost domination”? 
[BLMPP’15, MSSK’13, NA’12]
• Efficient node sampling in the random walk query model? (e.g., [PS’21])
• Other practical algorithms based on core-periphery? [ASK’12, AIY’13, BK’19]
• Also, better theoretical guarantees for our algorithm?

• Learning-augmented models for algorithms on large networks? (e.g., 
[CEILNRSWZ’22])

Thank you!


