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The problem: Sampling multiple nodes

Goal: generate many random nodes

with as few queries as possible:

where Pr(S) < #
N (k)

forall S € (Z)

/For € > 0and k < n, return random S € (Z)\

)

Vl=n



Motivation

* Many algorithms (sublinear-time / property testing, data mining, ...)
assume access to random nodes.

* Exploring many different “parts” of a large network with few queries.

* Queries supported in modern social network APIs.

i y Developer Platform Products v Docs v Use Cases v Community v
Twitter API v2 For the complete API reference, select an endpoint from the list:

Fundamentals Follows lookup

Tweets . ;
Lookup following of a GET /2/users/:id/following '

Users user by ID i . .

y i Retrieved from Twitter API
Users lookup Lookup followers of a GET /2/users/:id/followers ! (httos://developer.twitter.com/en/docs/

user by ID ' twitter—api/users/folIows/api—reference),

Follows i July 2022



https://developer.twitter.com/en/docs/twitter-api/users/follows/api-reference

Solution |: BFS

* This talk: real world graphs (social networks). But let us start with
some theoretical observations.

Trivial solution: Query all nodes, O(n) query complexity. Tight (in worst
case) even for sampling a single node!
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Solution Il: Random walks

e Uniform random walk (+ rejection step) generates
one node (k = 1) in O(dgy4tmix - log1/€) queries

[Chierichetti, Dasgu?}V,Kumar,\Ja\tt‘anzi, Sarlos '16]

average degree mixing time of
uniform random walk
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Solution Il: Random walks

e Uniform random walk (+ rejection step) generates
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* Essentially optimal: Q0(d 4ty ) lower bound (for
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* Not hard to show Q(k - t,,,;,) lower bounds for
sampling k nodes, for wide classes of realistic graphs.
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Can we do better than O(k - t,;,;,) for large k?
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Real-worlds social networks

* £,,i» Can be pretty large: several 100’s or more
[DR’09,MYK’10,QXZZ’20],

* Some small-world models have O(log? 1) mixing time,
e.g., Newman-Watts

[Dur’10, AL'12, KRS’15].

= Issue: High amortized query complexity for random
walk based algorithms!

Total variation distance
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Real-worlds social networks

PROFILE FOLLOWERS
'« Power law degree distribution i
i . . “« ” i & Barack Obama @ 152,582,271
- Highly expanding “core”, i
. isolated “periphery” components [BE'99, G
| ) ) ) ) ! ¥ Justin Bieber @ 114,149,758
. LLDM '09, RPFM’14, ZMN'15, BK'19, ...] |
ﬁ KATY PERRY @ 108,919,460
@ Rihanna @ 107,003,013
: a Cristiano Ronaldo @ 102,284,851
[Krebs-HoIIey '06] a Elon Musk @ 102,170,738

[socialtracker.io]



Let’s use core-periphery structure!

periphery

Can you reach a random
node in less than |
tmix = 0(d) queries? |




HEURISTICS
AHEAD



Samplayer [BEFO’22]: New node sampling algorithm

* Preprocessing: Greedily search for
“most influential” nodes in network, L.

* Layering & Calibrating: implicitly
partition network into three layers:
Ly, L1, and the periphery L.

* Sampling by length 2 walks from L, to
Ls, +local BFSin L., + rejection.



Phase 1: Greedy core construction {“]

Starting from single node, construct L, by repeatedly adding node v
with highest “perceived degree” and querying v.



Phase 2: Structural layering

L, :all neighbors of L,
L, : all other nodes in network.

&ey observation: sublinear-sized L czh
decompose L, into tiny components!

Forest Fire Real World Networks
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Phase 2: Structural layering

“Preparations” for sampling:
* Estimate L., size (|Lg]|, |L1| known).

* Find a “reachability baseline” for L.,

e Generated distribution will be uniform except
for “low reachability” nodes.




Phase 3: Sampling

* Sampling from L, U L straightforward.

* Sampling from L, by length-2 walk between L, and L,, then BFS in
reached L., component.
Finally, rejection step to ensure uniform probabilities.
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Empirical results: SampLlayer vs random walks

e Sina Weibo [ZYLX'14], social network with =~ 60M nodes, 260M edges
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Empirical results: SampLlayer vs random walks

e Other social & information networks
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Empirical results: SampLlayer vs random walks

Dataset n m davg Ly size
SL SL+
Epinions [47] 76K 509K 134 3K 1K
Slashdot [38] 82K 948K 231 3K 2K
DBLP [56] 317K 1.05M 6.62 30K 20K

Twitter-Higgs [12] 457K 149M 651 25K 10K
Forest Fire [36,37] 1M 675M 135 10K 10K

Youtube [56] 1.IM  299M 527 30K 10K
Pokec [54] 1.6M  30.6M 37.5 200K 100K
SinaWeibo [58] 58.7M 261M 891 500K 100K

Table 1: The list of networks we considered with numbers
of nodes (n), edges (m), their average degrees (davg), and L
sizes we selected for SAMPLAYER and SAMPLAYER+.



Empirical results: SampLlayer vs random walks

* Forest Fire network model [LKF'O5] with ps = 0.37,p,, = 0.3
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Why does it work?

* Algorithm provably converges to uniformity:

THEOREM 3.1. If our size estimation for L>2 is in (1 +0(1))|L>2|,
nd if the baseline reachability rso used in our algorithm is the o(1)-
ercentile in the reachability distribution, then the output node distri-

ution of SAMPLE is o(1)-close to uniform in total variation distance.
+o(1)

e

Furthermore, the sampling probability of any node is at most

L______________________________________________________________________________4



Why does it work?

/Key observation: sublinear-sized L can\
decompose L, into tiny components!

Forest Fire Real World Networks
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Why does it work?

* Sublinear “almost domination”: Most
nodes with, say, (out-)degree = 10 have a
neighbor in top 0.1%-1% highest degrees.
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Dataset No. Nodes No. Edges
Epinions [39] 76K 509K
Slashdot [28] 82K 948K
DBLP [48] 317K 1.05M
Twitter-Higgs [18] 457K 14.9M
Youtube [48] 1.1IM 2.99M
Pokec [45] 1.6M 30.6M
Wiki-topcats [49] 1.8M 28.5M
Orkut [48] 3.1M 117M
LiveJournal [48] 4.8M 69M
Twitter-MPI-SWS [9] 53M 2.0B
Tumblr 247M 14.5B




Why does it work?

* (Weak) theoretical bounds on query complexity:



Open Questions

* More explanations and applications for “sublinear almost domination”?
[BLMPP’15, MSSK’13, NA’12]

 Efficient node sampling in the random walk query model? (e.g., [PS'21])

* Other practical algorithms based on core-periphery? [ASK'12, AlY'13, BK'19]
* Also, better theoretical guarantees for our algorithm?

e Learning-augmented models for algorithms on large networks? (e.g.,
[CEILNRSWZ’22])



