Practical Sublinear Algorithms for Node Sampling in Large Networks

Omri Ben-Eliezer

Talya Eden BU/MIT -> Bar Ilan U

Joel Oren General Motors

Dimitris Fotakis Natl Tech U Athens

Start at single random node

Explore graph through **query access**: querying node reveals its **neighbors**

Start at single random node

Explore graph through **query access**: querying node reveals its **neighbors**

Start at single random node

Explore graph through **query access**: querying node reveals its **neighbors**

Start at single random node

Explore graph through **query access**: querying node reveals its **neighbors**

Start at single random node

Explore graph through **query access**: querying node reveals its **neighbors**

Goal: generate many random nodes with as few queries as possible:

|V| = n

For $\epsilon > 0$ and $k \ll n$, return random $S \in {\binom{V}{k}}$ where $\Pr(S) \le \frac{1+\epsilon}{\binom{n}{k}}$ for all $S \in {\binom{V}{k}}$

Motivation

- Many algorithms (sublinear-time / property testing, data mining, ...) assume access to random nodes.
- Exploring many different "parts" of a large network with few queries.
- Queries supported in modern social network APIs.

Solution I: BFS

• This talk: **real world** graphs (social networks). But let us start with some theoretical observations.

Trivial solution: Query all nodes, O(n) query complexity. Tight (in worst case) even for sampling a single node!

• Uniform random walk (+ rejection step) generates one node (k = 1) in $O(d_{avg}t_{mix} \cdot \log 1/\epsilon)$ queries [Chierichetti, Dasgupta, Kumar, Lattanzi, Sarlos '16]

average degree

mixing time of uniform random walk

- Uniform random walk (+ rejection step) generates one node (k = 1) in $O(d_{avg}t_{mix} \cdot \log 1/\epsilon)$ queries [Chierichetti, Dasgupta, Kumar, Lattanzi, Sarlos '16]
- Essentially optimal: $\Omega(d_{avg}t_{mix})$ lower bound (for some graphs) [Chierichetti, Haddadan '18]

- Uniform random walk (+ rejection step) generates one node (k = 1) in $O(d_{avg}t_{mix} \cdot \log 1/\epsilon)$ queries [Chierichetti, Dasgupta, Kumar, Lattanzi, Sarlos '16]
- Essentially optimal: $\Omega(d_{avg}t_{mix})$ lower bound (for some graphs) [Chierichetti, Haddadan '18]
- Not hard to show $\Omega(k \cdot t_{mix})$ lower bounds for sampling k nodes, for wide classes of realistic graphs.

- Uniform random walk (+ rejection step) generates one node (k = 1) in $O(d_{avg}t_{mix} \cdot \log 1/\epsilon)$ queries [Chierichetti, Dasgupta, Kumar, Lattanzi, Sarlos '16]
- Essentially optimal: $\Omega(d_{avg}t_{mix})$ lower bound (for some graphs) [Chierichetti, Haddadan '18]
- Not hard to show $\Omega(k \cdot t_{mix})$ lower bounds for sampling k nodes, for wide classes of realistic graphs.

Can we do better than $O(k \cdot t_{mix})$ for large k?

Real-worlds social networks

- *t_{mix}* can be pretty large: several 100's or more [DR'09,MYK'10,QXZZ'20],
- Some small-world models have Θ(log² n) mixing time, e.g., Newman-Watts
 [Dur'10, AL'12, KRS'15].

[[]Mohaisen-Yun-Kim, '10]

Real-worlds social networks

- **Power law** degree distribution
- Highly expanding "core", isolated "periphery" components [BE'99, LLDM '09, RPFM'14, ZMN'15, BK'19, ...]

Let's use core-periphery structure!

Can you reach a random node in less than $t_{mix} = O(d)$ queries?

SampLayer [BEFO'22]: New node sampling algorithm

- **Preprocessing**: Greedily search for "most influential" nodes in network, L_0 .
- Layering & Calibrating: implicitly partition network into three layers: L_0, L_1 , and the periphery $L_{\geq 2}$.
- Sampling by length 2 walks from L_0 to $L_{\geq 2}$ + local BFS in $L_{\geq 2}$ + rejection.

Phase 1: Greedy core construction

Starting from single node, construct L_0 by repeatedly adding node v with highest "perceived degree" and querying v.

Phase 2: Structural layering

 L_1 : all neighbors of L_0 , $L_{\geq 2}$: all other nodes in network.

Key observation: sublinear-sized L_0 can decompose $L_{\geq 2}$ into **tiny components**!

Phase 2: Structural layering

"Preparations" for sampling:

- Estimate $L_{\geq 2}$ size ($|L_0|$, $|L_1|$ known).
- Find a "reachability baseline" for $L_{\geq 2}$
 - Generated distribution will be uniform except for "low reachability" nodes.

Phase 3: Sampling

- Sampling from $L_0 \cup L_1$ straightforward.
- Sampling from $L_{\geq 2}$ by **length-2 walk** between L_0 and $L_{\geq 2}$, then **BFS** in reached $L_{\geq 2}$ component.

Finally, rejection step to ensure uniform probabilities.

• Sina Weibo [ZYLX'14], social network with ≈ 60M nodes, 260M edges

• Other social & information networks

Dataset	n	m	d_{avg}	L ₀ size	
				SL	SL+
Epinions [47]	76K	509K	13.4	3K	1K
Slashdot [38]	82K	948K	23.1	3K	2K
DBLP [56]	317K	1.05M	6.62	30K	20K
Twitter-Higgs [12]	457K	14.9M	65.1	25K	10K
Forest Fire [36, 37]	1M	6.75M	13.5	10K	10K
Youtube [56]	1.1M	2.99M	5.27	30K	10K
Pokec [54]	1.6M	30.6M	37.5	200K	100K
SinaWeibo [58]	58.7M	261M	8.91	500K	100K

Table 1: The list of networks we considered with numbers of nodes (n), edges (m), their average degrees (d_{avg}) , and L_0 sizes we selected for SAMPLAYER and SAMPLAYER+.

• Forest Fire network model [LKF'05] with $p_f = 0.37$, $p_b = 0.3$

• Algorithm provably converges to uniformity:

THEOREM 3.1. If our size estimation for $L_{\geq 2}$ is in $(1 \pm o(1))|L_{\geq 2}|$, and if the baseline reachability rs_0 used in our algorithm is the o(1)percentile in the reachability distribution, then the output node distribution of SAMPLE is o(1)-close to uniform in total variation distance. Furthermore, the sampling probability of any node is at most $\frac{1+o(1)}{n}$.

 Sublinear "almost domination": Most nodes with, say, (out-)degree ≥ 10 have a neighbor in top 0.1%-1% highest degrees.

Dataset	No. Nodes	No. Edges	
Epinions [39]	76K	509K	
Slashdot [28]	82K	948K	
DBLP [48]	317K	1.05M	
Twitter-Higgs [18]	457K	14.9M	
Youtube [48]	1.1M	2.99M	
Pokec [45]	1.6M	30.6M	
Wiki-topcats [49]	1.8M	28.5M	
Orkut [48]	3.1M	117M	
LiveJournal [48]	4.8M	69M	
Twitter-MPI-SWS [9]	53M	2.0B	
Tumblr	247M	14.5B	

• (Weak) theoretical bounds on query complexity:

THEOREM 3.2. The expected query complexity of sampling a single node using SAMPLAYER is $O\left(c \cdot \left(\frac{1}{\alpha} + wd\right)\right)$.

Open Questions

- More explanations and applications for "sublinear almost domination"? [BLMPP'15, MSSK'13, NA'12]
- Efficient node sampling in the random walk query model? (e.g., [PS'21])
- Other practical algorithms based on core-periphery? [ASK'12, AIY'13, BK'19]
 Also, better theoretical guarantees for our algorithm?
- Learning-augmented models for algorithms on large networks? (e.g., [CEILNRSWZ'22])

Thank you!