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The Mean Estimation Problem

iid samples

sample mean

Given data, how to estimate mean of underlying distribution?

Sample mean 1
𝑛
σ𝑖=1
𝑛 𝑥𝑖 Great for Gaussians, nice distributions

“I saw 2
10

outliers” ~ E[outliers] = 1
10

, or 4
10

~ E[outliers] =0.0001
10-6

Optimal alg must depend 
on desired confidence

A) Most extreme distributions 
that “could have” led to data?

B) Find estimate that is accurate
enough for all such distributions



The Goal
“Given n samples from an 
unknown distribution p, 
estimate the mean of p to 
±ε, with probability 1-δ”

What is the optimal tradeoff 
between n, ε, and δ?

#samples accuracy confidence

(computation time isn’t the concern)

Today: Low and High Dimensions

Thm 1: when 𝑑 = 1
Thm 2: when 𝑑𝑒𝑓𝑓 = 𝜔(log2 1

𝛿
)

Thm 2b: new “vector
Bernstein inequality”



My Perspective

Algorithms Lower BoundsEfficiency Complexity

Time Efficiency

Space Efficiency

Data Efficiency

Time Complexity

Space Complexity

Data Complexity
(Sample Efficiency) (Sample Complexity)

/ /



The Goal
“Given n samples from an 
unknown distribution p, 
estimate the mean of p to 
±ε, with probability 1-δ”

What is the optimal tradeoff 
between n, ε, and δ?

#samples accuracy

(computation time isn’t the concern)

Sample mean

Given n samples from Gaussian of variance 𝜎2distribution

returns, with probability ≥ 1 − 𝛿, answer

with accuracy ±𝜎
2+𝑜 1 log

1

𝛿

𝑛

unknown

our algorithm

???

…?

Benchmark against the ideal case: sample mean, on a Gaussian distribution

Low Dimensions:

confidence



Algorithm 1: the Sample Mean

Works great for Gaussians, but…

n samples from distribution: 
1

1000 𝑛
probability of drawing 1

otherwise 0

0 1

99.9% of time: n samples  all 0; sample mean 0; small error

0.1% of time: we see a 1; sample mean = 1
𝑛
; error 999x as big!

Sample mean is unbiased, but not “robust”

mean = 
1

1000 𝑛



Algorithm 2: Median of Means

1. Blindly split data into 8log
1

𝛿
groups

2. Compute mean of each group
3. Return median of the means

Nemirovsky, Yudin (1983), Jerrum, Valiant, and Vazirani (1986), 
Alon, Matias, and Szegedy (2002). 

Intuition: Median is robust; sample mean is unbiased; 
combine to get “best of both worlds” –

robustness and accuracy.

Error ±𝜎
20 log

1

𝛿

𝑛



Algorithm 3: Catoni (2012)
Warmup:

Given data 𝑥1, … , 𝑥𝑛,

Its mean is the point u minimizing σ𝑖 𝑥𝑖 − 𝑢 2

or, solving σ𝑖 𝑥𝑖 − 𝑢 = 0
Its median is the point u minimizing σ𝑖 𝑥𝑖 − 𝑢

or, solving σ𝑖 𝑠𝑖𝑔𝑛(𝑥𝑖 − 𝑢) = 0

Idea: pick a function  that is linear near 0, and 𝑠𝑖𝑔𝑛(𝑥) away from 0

Algorithm: solve for u such that σ𝑖𝜓(𝑥𝑖 − 𝑢) = 0

Let 𝜓 𝑦 = 𝑓(1
𝜎

2 log
1

𝛿
𝑛

𝑦); let 𝑓 𝑧 = log 1

1−𝑧+𝑧2/2
for 0 ≤ 𝑧 ≤ 1, and

𝑓 𝑧 = log 2 for 𝑧 ≥ 1, with odd symmetry about z=0.
Error ±𝜎

2+𝑜 1 log
1

𝛿

𝑛

Goal:Thm:

Thm: if you know the variance ; or, if p has bounded 4th moment



The Challenge:

Catoni’s mean estimator 
needs to know the “width” 
of the distribution. Can we 

succeed without this?



The Bernoulli Case

Suppose we get n draws from a coin of bias p

Given as input k 1’s, and n-k 0’s, and parameter δ, what do we do?

(Poisson Case)

k

lo
g 

p
ro

b
ab

ili
ty

δ

Gap of 1
3
log

1

𝛿
at 𝛿 probability

Throw out 1
3
log

1

𝛿
most extreme samples

Return mean of what remains

Recenter at a rough estimate (e.g. median of means)

in a weighted manner

with  𝑤𝑒𝑖𝑔ℎ𝑡 𝑥 = 𝛼𝑥2min( , 1)

Algorithm (sketch):
Poisson

(skewed)

Gaussian 
(quadratic graph)

np

Bin(n,p)  Poi(np)



Next Steps:

Punchlines: we can do mean estimation on any distribution as well as 
on a Gaussian of matching variance. We thought Gaussians were the 
best distribution; but they’re actually the worst.

Techniques: duality; implicit -estimator representation  i.i.d. sum

• What can we do relative to α moments for 1 < 𝛼 < 2 (instead of variance)?
• Maybe we shouldn’t use Gaussians as a benchmark  instance-optimal algs
• Many new models: “robust” statistics - algs robust to outliers and weird distributions; 

however proof techniques often extend to “robust to adversarial data contamination”, 
allowing for positive results outside the garden of “i.i.d. data”

Higher dimensions…



High Dimensions:



Two Problems
Mean estimation: Given samples from a high-dimensional 
distribution, estimate its mean, optimally

Tail bounds: “Sum of independent bounded random vectors behaves 
like a Gaussian of same covariance”

(seeking “vector Bernstein inequality”)

– Guiding idea: a high-d Gaussian “looks like a spherical shell”

Distribution of 
1

𝑑
𝒩(𝟎, 𝐼𝑑) :

Previous tail 
bounds:

Don’t improve 
with d

𝑟 = 1

𝑑 = 12101001000

[Matrix Chernoff Bounds]

Tail bounds: For a general bounded distribution – “even when it does 
not look like a spherical shell, the sum of many samples does”



The Goal
“Given n samples from an 
unknown distribution p, 
estimate the mean of p to
L2 dist ε, with probability 1-δ”

#samples accuracy confidence

High dimensional case:

𝑑𝑒𝑓𝑓 =
Tr(Σ)

𝜎𝑚𝑎𝑥
2

“effective dimension”

max directional 
variance For spheres: 

𝑑𝑒𝑓𝑓 = 𝑑

𝜎2
2

𝜎1
2

𝜎2
2

𝜎1
2

For pancakes: 
𝑑𝑒𝑓𝑓 < 𝑑

𝑑𝑒𝑓𝑓 = 𝜔(log2 1
𝛿
)

Optimal tradeoff
between n, ε, and δ?

dd covariance matrix

Σ𝑖,𝑗 = 𝐸𝑥←𝑝[ 𝑥𝑖 − 𝜇𝑖 (𝑥𝑗 − 𝜇𝑗)]



Main Result

Sample mean

Given n samples from Gaussian of covariance Σdistribution

returns, with probability ≥ 1 − 𝛿, answer

with error (1 + 𝑜 1 )
𝑇𝑟(Σ)

𝑛

unknown

our algorithm

???
…?

for 𝑛, 𝑑𝑒𝑓𝑓 = 𝜔(log2 1

𝛿
)

The Goal
“Given n samples from an 
unknown distribution p, 
estimate the mean of p to
L2 dist ε, with probability 1-δ”

Optimal tradeoff
between n, ε, and δ?

#samples accuracy

Benchmark against the ideal case: sample mean, on a Gaussian distribution

confidence

𝑑𝑒𝑓𝑓 = 𝜔(log2 1
𝛿
)



Prior Work on Constant-Factor Optimal Mean Est.

1d: median-of-means; Catoni (2012); Devroye et al. (2016); Lee-V (2022)

High-d: many generalizations of “median”, tricky

Lugosi-Mendelson (2019)

Hopkins (2020)

Exp

Poly (SDP)

෨𝑂(𝑛2𝑑)

Today: linear-time; 1+o(1) optimal; extremely simple; but only in very high-d
Problem is scary from CS perspective (computational complexity) AND statistics perspective (sample complexity)

Time: Sample-optimality:

Θ(1)

Θ(1)

Θ(1)4800002

Robust statistics approach: [Diakonikolas, Kane, Pensia’20]

Cherapanamjeri, Flammarion, Bartlett (2020)
Lei, Luh, Venkat, Zhang (2020)



Motivation

Natural to ask: can we extend “spherical 
shell tail bounds” beyond Gaussians?

The good performance of the sample mean for Gaussian 
distributions comes from the fact that, in high dimensions, 
“Gaussians adhere to a spherical shell”



The Bernstein Bound
Let 𝑋1, … , 𝑋𝑛 be independent mean 0 random variables in ℝ, each bounded 

as 𝑋𝑖 ≤ 𝑟. Then for any 𝑡 ≥ 0, Pr σ𝑖 𝑋𝑖 ≥ 𝑡 ≤ exp −
1

2
𝑡2

𝜎2+
1

3
𝑟𝑡

Let 𝑋1, … , 𝑋𝑛 be independent mean 0 random vectors, 
each bounded as 𝑋𝑖 ≤ 𝑟. 

We want – for general distributions – to tightly match the ideal Gaussian performance; thus 
we seek a general tail bound that tightly matches the Gaussian’s “spherical shell” behavior

New: 𝜎𝑖

𝑟Pr 
𝑖
𝑋𝑖 ≥ 𝑡 + 𝑇𝑟(Σ) ≤ exp −

1
2
𝑡2

𝜎𝑚𝑎𝑥
2 + 1

2
𝑟 𝑇𝑟 Σ

⋅ 𝑝𝑜𝑙𝑦 …

Then for any 𝑡 ∈ (0, 𝑇𝑟(Σ)], 

1d:

Interaction shows how Gaussian 
bounds gracefully degrade in 
presence of outliers at radius 𝑟

Gaussian term



Let 𝑋1, … , 𝑋𝑛 be independent mean 0 random vectors, each bounded as 

𝑋𝑖 ≤ 𝑟. Then for any 𝛾 ∈ (0,1], Pr σ𝑖 𝑋𝑖 ≥ (1 + 𝛾) 𝑇𝑟(Σ) ≤

exp −
1

2
𝛾2

1

𝑑𝑒𝑓𝑓
+
1

2

𝑟

𝑇𝑟 Σ

⋅ 𝑝𝑜𝑙𝑦 𝑑𝑒𝑓𝑓 ,
𝑇𝑟(Σ)

𝑟𝑑𝑒𝑓𝑓 =
𝑇𝑟(Σ)

𝜎𝑚𝑎𝑥
2

Tool/
Thm:

Algorithm
Goal: come up with algorithm with 1+o(1) sample-optimal 
mean estimation, for all (high-dimensional) distributions

Linear time!

Alg throws out 𝜔(log2 1

𝛿
)

samples; in our optimal 1d 
algorithm [FOCS2021] we 
threw out 1

3
log 1

𝛿
samples; 

this gives a sense of why our 
approach here can’t extend 
transparently to low-ds can be (almost) any upper bound on log2 1

𝛿
. “Multiple 𝛿 estimator”; impossible in 1d

1. Roughly estimate the mean with classical coordinate-wise median-of-means alg.

2. Throw out the 𝑠 = 𝜔(log2 1

𝛿
) farthest samples. Return mean of what remains.

…This new style of bound might be broadly useful
Given tail bound, our algorithm is 

simple, works for simple, robust reasons



Contributions

Simple, linear-time, 1+o(1)-optimal mean estimation in “very high-d”

Vector Bernstein inequality that reproduces “spherical shell” tails

THANKS!

Next Steps:

• Bridging the gap between low and high dimensions
• Extending 1+o(1)-tight analysis to more regimes
• Instance-optimal algorithms
• New models, extending “robust” estimation



Vector Bernstein Proof Techniques

Let 𝑋1, … , 𝑋𝑛 be independent mean 0 random vectors, each 

bounded as 𝑋𝑖 ≤ 𝑟. Then for any 𝛾 ∈ (0,1], Pr ቂ σ𝑖 𝑋𝑖 ≥

Proof ideas:

1. Average 1d Chernoff bounds 
in every direction x , at distance 𝛽

𝛽
Issue: distributions can be “spiky”, 
e.g. supported on axes; if x aligned 
with “spike”, bounds blow up

2. Set aside support points 𝑦: 𝑦 ⋅ 𝑥 ≥ 𝑝

Then optimize over 𝛽, 𝑝 to yield best bound
Same intuition for why Chernoff bounds are so tight: exponential nature of MGF means typically very 
narrow regime of distribution contributes most of bound; enough to pick 𝛽, 𝑝 to perform well on narrow 
regime

Thm:

𝑥𝑥
“if every point outside sphere is hit 
by ≥ 𝑐 fraction of Chernoff bounds: 
tail pr ≤ 1

𝑐
(avg Chernoff bound)”



Vector Bernstein: Tight?

Tail lower bounds:

1. Gaussian: exp −𝑂 𝛾2𝑑𝑒𝑓𝑓

2. Axis-aligned Poisson at radius 𝑟:

a) Tail likely along axis:

b) Tail likely in intermediate direction:

exp − ෨𝑂 𝛾
𝑇𝑟(Σ)
𝑟

exp − ෨𝑂 𝛾2𝑇𝑟(Σ)
𝑟2

high 1
𝛾

high 𝑑𝑒𝑓𝑓 high 𝑇𝑟(Σ)

𝑟

tight
loose, 

complicated

Parameter space – in
homogeneous coords

Let 𝑋1, … , 𝑋𝑛 be independent mean 0 random vectors, each 

bounded as 𝑋𝑖 ≤ 𝑟. Then for any 𝛾 ∈ (0,1], Pr ቂ σ𝑖 𝑋𝑖 ≥

Thm:

exp −Ω 𝛾2min 𝑑𝑒𝑓𝑓 ,
𝑇𝑟 Σ
𝑟



Analysis
Algorithm:

1. Subtract κ=median-of-means estimate from data

2. Compute α such that σ𝑖min 𝛼𝑥𝑖
2, 1 = 1

3
log

1

𝛿

3. Return 𝑢 = 𝜅 + 1

𝑛
σ𝑖 𝑥𝑖 1 −min 𝛼𝑥𝑖

2, 1

Assume mean 0, variance 1, κ=0
≡ 𝜓𝛼 𝑥𝑖 , 𝛼, 𝑢 = 0−Let

Let − ≡ 𝜓𝑢 𝑥𝑖 , 𝛼, 𝑢 = 0

We have a 2-parameter “psi estimator”. 
Goal: show that, with probability 1-δ over sampling process, for all pairs (𝛼, 𝑢)

with 𝑢 >
2+𝑜 1 log

1

𝛿

𝑛
, the pair (𝛼, 𝑢) will not satisfy 𝜓 𝑥𝑖 , 𝛼, 𝑢 = 0

Idea: show stronger statement, ∃ Ԧ𝑑(𝛼, 𝑢) s.t. … w.p 1-δ, 𝜓 𝑥𝑖 , 𝛼, 𝑢 ⋅ Ԧ𝑑 𝛼, 𝑢 > 0

Standard technique: 1) pick a finite mesh of M points; 

2) show 𝜓 𝑥𝑖 , 𝛼, 𝑢 ⋅ Ԧ𝑑 𝛼, 𝑢 is Lipschitz between mesh points and monotonic 

beyond; 3) show that for each mesh point, Pr 𝜓 𝑥𝑖 , 𝛼, 𝑢 ⋅ Ԧ𝑑 𝛼, 𝑢 ≤ 0 ≤ 𝛿

𝑀

structural properties let us essentially move the “for all pairs” outside the probability


