Massively Parallel Algorithms for Small Subgraph Counting

Amartya Shankha Biswas
MIT CSAIL

Talya Eden
Boston University/ MIT → Bar-Ilan U

Quanquan C. Liu
Northwestern

Slobodan Mitrović
UC Davis

Ronitt Rubinfeld
MIT CSAIL

To Appear in APPROX 2022
Massively Parallel Computation (MPC)

- Massively parallel systems
 - Distributed cluster of multiple machines
Massively Parallel Computation (MPC)

• **Massively parallel systems**
 • Distributed cluster of *multiple machines*
 • Communicate with each other via *rounds of communication*
Massively Parallel Computation (MPC)

• Massively parallel systems
 • Distributed cluster of multiple machines
 • Communicate with each other via rounds of communication
 • Limited space in each individual machine
Commercial Data Centers

Google Kubernetes Engine
Commercial Data Centers

Google Kubernetes Engine

Machine 1 Machine 2 Machine 3
Massively Parallel Computation (MPC) Model

- Theoretical standard for studying parallel frameworks such as MapReduce, Hadoop, Spark, Dryad, and Google Cloud Dataflow
Graph Algorithms in MPC Model

- Matching and MIS [BBDFHKU19, BHH19, GGKMR19, CLMMOS18, NO21]
- Connectivity [ASSWZ18, BDELM19, DDKPSS19]
- Graph sparsification [GU19, CDP20]
- Vertex cover [Assadi17, GGKMR18]
- MST and 2-edge connectivity [NO21]
- Well-connected components [ASW18, ASW19]
- Coloring [BDHKS19, CFGUZ19]
MPC Model Definition

- M machines
- Synchronous rounds
MPC Model Definition

- M machines
- Synchronous rounds
MPC Model Definition

- M machines
- Synchronous rounds
MPC Model Definition

- M machines
- Synchronous rounds
MPC Model Definition

- M machines
- Synchronous rounds
MPC Model Definition

- M machines
- Synchronous rounds
MPC Model Definition

- M machines
- Synchronous rounds

Total Space: $M \cdot S$
Space per Machine in MPC

• **Strongly sublinear memory:**

 • $S = n^\delta$ for some constant $\delta \in (0, 1)$
Space per Machine in MPC

• **Strongly sublinear memory:**
 • $S = n^\delta$ for some constant $\delta \in (0, 1)$

• **Near-linear memory:**
 • $S = \tilde{\Theta}(n)$ (ignoring $\text{poly}(\log(n))$ factors)
Space per Machine in MPC

- **Strongly sublinear memory:**
 - $S = n^\delta$ for some constant $\delta \in (0, 1)$

- **Near-linear memory:**
 - $S = \tilde{\Theta}(n)$ (ignoring $\text{poly}(\log(n))$ factors)

- **Strongly superlinear memory:**
 - $S = n^{1+\delta}$ for some constant $\delta > 0$
Space per Machine in MPC

- **Strongly sublinear memory:**
 - \(S = n^\delta \) for some constant \(\delta \in (0, 1) \)

- **Near-linear memory:**
 - \(S = \tilde{\Theta}(n) \) (ignoring \(\text{poly}(\log(n)) \) factors)

- **Strongly superlinear memory:**
 - \(S = n^{1+\delta} \) for some constant \(\delta > 0 \)

Also want: \(O(\log \log n) \) or \(O(1) \) rounds
Space per Machine in MPC

- **Strongly sublinear memory:**
 - \(S = n^\delta \) for some constant \(\delta \in (0, 1) \)

- **Near-linear memory:**
 - \(S = \Theta(n) \) (ignoring \(\text{poly}(\log(n)) \) factors)

- **Strongly superlinear memory:**
 - \(S = n^{1+\delta} \) for some constant \(\delta > 0 \)

Also want:
- \(O(\log \log n) \) or \(O(1) \) rounds
- \(\tilde{O}(n + m) \) total space
Space per Machine in MPC

- **Strongly sublinear memory:**
 - \(S = n^\delta \) for some constant \(\delta \in (0, 1) \)

- **Near-linear memory:**
 - \(S = \Theta(n) \) (ignoring \(\text{poly} (\log(n)) \) factors)

- **Strongly superlinear memory:**
 - \(S = n^{1+\delta} \) for some constant \(\delta > 0 \)

Also want: \(O(\log \log n) \) or \(O(1) \) rounds

Also want: \(\tilde{\Theta}(n + m) \) total space

All are sublinear in number of edges \(m \) in graph
Triangle Counting in MPC Model

<table>
<thead>
<tr>
<th>Exact Setting</th>
<th>Previous Work</th>
<th>MPC Rounds</th>
<th>Space Per Machine</th>
<th>Total Space</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[SV11]</td>
<td>1</td>
<td>$O(m/\rho^2)$</td>
<td>$O(\rho m)$</td>
</tr>
<tr>
<td></td>
<td>[CC11]</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>Folklore [CN85]</td>
<td></td>
<td>$O(\log n)$</td>
<td>$O(\alpha^2)$</td>
<td>$O(m\alpha)$</td>
</tr>
<tr>
<td>BELMR22</td>
<td></td>
<td>$O(\log \log n)$</td>
<td>$O(n^\delta)$</td>
<td>$O(m\alpha)$</td>
</tr>
</tbody>
</table>

$\delta > 0$ is any constant

- [SV11]: Suri and Vassilvitski, WWW ‘11
- [CC11]: Chu and Cheng KDD ’11
- [CN85]: Chiba and Nishizeki SICOMP ‘85
Triangle Counting in MPC Model

<table>
<thead>
<tr>
<th>Previous Work</th>
<th>MPC Rounds</th>
<th>Space Per Machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SV11]</td>
<td>1</td>
<td>$O(m/\delta)$</td>
</tr>
<tr>
<td>[CC11]</td>
<td>$O(n)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>Folklore [CN85]</td>
<td>$O(\log n)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>BELMR22</td>
<td>$O(\log \log n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

Arboricity α: number of forests that edges can be partitioned into

Real-world graphs: arboricity generally $\text{poly}(\log n)$

$\delta > 0$ is any constant

[SV11]: Suri and Vassilvitski, WWW ‘11
[CC11]: Chu and Cheng KDD ’11
[CN85]: Chiba and Nishizeki SICOMP ‘85
Triangle Counting in MPC Model

Exact Setting

<table>
<thead>
<tr>
<th>Previous Work</th>
<th>MPC Rounds</th>
<th>Space Per Machine</th>
<th>Total Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SV11]</td>
<td>1</td>
<td>$O(m/\rho^2)$</td>
<td>$O(\rho m)$</td>
</tr>
<tr>
<td>[CC11]</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>Folklore [CN85]</td>
<td>$O(\log n)$</td>
<td>$O(\alpha^2)$</td>
<td>$O(m\alpha)$</td>
</tr>
<tr>
<td>BELMR22</td>
<td>$O(\log \log n)$</td>
<td>$O(n^{\delta})$</td>
<td>$O(m\alpha)$</td>
</tr>
</tbody>
</table>

Arboricity α: number of forests that edges can be partitioned into

Better space per machine or better total space when $\alpha \leq m^{1/2-\epsilon}$, **but worse number of rounds**
Triangle Counting in MPC Model

<table>
<thead>
<tr>
<th></th>
<th>Exact Setting</th>
<th>Arboricity α: number of forests that edges can be partitioned into</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous Work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[SV11]</td>
<td>1</td>
<td>$O(m/\rho^2)$</td>
</tr>
<tr>
<td>[CC11]</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Folklore [CN85]</td>
<td>$O(\log n)$</td>
<td>$O(\alpha^2)$</td>
</tr>
<tr>
<td>BELMR22</td>
<td>$O(\log \log n)$</td>
<td>$O(n^\delta)$</td>
</tr>
</tbody>
</table>

Better rounds and space per machine, but total space when $\alpha = \omega(1)$
Triangle Counting in MPC Model

<table>
<thead>
<tr>
<th>Previous Work</th>
<th>MPC Rounds</th>
<th>Space Per Machine</th>
<th>Total Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SV11]</td>
<td>1</td>
<td>$O(m/\rho^2)$</td>
<td>$O(\rho m)$</td>
</tr>
<tr>
<td>[CC11]</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>Folklore [CN85]</td>
<td>$O(\log n)$</td>
<td>$O(\alpha^2)$</td>
<td>$O(m\alpha)$</td>
</tr>
<tr>
<td>BELMR22</td>
<td>$O(\log \log n)$</td>
<td>$O(n^\delta)$</td>
<td>$O(m\alpha)$</td>
</tr>
</tbody>
</table>

Arboricity α: number of forests that edges can be partitioned into

Smaller number of rounds, but worse space per machine when $\alpha < n^{o(1)}$
Triangle Counting in MPC Model

Arboricity α: number of forests that edges can be partitioned into

<table>
<thead>
<tr>
<th>Previous Work</th>
<th>MPC Rounds</th>
<th>Space Per Machine</th>
<th>Total Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SV11]</td>
<td>1</td>
<td>$O(m/\rho^2)$</td>
<td>$O(\rho m)$</td>
</tr>
<tr>
<td>[CC11]</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>Folklore [CN85]</td>
<td>$O(\log n)$</td>
<td>$O(\alpha^2)$</td>
<td>$O(m\alpha)$</td>
</tr>
<tr>
<td>BELMR22</td>
<td>$O(\log \log n)$</td>
<td>$O(n^\delta)$</td>
<td>$O(m\alpha)$</td>
</tr>
</tbody>
</table>

Strictly sublinear setting
Triangle Counting in MPC Model

<table>
<thead>
<tr>
<th></th>
<th>Previous Work</th>
<th>MPC Rounds</th>
<th>Space Per Machine</th>
<th>Total Space</th>
<th>Triangles Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PT12]</td>
<td>(O(1))</td>
<td>(O\left(\frac{m\Delta e}{T}\right))</td>
<td>(O(m))</td>
<td>(\Omega(d_{avg}))</td>
<td></td>
</tr>
<tr>
<td>[SPK13]</td>
<td>(O(1))</td>
<td>(O(n^{\delta}))</td>
<td>(O(m))</td>
<td>(\Omega\left(\sum_{v \in V} \deg(v)^2\right))</td>
<td></td>
</tr>
<tr>
<td>BELMR22</td>
<td>(O(1))</td>
<td>(\tilde{O}(n))</td>
<td>(\tilde{O}(m))</td>
<td>(\Omega(\sqrt{d_{avg}}))</td>
<td></td>
</tr>
</tbody>
</table>

[PT12]: Pagh and Tsourakakis, IPL ‘12
[SPK13]: Seshadhri, Pinar, Kolda, ICDM ‘13
Triangle Counting in MPC Model

<table>
<thead>
<tr>
<th>Previous Work</th>
<th>MPC Rounds</th>
<th>Space Per Machine</th>
<th>Total Space</th>
<th>Triangles Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PT12]</td>
<td>$O(1)$</td>
<td>$O\left(\frac{m\Delta e}{T}\right)$</td>
<td>$O(m)$</td>
<td>$\Omega(d_{avg})$</td>
</tr>
<tr>
<td>[SPK13]</td>
<td>$O(1)$</td>
<td>$O(n^\delta)$</td>
<td>$O(m)$</td>
<td>$\Omega\left(\sum_{v \in V} \deg(v)^2\right)$</td>
</tr>
<tr>
<td>BELMR22</td>
<td>$O(1)$</td>
<td>$\widetilde{O}(n)$</td>
<td>$\widetilde{O}(m)$</td>
<td>$\Omega\left(\sqrt{d_{avg}}\right)$</td>
</tr>
</tbody>
</table>

Better triangle lower bounds, but slightly worse total space
Triangle Counting in MPC Model

(1 + \(\varepsilon\))-Approximate Setting

<table>
<thead>
<tr>
<th>Previous Work</th>
<th>MPC Rounds</th>
<th>Space Per Machine</th>
<th>Total Space</th>
<th>Triangles Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PT12]</td>
<td>(O(1))</td>
<td>(O\left(\frac{m\Delta e}{T}\right))</td>
<td>(O(m))</td>
<td>(\Omega(d_{avg}))</td>
</tr>
<tr>
<td>[SPK13]</td>
<td>(O(1))</td>
<td>(O(n^\delta))</td>
<td>(O(m))</td>
<td>(\Omega\left(\sum_{v \in V} \text{deg}(v)^2\right))</td>
</tr>
<tr>
<td>BELMR22</td>
<td>(O(1))</td>
<td>(\tilde{O}(n))</td>
<td>(\tilde{O}(m))</td>
<td>(\Omega(\sqrt{d_{avg}}))</td>
</tr>
</tbody>
</table>

Worse space per machine than SPK13
Triangle Counting in MPC Model

<table>
<thead>
<tr>
<th>Previous Work</th>
<th>MPC Rounds</th>
<th>Space Per Machine</th>
<th>Total Space</th>
<th>Triangles Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PT12]</td>
<td>$O(1)$</td>
<td>$O\left(\frac{m\Delta e}{T}\right)$</td>
<td>$O(n)$</td>
<td>$\Omega(d_{avg})$</td>
</tr>
<tr>
<td>[SPK13]</td>
<td>$O(1)$</td>
<td>$O(n^\delta)$</td>
<td>$O(n)$</td>
<td>$\Omega\left(\sum_{v \in V} \deg(v)^2\right)$</td>
</tr>
<tr>
<td>BELMR22</td>
<td>$O(1)$</td>
<td>$\tilde{O}(n)$</td>
<td>$\tilde{O}(m)$</td>
<td>$\Omega(\sqrt{d_{avg}})$</td>
</tr>
</tbody>
</table>

Better space per machine than PT12 when $n = o\left(\frac{m\Delta e}{T}\right)$
Results in This Presentation

• Strongly sublinear memory:
 • **Exact** triangle counting:
 • Bounded arboricity
 • $O(\log \log n)$ rounds
 • $O(m^{\alpha})$ total space
Results in This Presentation

• Strongly sublinear memory:
 • **Exact** triangle counting:
 • Bounded arboricity
 • $O(\log \log n)$ rounds
 • $O(m^\alpha)$ total space

• Near-linear memory:
 • **Approximate** triangle counting
 • $(1 + \varepsilon)$-approximation when $T \geq \sqrt{m/n}$
 • $O(1)$ rounds, $\tilde{O}(n + m)$ total space
<table>
<thead>
<tr>
<th>Results in This Presentation</th>
<th>Results in Our Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Strongly sublinear memory:</td>
<td>• Strongly sublinear memory:</td>
</tr>
<tr>
<td>• Exact triangle counting:</td>
<td>• Extensions to clique counting</td>
</tr>
<tr>
<td>• Bounded arboricity</td>
<td></td>
</tr>
<tr>
<td>• $O(\log \log n)$ rounds</td>
<td></td>
</tr>
<tr>
<td>• $O(m^\alpha)$ total space</td>
<td></td>
</tr>
<tr>
<td>• Near-linear memory:</td>
<td></td>
</tr>
<tr>
<td>• Approximate triangle counting</td>
<td></td>
</tr>
<tr>
<td>• $(1 + \varepsilon)$-approximation when $T \geq \sqrt{m/n}$</td>
<td></td>
</tr>
<tr>
<td>• $O(1)$ rounds, $\tilde{O}(n + m)$ total space</td>
<td></td>
</tr>
<tr>
<td>Results in This Presentation</td>
<td>Results in Our Paper</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>• Strongly sublinear memory:</td>
<td>• Strongly sublinear memory:</td>
</tr>
<tr>
<td>• Exact triangle counting:</td>
<td>• Extensions to clique counting</td>
</tr>
<tr>
<td>• Bounded arboricity</td>
<td>• Linear memory:</td>
</tr>
<tr>
<td>• $O(\log \log n)$ rounds</td>
<td>• Extensions to clique counting</td>
</tr>
<tr>
<td>• $O(m\alpha)$ total space</td>
<td>• Linear memory:</td>
</tr>
<tr>
<td>• Near-linear memory:</td>
<td>• Extensions to clique counting</td>
</tr>
<tr>
<td>• Approximate triangle counting</td>
<td>• Linear memory:</td>
</tr>
<tr>
<td>• $(1 + \varepsilon)$-approximation when $T \geq \sqrt{m/n}$</td>
<td>• Extensions to clique counting</td>
</tr>
<tr>
<td>• $O(1)$ rounds, $\tilde{O}(n + m)$ total space</td>
<td>• Linear memory:</td>
</tr>
</tbody>
</table>
Results in This Presentation

- Strongly sublinear memory:
 - **Exact** triangle counting:
 - Bounded arboricity
 - $O(\log \log n)$ rounds
 - $O(m^\alpha)$ total space
- Near-linear memory:
 - **Approximate** triangle counting
 - $(1 + \varepsilon)$-approximation when $T \geq \sqrt{m/n}$
 - $O(1)$ rounds, $\tilde{O}(n + m)$ total space

Results in Our Paper

- Strongly sublinear memory:
 - Extensions to clique counting
- Linear memory:
 - Extensions to clique counting
- Counting **all** small subgraphs of size at most 5 using Bera, Pashanasangi and Seshadhri [ITCS 2020]
Results in This Presentation

- Strongly sublinear memory:
 - **Exact** triangle counting:
 - Bounded arboricity
 - $O(\log \log n)$ rounds
 - $O(m\alpha)$ total space
 - Near-linear memory:
 - **Approximate** triangle counting
 - $(1 + \varepsilon)$-approximation when $T \geq \sqrt{m/n}$
 - $O(1)$ rounds, $\tilde{O}(n + m)$ total space

Results in Our Paper

- Strongly sublinear memory:
 - Extensions to clique counting
- Linear memory:
 - Extensions to clique counting
- Counting **all** small subgraphs of size at most 5 using Bera, Pashanasangi and Seshadhri [ITCS 2020]
- Simulations on real-world graphs:
 - Improvements in number of rounds
 - Improvements in approximation
Results in This Presentation

<table>
<thead>
<tr>
<th>Strongly sublinear memory:</th>
<th>Linear memory:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact triangle counting:</td>
<td>Extensions to clique counting</td>
</tr>
<tr>
<td>Bounded arboricity</td>
<td></td>
</tr>
<tr>
<td>$O(\log \log n)$ rounds</td>
<td>Extensions to clique counting</td>
</tr>
<tr>
<td>$O(m^{\alpha})$ total space</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Near-linear memory:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approximate triangle counting</td>
</tr>
<tr>
<td>$(1 + \varepsilon)$-approximation when $T \geq \sqrt{m/n}$</td>
</tr>
<tr>
<td>$O(1)$ rounds, $\tilde{O}(n + m)$ total space</td>
</tr>
</tbody>
</table>

Results in Our Paper

<table>
<thead>
<tr>
<th>Strongly sublinear memory:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extensions to clique counting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linear memory:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extensions to clique counting</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Counting all small subgraphs of size at most 5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Simulations on real-world graphs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improvements in number of rounds</td>
</tr>
<tr>
<td>Improvements in approximation</td>
</tr>
</tbody>
</table>

FOSDI Sublinear Algorithms Workshop 2022
Exact Triangle Counting Bounded Arboricity

Arboricity α: number of forests that edges can be partitioned into
There exists a MPC algorithm that outputs the exact count of triangles in a graph with arboricity α in $O(\log \log n)$ rounds, $O(n^\delta)$ space per machine for any constant $\delta > 0$ and $O(m\alpha)$ total space.

Massively Parallel Algorithms for Small Subgraph Counting
Amartya Shankha Biswas, Talya Eden, Quanquan C. Liu, Slobodan Mitrovic, Ronitt Rubinfeld

Arboricity α: number of forests that edges can be partitioned into
There exists a MPC algorithm that outputs the exact count of triangles in a graph with arboricity α in $O(\log \log n)$ rounds, $O(n^\delta)$ space per machine for any constant $\delta > 0$ and $O(m\alpha)$ total space.

Massively Parallel Algorithms for Small Subgraph Counting

Amartya Shankha Biswas, Talya Eden, Quanquan C. Liu, Slobodan Mitrovic, Ronitt Rubinfeld

[arxiv.org/2002.08299]

Standard Triangle Counting:
- $O(\log n)$ rounds
- $\Omega(\alpha^2)$ space per machine
- $O(m\alpha)$ total space

Arboricity α: number of forests that edges can be partitioned into

$\alpha \leq \sqrt{m}$
Sequential Triangle Algorithms Directly to MPC

\[\alpha = 2 \]

• Successively remove vertices with degree less than \(2\alpha \) and count number of triangles adjacent to the removed vertices

• Maintain total count
Sequential Triangle Algorithms Directly to MPC

\[\alpha = 2 \]

• Successively remove vertices with degree less than \(2\alpha\) and count number of triangles adjacent to the removed vertices
 • Maintain total count
Sequential Triangle Algorithms Directly to MPC

- Successively remove vertices with degree less than 2α and count number of triangles adjacent to the removed vertices
- Maintain total count
Sequential Triangle Algorithms Directly to MPC

\[\alpha = 2 \]

- Successively remove vertices with degree less than \(2\alpha \) and count number of triangles adjacent to the removed vertices
 - Maintain total count

\[\text{Triangles: 2} \]
Sequential Triangle Algorithms Directly to MPC

$\alpha = 2$

$\alpha = 2$

Triangles: 4

- Successively remove vertices with degree less than 2α and count number of triangles adjacent to the removed vertices
- Maintain total count
Sequential Triangle Algorithms Directly to MPC

Maximum number of edges in the graph: $m \leq n\alpha$

Number of vertices remaining: $\frac{n\alpha}{2\alpha} = \frac{n}{2}$

Number of rounds needed: $O(\log n)$

• Successively remove vertices with degree less than 2α and count number of triangles adjacent to the removed vertices
 • Maintain total count
Sequential Triangle Algorithms Directly to MPC

Maximum number of edges in the graph: $m \leq n\alpha$

Number of vertices remaining: $\frac{n\alpha}{2\alpha} = \frac{n}{2}$

Number of rounds needed: $O(\log n)$

• Successively remove vertices with degree less than 2α and count number of triangles adjacent to the removed vertices
 • Maintain total count
Sequential Triangle Algorithms Directly to MPC

Maximum number of edges in the graph: $m \leq n\alpha$

Number of vertices remaining: $\frac{n\alpha}{2\alpha} = \frac{n}{2}$

Number of rounds needed: $O(\log n)$

• Successively remove vertices with degree less than 2α and count number of triangles adjacent to the removed vertices
 • Maintain total count
Our Exact Triangle Counting Algorithm

\[\alpha \]
Our Exact Triangle Counting Algorithm

\[\text{deg}(v) \leq 2 \left(\frac{3}{2} \right)^i \cdot 2\alpha \]
Our Exact Triangle Counting Algorithm

\[\deg(v) \leq 4\alpha \]

\[i = 0 \]
Our Exact Triangle Counting Algorithm

\[\text{deg}(v) \leq 4\alpha \]

\[i = 0 \]

2 Triangles
Our Exact Triangle Counting Algorithm

\[\text{deg}(v) \leq 6\alpha \]

\[i = 1 \]

2 Triangles
Our Exact Triangle Counting Algorithm

$\deg(v) \leq 6\alpha$

$i = 1$

5 Triangles
Our Exact Triangle Counting Algorithm

\[\text{deg}(v) \leq 10\alpha \]

\[i = 2 \]

5 Triangles
Our Exact Triangle Counting Algorithm

\[O(\log \log n) \]

\[\deg(v) \leq 10\alpha \]

\[i = 2 \]

5 Triangles
Our Exact Triangle Counting Algorithm

• Number of vertices left after first round: X
Our Exact Triangle Counting Algorithm

• Number of vertices left after first round: \(X\)
• Total number of edges left after first round:

\[
m \geq \frac{1}{2} \cdot X \cdot 4\alpha = 2\alpha X
\]
Our Exact Triangle Counting Algorithm

• Number of vertices left after first round: X
• Total number of edges left after first round:

$$m \geq \frac{1}{2} \cdot X \cdot 4\alpha = 2\alpha X$$

$$m_1 \leq X\alpha$$
Our Exact Triangle Counting Algorithm

- Number of vertices left after first round: X
- Total number of edges left after first round:

\[m \geq \frac{1}{2} \cdot X \cdot 4\alpha = 2\alpha X \]

\[m_1 \leq X\alpha \]

\[m_1 \leq \frac{m}{2} \]
Our Exact Triangle Counting Algorithm

- Number of vertices left after i-th round: \(X \)
- Total number of edges left after first round:

\[
\begin{align*}
\frac{1}{2} \cdot X \cdot 4\alpha &= 2\alpha X \\
\frac{1}{2} \leq X\alpha \\
\frac{1}{2} \leq \frac{m}{X} \\
m_{i-1} &\geq \frac{1}{2} \cdot X \cdot 2^{\left(\frac{3}{2}\right)^{i-1}} \cdot 2\alpha \\
m_i &\leq X \cdot \alpha \\
m_i &\leq \frac{m_{i-1}}{2^{\left(\frac{3}{2}\right)^{i-1}}} < \frac{m}{2^{\left(\frac{3}{2}\right)^i}}
\end{align*}
\]
Our Exact Triangle Counting Algorithm

- Number of vertices left after i-th round: X
- Total number of edges left after first round:

$$m \geq \frac{1}{2} \cdot m \cdot \left(\frac{3}{2}\right)^i \cdot 2\alpha$$

$$m_i \cdot \left(\frac{3}{2}\right)^i \cdot 2\alpha \leq \frac{m}{2} \cdot \left(\frac{3}{2}\right)^i \cdot 2\alpha = 2m\alpha$$

$$m_1 \leq X\alpha$$

$$m_1 \leq \frac{m}{2}$$
Our Exact Triangle Counting Algorithm

- Number of vertices left after i-th round: X
- Total number of edges left after first round:

$$m \geq \frac{1}{2}$$

$$m_1 \leq X \alpha$$

$$m_1 \leq \frac{m}{2}$$

$$m_i \cdot \left(\frac{3}{2} \right)^i \cdot 2\alpha \leq \frac{m}{2} \cdot \left(\frac{3}{2} \right)^i \cdot 2\alpha = 2m\alpha$$

$$m_i \leq X \cdot \alpha$$

$$m_i \leq \frac{m_{i-1}}{i-1} < \frac{m}{2\left(\frac{3}{2}\right)^i}$$
Our Exact Triangle Counting Algorithm

- Number of vertices left after i-th round: X
- Total number of edges left after first round: m

\[
m_i \cdot \left(2 \left(\frac{3}{2}\right)^i \cdot 2\alpha\right) \leq \frac{m}{2^{\left(\frac{3}{2}\right)^i}} \cdot \left(2 \left(\frac{3}{2}\right)^i \cdot 2\alpha\right) = 2ma\alpha
\]

\[
m \geq \frac{1}{2}
\]

\[
m_1 \leq X\alpha
\]

\[
m_1 \leq \frac{m}{2}
\]

\[
m_i \leq \frac{m_{i-1}}{i-1} < \frac{m}{2^{\left(\frac{3}{2}\right)^i}}
\]
Exact Triangle Counting Space Per Machine

• **Last Challenge:** Cannot count on one machine because that is too much space
Exact Triangle Counting Space Per Machine

- **Last Challenge:** Cannot count on one machine because that is too much space
 - **Solution:** Reduce to a problem where we merge several lists, sort, and find duplicates
Exact Triangle Counting Space Per Machine

- **Last Challenge:** Cannot count on one machine because that is too much space
- **Solution:** Reduce to a problem where we merge several lists, sort, and find duplicates
 - Every removed node sends its adjacency list to its neighbors
Exact Triangle Counting Space Per Machine

• **Last Challenge:** Cannot count on one machine because that is too much space
 • **Solution:** Reduce to a problem where we merge several lists, sort, and find duplicates
 • Every removed node sends its adjacency list to its neighbors
 • Each neighbor which receives adjacency lists merges received lists with its own adjacency list
Exact Triangle Counting Space Per Machine
Exact Triangle Counting Space Per Machine

\[a \quad c \quad b \quad d \]
Exact Triangle Counting Space Per Machine
Exact Triangle Counting Space Per Machine

\[[a, b, d] \]
Exact Triangle Counting Space Per Machine

\[[a, b, c] \]

\[[a, b, d] \]}
Exact Triangle Counting Space Per Machine

\[[a, b, b, c, d] \]
Exact Triangle Counting Space Per Machine

- MPC sorting algorithm of [GSZ11] to sort lists in $O(1)$ rounds
- Find duplicates using new MPC primitive
Exact Triangle Counting Space Per Machine

- Find duplicates using new MPC primitive

[a, c, c] [c, c, c] [c, d, e] [e, f, g]
Exact Triangle Counting Space Per Machine

• Find duplicates using new MPC primitive
Exact Triangle Counting Space Per Machine

- Find duplicates using new MPC primitive
Exact Triangle Counting Space Per Machine

• Find duplicates using new MPC primitive

```
[a, 1], [c, 6], [g, 1]
```

```
[a, 1], [c, 5]
```

```
[c, 1], [e, 2], [g, 1]
```

```
[a, c, c]
```

```
[c, c, c]
```

```
[c, d, e]
```

```
[e, f, g]
```
Exact Triangle Counting Space Per Machine

• Find duplicates using new MPC primitive

\[O(\log_s n) = O(1) \]
Exact Triangle Counting

- **Challenge**: Cannot count on one machine because that is too much space
 - Need to have an MPC specific counting procedure
 - Removed nodes send list of neighbors to all neighbors
 - MPC sorting algorithm of [GSZ11] to sort lists
 - Find duplicates using new MPC primitive

There exists a MPC algorithm that outputs the exact count of triangles in a graph with arboricity α in $O(\log \log n)$ rounds, $O(n^\delta)$ space per machine for any constant $\delta > 0$ and $O(m\alpha)$ total space.
Exact Triangle Counting

• Challenge: Cannot count on one machine because that is too much space
 • Need to have an MPC specific counting procedure
 • Removed nodes send list of neighbors to all neighbors
 • MPC sorting algorithm of [GSZ11] to sort lists
 • Find duplicates using new MPC primitive

Somewhat resembles **round compression** technique although simpler on bounded arboricity graphs and deterministic: do not need to do sampling
Results in This Presentation

- **Strongly sublinear memory:**
 - **Exact** triangle counting:
 - Bounded arboricity
 - \(O(\log \log n) \) rounds
 - \(O(m^\alpha) \) total space
 - Near-linear memory:
 - **Approximate** triangle counting
 - \((1 + \varepsilon)\)-approximation when \(T \geq \sqrt{m/n} \)
 - \(O(1) \) rounds, \(\tilde{O}(n + m) \) total space

<table>
<thead>
<tr>
<th>Results in This Presentation</th>
<th>Results in Our Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Strongly sublinear memory:</td>
<td>• Strongly sublinear memory:</td>
</tr>
<tr>
<td>• Exact triangle counting:</td>
<td>• Extensions to clique counting</td>
</tr>
<tr>
<td>• Bounded arboricity</td>
<td>• Linear memory:</td>
</tr>
<tr>
<td>• (O(\log \log n)) rounds</td>
<td>• Extensions to clique counting</td>
</tr>
<tr>
<td>• (O(m^\alpha)) total space</td>
<td>• Counting all small subgraphs of size at most 5</td>
</tr>
<tr>
<td>• Near-linear memory:</td>
<td>• Simulations on real-world graphs:</td>
</tr>
<tr>
<td>• Approximate triangle counting</td>
<td>• Improvements in number of rounds</td>
</tr>
<tr>
<td>• ((1 + \varepsilon))-approximation when (T \geq \sqrt{m/n})</td>
<td>• Improvements in approximation</td>
</tr>
</tbody>
</table>

FODSI Sublinear Algorithms Workshop 2022
Advantages and Disadvantages of Approximate Counting

• Main Advantage:
 • Small runtime, fast and requires little space
• Main Disadvantage:
 • Requires lower bound on the number of triangles
Approximate Triangle Counting

There exists a MPC algorithm that outputs a \((1 + \epsilon)\)-approximation for the number of triangles if the number of triangles \(T \geq \sqrt{d_{avg}}\) and uses \(\tilde{O}(m)\) total space and \(\tilde{\Theta}(n)\) space per machine, \(O(1)\) MPC rounds.

Massively Parallel Algorithms for Small Subgraph Counting
Amartya Shankha Biswas, Talya Eden, Quanquan C. Liu, Slobodan Mitrovic, Ronitt Rubinfeld
[arxiv.org/2002.08299]
Approximate Triangle Counting

There exists a MPC algorithm that outputs a $(1 + \epsilon)$-approximation for the number of triangles if the number of triangles $T \geq \sqrt{d_{avg}}$ and uses $\tilde{O}(m)$ total space and $\tilde{O}(n)$ space per machine, $O(1)$ MPC rounds.

Massively Parallel Algorithms for Small Subgraph Counting
Amartya Shankha Biswas, Talya Eden, Quanquan C. Liu, Slobodan Mitrovic, Ronitt Rubinfeld
[arxiv.org/2002.08299]

Previous: $T \geq d_{avg}$ [Pagh and Tsourakakis ‘12]
Approximate Triangle Counting

There exists a MPC algorithm that outputs a $(1 + \epsilon)$-approximation for the number of triangles if the number of triangles $T \geq \sqrt{d_{avg}}$ and uses $\tilde{O}(m)$ total space and $\tilde{\Theta}(n)$ space per machine, $O(1)$ MPC rounds.

Massively Parallel Algorithms for Small Subgraph Counting
Amartya Shankha Biswas, Talya Eden, Quanquan C. Liu, Slobodan Mitrovic, Ronitt Rubinfeld
[arxiv.org/2002.08299]

Previous: $T \geq d_{avg}$ [Pagh and Tsourakakis ‘12]

[Seshadhri, Pinar, Kolda ‘13] can get better near-linear space per machine
Approximate Triangle Counting

1

2

0

\[p \]

\[p \]

\[p \]
Approximate Triangle Counting

\[p \]

\[O(\log n) \]
Challenges
Challenges

• Challenge 1: Induced subgraphs do not exceed the space per machine
Challenges

• Challenge 1: Induced subgraphs do not exceed the space per machine

• Challenge 2: How to compute the induced subgraph in each machine when one vertex can appear on multiple machines?
Challenges

- Challenge 1: Induced subgraphs do not exceed the space per machine

- Challenge 2: How to compute the induced subgraph in each machine when one vertex can appear on multiple machines?

- Challenge 3: The number of triangles across the machines concentrates
Challenges

• Challenge 1: Induced subgraphs do not exceed the space per machine
 Careful setting of p

• Challenge 2: How to compute the induced subgraph in each machine when one vertex can appear on multiple machines?
 k-wise independent hash function for small k

• Challenge 3: The number of triangles across the machines concentrates
 Constant probability of success and median trick
Challenges

• Challenge 1: Induced subgraphs do not exceed the space per machine

 Careful setting of p

• Challenge 2: How to compute the induced subgraph in each machine when one vertex *can appear on multiple machines*?

 k-wise independent hash function for small k

• Challenge 3: The number of triangles across the machines concentrates

 Constant probability of success and median trick
Open Questions and Future Directions

• Small subgraph counting for a **broader class of small subgraphs**
Open Questions and Future Directions

• Small subgraph counting for a broader class of small subgraphs

• Recent works of Bressan ‘19 and Bera, Pashanasangi, and Seshadhri ‘21 use **DAG tree decomposition**
Open Questions and Future Directions

• Small subgraph counting for a broader class of small subgraphs

 • Recent works of Bressan ‘19 and Bera, Pashanasangi, and Seshadhri ‘21 use DAG tree decomposition

 • Can we implement in MPC?
Open Questions and Future Directions

• Small subgraph counting for a **broader class of small subgraphs**

 • Recent works of Bressan ‘19 and Bera, Pashanasangi, and Seshadhri ‘21 use **DAG tree decomposition**

 • Can we implement in MPC?

• Counting in the **adaptive MPC model (AMPC)**
Open Questions and Future Directions

- Small subgraph counting for a **broader class of small subgraphs**

 - Recent works of Bressan ‘19 and Bera, Pashanasangi, and Seshadhri ‘21 use **DAG tree decomposition**

 - Can we implement in MPC?

- Counting in the **adaptive MPC model (AMPC)**

- Approximate triangle counting in $O(1)$ rounds and strictly sublinear space in **sparse graphs** where $m = \tilde{O}(n)$