Sketching as a tool for Algorithmic Design

Alex Andoni
(Columbia University)
Find similar pairs
Methodology?

Sketching

- compression
- good for specific task
- lossy

Small space algorithms

Fast algorithms

Dimension reduction

- linear map \(S: \mathbb{R}^n \rightarrow \mathbb{R}^k \) s.t:
 - for any points \(p, q \in \mathbb{R}^n \):
 \[
 \Pr_S \left[\frac{\|S(p) - S(q)\|}{\|p - q\|} \in (1 \pm \epsilon) \right] \geq 1 - \delta
 \]

[Johnson-Lindenstrauss’84]:

\[k = O \left(\frac{1}{\epsilon^2 \log \frac{1}{\delta}} \right) \]

Dimension reduction
Plan

- Numerical Linear Algebra
- Nearest Neighbor Search
- Min-cost matching in plane

a sketch of sketching applications…
Plan

- Numerical Linear Algebra
 - the power of linear sketches
- Nearest Neighbor Search
- Min-cost matching in plane
Numerical Linear Algebra

Problem: Least Square Regression

\[x^* = \arg \min_x ||Ax - b|| \]

where \(A \) is \(n \times d \) matrix

\(n \gg d \)

1 + \(\epsilon \) approximation

Idea: Sketch-And-Solve

solve \(x' = \arg \min_x ||S \cdot (Ax - b)|| = \arg \min_x ||SAx - Sb|| \)

where \(S: \mathbb{R}^n \rightarrow \mathbb{R}^k \) is a dimension-reducing matrix

reduces to much smaller \(k \times d \) problem

Hope: \(||Ax' - b|| \leq (1 + \epsilon) ||Ax^* - b|| \)
Sketch-And-Solve

[S’06, CW’13, NN’13, MM’13, C’16]

Oblivious Subspace Embedding: linear map $S: \mathbb{R}^n \to \mathbb{R}^k$ s.t.
- for any linear subspace $P \subset \mathbb{R}^n$ of dimension d:
 \[
 \Pr_S \left[\forall p \in P : \frac{||S(p)||}{||p||} \in (1 \pm \epsilon) \right] \geq 1 - \delta
 \]

- **Issue:** time to compute sketch
 - When $S=$Gaussian ([JL]) \Rightarrow computing SA takes $O(n \cdot d^2)$ time
 - Idea: **structured** S s.t. SA can be computed faster
 - +structured S: $O \left(nnz(A) + \left(\frac{d}{\epsilon} \right)^{O(1)} \right)$ time
 - +Preconditioner: $O \left(\left(nnz(A) + d^{O(1)} \right) \cdot \log \frac{1}{\epsilon} \right)$

$k \sim d$ slower than the original problem!
\(\ell_1 \) regression

- No similar dimension reduction in \(\ell_1 \) [BC’04, JN’09]

\[\text{Weak DR: linear map } S : \mathbb{R}^n \rightarrow \mathbb{R}^k, \text{ s.t.} \]

- for any \(p \in \mathbb{R}^n \):
 \[\Pr_S \left[1 \leq \frac{||S(p)||_1}{||p||_1} \leq \frac{1}{\delta} \right] \geq 1 - O(\delta) \]

\[S_{ij} \sim \text{Cauchy distribution, or 1/Exponential} \]

\[k = O(d \cdot \log d) \]

\[\text{Weak(er) OSE: linear map } S : \mathbb{R}^n \rightarrow \mathbb{R}^k \text{ s.t.} \]

- for any linear subspace \(P \subset \mathbb{R}^n \) of dimension \(d \):
 \[\Pr_S \left[\forall p \in P : 1 \leq \frac{||S(p)||_1}{||p||_1} \leq d^{O(1)} \right] \geq 0.9 \]

- +structured \(S \), +preconditioner: \(O \left(\text{nnz}(A) \cdot \log n + \left(\frac{d}{\epsilon} \right)^{O(1)} \right) \)

- More: other norms (\(\ell_p \), M-estimator, Orlicz norms), low-rank approximation & optimization, matrix multiplication, see [Woodruff, FnTTCS’14,…]
Plan

- Numerical Linear Algebra
- Nearest Neighbor Search
 - ultra-small sketches
- Min-cost matching in plane
Approximate Near Neighbor Search

- **Preprocess:** a set of \(N \) point
 - approximation \(c > 1 \)

- **Query:** given a query point \(q \), report a point \(p^* \in P \) with the smallest distance to \(q \)
 - up to factor \(c \)

- **Near neighbor:** threshold \(r \)

- **Parameters:** space & query time
Ultra-small sketches

Distance Estimation Sketch: for approx c, & all thresholds r map $S: \mathbb{R}^d \rightarrow \{0,1\}^k$, estimator $E(\cdot,\cdot)$, s.t. for any $p, q \in \mathbb{R}^d$:

- $||p - q|| \leq r$, then $\Pr_{S}[E(S(p),S(q)) = "close"] \geq 1 - \delta$
- $||p - q|| > cr$, then $\Pr_{S}[E(S(p),S(q)) = "close"] \leq \delta$

- **[KOR’98,IM’98]:** ℓ_2, ℓ_1 have $(1 + \epsilon, 0.1, O\left(\frac{1}{\epsilon^2}\right))$-DE sketches
 - Via: bit sampling (Hamming),
 - or discretizing dimension reduction

(const # of bits!)
DE Sketch => NNS

Proof:
- Construct a sketch with failure probability $1/N$
 - by concatenating $O(\log N)$ i.i.d. copies of the sketch, and taking majority vote
 - Data structure: a look-up table for all possible sketches of a query: $2^{O(k \cdot \log N)} = N^{O(k)}$ possibilities only

Const size DES => NNS with polynomial space!

- Query time: computing the sketch, typically $\sim O(kd \log N)$
 - [see also AC’06]

[KOR’98,IM’98]: $(c, 1/3, k)$-DES imply c-approx NNS with space $N^{O(k)}$ and 1 memory probe per query

[AK+ANNRW’18]: $(c, 0.1, k)$-DES implies NNS with $O(ck)$-approximation and $O(N^{1.1})$ space, $O(N^{0.1})$ memory probes per query
Beyond ℓ_1 and ℓ_2

α-embedding of metric X **into** ℓ_1: for distortion D, power $\alpha \geq 1$:
map $f: X \to \ell_1$, s.t. for any $p, q \in X$:
- $\|f(p) - f(q)\|^{\alpha} \leq \text{dist}_X(p, q) \leq D \cdot \|f(p) - f(q)\|^{\alpha}$

Embedding with $D = c$ \Rightarrow $(O(c), 0.1, O(1))$-DES \Rightarrow NNS

[AKR’15]: when X is a norm:

Embedding with $D = O(ck)$ \Rightarrow $(O(c), 0.1, k)$-DES

OPEN: if $\alpha = 1$ achievable

Not true for general X [KN]
NNS with smaller space?

- Space closer to linear in N?

LSH Sketch: for approx c, & \forall thresholds r
map $S: \mathbb{R}^d \rightarrow \{0,1\}^k$, estimator $E(\cdot;\cdot)$, s.t. for any $p, q \in \mathbb{R}^d$:

- $||p - q|| \leq r$, then $\Pr_S[E(S(p), S(q)) = "close"] \geq 2^{-\rho k}$
- $||p - q|| > cr$, then $\Pr_S[E(S(p), S(q)) = "close"] \leq 2^{-k+1}$
- $E(\sigma, \tau) = "close"$ iff $\sigma = \tau$

[IM’98]: (c, ρ, k)-LSH imply c-approx NNS with $O(N^{1+\rho})$ space and $O(N^\rho)$ memory probes per query

[IM’98]: $\rho = 1/c$ for ℓ_1
Plan

- Numerical Linear Algebra
- Nearest Neighbor Search
- Min-cost matching in plane
 - specialized sketches
- Exploit sketches for:
 - input
 - internal state / partial computations
LP for Geometric Matching

Problem:

- Given two sets A, B of points in \mathbb{R}^2,
- Find min-cost matching (1 + ϵ approx.)
- a.k.a., Earth-Mover Distance, optimal transport, Wasserstein metric, etc

Classically: LP with n^2 variables

- General: $\tilde{O}(n^2/\epsilon^4)$ time [AWR’17]
- In 2D: hope for $\approx n$ time [SA’12]

\[\min_{\pi \in \mathbb{R}^+_{n^2}} \sum_{i,j} ||p_i - q_j|| \cdot \pi_{ij} \]
\[\text{s.t. } \pi \mathbf{1} = \frac{1}{n} \mathbf{1} \text{ and } \pi^t \mathbf{1} = \frac{1}{n} \mathbf{1} \]

[ANOY’14]: Solve-And-Sketch framework
Solves in $n^{1+o(1)}$ time (for fixed ϵ)
Solve-And-Sketch (=Divide & Conquer)

- **Partition** the space hierarchically in a “nice way”
- In each part
 - Compute a “solution” for the local view
 - Sketch the solution using small space
 - Combine local sketches into (more) global solution
Solve-And-Sketch for 2D Matching

- Partition the space hierarchically in a “nice way”
- In each part, all potential local solutions
 - Compute a “solution” for the local view
 - Sketch the solution using small space
 - Combine local sketches into (more) global solution

Sketch of all potential local solutions:
Small-space sketch of the “solution” function $F: \mathbb{R}^k \rightarrow \mathbb{R}_+$
- input $x \in \mathbb{R}^k$ defines the flow (matching) at the “interface” to the rest
- $F(x)$ is the min-cost matching assuming flow x at interface

Cannot precompute any “local solution”
Numerical Linear Algebra
 - linear sketching

Nearest Neighbor Search
 - ultra-small sketches

Min-cost matching in plane
 - specialized sketching

Graph sketching
 - Linear sketch for graph => data structures for dynamic connectivity
 [AGM’12, KKM’13]

Characterization of DE-sketch size for metrics:
 - For symmetric norms [BBCKY’17]

Adaptive sketching: when we know we sketch set $A \subset \mathbb{R}^d$
 - Then $S(\cdot)$ may depend (weakly) on A
 - Non-oblivious subspace embeddings [DMM’06,…, Woodruff’14]
 - Data-dependent LSH [AINR’14, AR’15]
Bibliography

- Sarlos’06
- Clarkson-Woodruff’13,
- Nguyen-Nelson’13,
- Mahoney-Meng’13,
- Cohen’16
- Indyk’00
- Sohler-Woodruff’11
- Woodruff-Zhang’13
- Wang-Woodruff’18 (arxiv)
Kushilevitz-Ostrovsky-Rabani’98
Indyk-Motwani’98
Ailon-Chazelle’06
Khot-Naor (unpublished)
A-Krauthgamer (unpublished)
A-Naor-Nikolov-Razenshteyn-Weingarten’18
Altschuler-Weed-Rigolet’17
Sharathkumar-Agarwal’12
A.-Nikolov-Onak-Yaroslavtsev’14
Ahn-Guha-McGregor’12
Kapron-King-Mountjoy’13
Blasiok-Braverman-Chestnut-Krauthgamer-Yang’17
Drineas-Mahoney-Muthukrishnan’06
A-Indyk-Nguyen-Razenshteyn’14
A-Razenshteyn’15